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Abstract
Mindreading is the ability to understand both oneself and other agents in terms of beliefs, desires,
intentions and other relevant mental states. This critically important ability has been implicated
across a broad spectrum of human cognitive activities, including participation in dialogue, collabo-
ration, competition, and moral judgment. This paper serves as a reflection on the kinds of strategies
we can use to build a system capable of mindreading, given currently available resources in the
relevant literature. After reviewing representative computational approaches on offer I will sug-
gest a set of architectural mechanisms that could provide the flexibility required to build a robust
mindreading capability for cognitive systems.

1. Introduction

As you were reading through the abstract, your mind engaged in a series of calculations designed to
figure out what I meant in using the specific words and phrases that I used in writing it. Your capacity
to "mindread" attempted to identify and ascribe to me a coherent set of beliefs, intentions, desires
and other mental states that might have led me to write what I wrote. This powerful compulsion to
predict and explain the behavior of other agents is not only active while reading text, but also while
engaged in dialogue, while observing everyday human action, while competing or cooperating,
when engaged with fiction of any type, and possibly when planning for the future or learning from
past episodes.

The central cognitive activity involved in mindreading is the ascription of mental states from
one agent to another. If Max observes Sally walking to the kitchen, he might infer that Sally is
hungry, wants something to eat and will walk to the refrigerator because she thinks there is food
inside. Max ascribes a number of mental states to Sally including her belief that food is in the
fridge, that she desires to eat, and that she intends to walk to the fridge in order to get a snack.
However, he likely does not ascribe other less relevant but logically possible mental states, such as
Sally wanting to get something from the refrigerator and her believing that 89 is in the set of prime
numbers. Although it seems odd to consider the latter as an example, such inferences are not only
warranted but demanded on certain formal accounts of reasoning about beliefs.

The kitchen vignette described above is just one of a potentially infinite number of scenarios
in which Max will be more or less successful at telling a respectable story about Sally’s state of
mind. How is this possible without Max having prior experience observing Sally when she is in a
kitchen? Does Max maintain a huge collection of conditionals that roughly describes Sally’s mental
states? Does he assume that Sally will act rationally in the sense that her actions will be properly
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conditioned on her presumed beliefs and desires? Can he reasonably think that Sally will behave
much as he would in the same circumstances? Finally, if Max makes mistakes in attributing mental
states to Sally, what kinds of mistakes will he make and under what circumstances will he make
them? What sorts of mental representations and processes must Max be utilizing for all of this to
happen so effortlessly? What kind of strategy should we pursue if we wish to build an intelligent
system capable of the rich type of social cognition that Max displays?

This paper aims to lay groundwork for pursuing a research program in this important area,
rather than offering a highly detailed solution. It is about the choices offered by the formalisms
we have available at the moment, and whether they let us to tell a compelling story about how
mindreading-capable agents might be built. The paper specifically focuses on representational and
inferential requirements for the basic activities that comprise mindreading: ascription of mental
states, prediction of behavior conditioned on these ascriptions, and explanation of observed behavior
via post hoc ascription of mental states. Unfortunately, brevity requires us to focus on these core
functions, rather than exploring the interesting connections between mindreading and other abilities,
such as dialogue, moral judgment, and self regulation. After arguing that the tools we have for
thinking about computational models of mindreading might not be up to the task, I present the very
beginnings of what I believe to be firmer foundations for building such models.

2. Methodology and Modeling

In a recent Cognitive Science article, Cassimatis, Langley and Bello (2008) argued for three core
criteria to be applied in the evaluation of models for higher-order cognition. These three criteria are
ability, breadth, and parsimony. Generally speaking, by ability we meant the general capacity of a
model to account for human-level competence with respect to the phenomena under investigation.
By breadth, we meant that the model is capable of accounting for a variety (if not the preponderance)
of phenomena-related results, including capturing competence-related trends across a sufficiently
large space of human data. By parsimony, we meant that the model displays both ability and suf-
ficient breadth without multiplying cognitive mechanisms (or representations) beyond the demands
imposed by our most current data. As I shift discussion toward existing computational approaches
to mindreading, I will argue that typically employed assumptions in both AI and computational
cognitive science fail on at least one of these criteria.

As a matter of methodology, I am committed to not only giving a computational explanation of
mindreading as a capacity, but also providing hypotheses for how it might be degraded or even fail
outright. The strategy I adopt is to assume that error-prone mindreading is the result of cognitive
systems that evolved for purposes other than mindreading and have since been re-purposed to the
task of understanding other minds. One might argue that building a cognitive system that is prone
to attribution errors seems wasteful or otherwise silly. I think that this remains to be seen. There
are many types of social interaction where one agent benefits by having the ability to reason about
the kinds of attribution errors made by another agent. For example, games like poker would be
much less interesting for expert players if they were not able to apply a fairly rich model of errors
to their advantage, even if they have no consciously accessible theory of attribution errors to draw
from. The semantics of important social concepts like stereotyping would be difficult to capture in

60



COGNITIVE FOUNDATIONS FOR MINDREADING

a world without attribution errors. More generally, if we hope to have intelligent systems interact
with human partners, it seems reasonable that the system be capable of predicting and responding
to human errors in attribution. If my hunch is on target and mindreading is accomplished by means
of multiple domain-general cognitive processes, we should expect that errors are the natural result
of a cognitive system optimized for breadth. I argue later in the paper that the doorway to errors in
mindreading is opened as a result of the parsimony of representation used to realize mental states in
the cognitive system.

3. Computational Frameworks

I now turn attention to reviewing representative work in the computational literature on reasoning
about the mental states of other agents. The frameworks I discuss are not and were never intended
to be psychologically plausible or otherwise constrained by human data. I will argue that this is a
fatal flaw. I will loosely refer to these as computational accounts of mindreading, but it might be
more accurate to describe them as formalizations of epistemic reasoning, which is only one of the
capabilities that we are interested in. I will attempt to analyze these approaches with respect to the
ability, breadth and parsimony criteria discussed in the last section in order to facilitate comparison
with my own approach to mindreading described later in the paper.

3.1 Logical Approaches to Epistemic Reasoning

Formal systems for representing and reasoning about the beliefs of agents are often expressed in the
framework of epistemic logic (Hintikka, 1962). Knowledge and belief become modal operators that
scope over formulae in the logical language. As an example of this approach, let us briefly describe
the modal logic KD45, which is widely used in AI as a means of representing the knowledge and
beliefs of agents. The letter B is the modal operator for belief, and relations of the form Bφ should
be read as "Agent believes φ" where φ is some proposition.1

3.1.1 Ability, Breadth and Parsimony: An Analysis

Unfortunately, the purely logic-based approach is unsuitable for a psychologically plausible account
of mindreading. The failure in this case is logical omniscience, or the general tendency for logics
of this kind to require agents to over-generate inferences and to entertain irrelevant propositions,
which I take as violating the ability criterion with respect to human-level mindreading competence.
In general, KD45 does not take agents to be resource-bounded reasoners, which seems to be an ob-
vious desideratum for building any sort of psychologically plausible computational artifact. KD45
contains the axiom K: (Bφ ∧ B(φ → ψ))→ Bψ, which compels an agent to believe the deductive
closure of its beliefs. Furthermore, KD45 includes the axiom N: |= φ→ Bφ, which demands that all
propositional validities are believed. Examples of such validities might be φ ∨ ¬φ or φ→ (φ ∨ ψ).
Standard logical approaches do not differentiate between an agent’s set of active beliefs and the

1. For our purposes, propositions are defined as truth-bearing descriptions of states of affairs. This contrasts with
some other symbolic approaches to knowledge representation (e.g., production matching) in which "truth" is roughly
equated with an element in working memory matching the antecedent of a production. Semantically speaking, explicit
falsity is not a necessary feature of production systems.
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slew of irrelevant tautologies that it is compelled to believe by way of N. For instance, Axiom D:
Bφ→¬B¬φ forbids agents from believing contradictions, which seems acceptable until it interacts
with K. While it might be reasonable to assume that agents ought not to believe propositions of the
form φ ∧ ¬φ, axiom D seems overly restrictive when φ is believed and ¬φ is a consequence of an
incredibly long chain of reasoning resulting from the rule K over-generating consequences. Taken
together, D and K impose an implausibly extreme commitment to consistency.

Axiom 4: Bφ→ BBφ addresses the matter of positive introspection and agents believing what-
ever they believe. Axiom 5 is written as ¬Bφ→ B¬Bφ and states that agents do not believe what-
ever it is they do not believe. Axiom 4 looks to be prima facie acceptable under certain conditions
(Bello & Guarini, 2010), but 5 ought to be viewed with a healthy degree of suspicion, since it is
often the case that a resource bounded agent will not know what it does not know. KD45’s facilities
for introspection also fall short of being able to represent and reason about ignorance as a first-class
mental state. Limitations on representing ignorance make it difficult to utilize KD45 consistently
in an intelligent system that needs to manage learning goals in a dynamic world.2 There have been
attempts to save these kinds of approaches from the unwelcome consequences of omniscience (Sim,
1997), but none have been widely adopted or implemented to date.

In general, logical approaches to mindreading fail to meet the parsimony criterion as well. The
basic form of the argument is that it seems profligate to posit a different representation and spe-
cial semantics for every propositional attitude we can conceive of. Should we consider a logic of
ignorance, or of wishful thinking, or a logic of willfully violated obligations? Humans may well
have something like logical theories that roughly describe the dynamics of such attitudes; however,
I often wonder what kind of story to tell about how we arrive at them. The logical approach more or
less assumes whatever semantic resources it requires as a convenience in order to explore concep-
tual terrain. To be admissible as the backbone of a theory of (human) cognition, such approaches
must tell not only a compelling story about semantics, but also justify the kinds of representations
they assume. One approach might be to provide a suitable reduction of complex attitudes (such
as willful ignorance) into simpler attitudes like belief, intention, and desire. There have been vari-
ous individual reductions of the sort that I describe, but little effort to systematize them or provide
general principles for accomplishing them.

This brings our discussion to the breadth criterion. To illustrate my point, I consider Belief-
Desire-Intention (BDI) models of agency (Rao & Georgeff, 1998) built within a broadly logical
framework. The logical semantics associated with implementations of BDI theories require agents
to be non-deceptive and helpful in ways that severely limit their applicability as off-the-shelf spec-
ifications for a socially competent system. Mental state attribution would be much less interesting
if we were unable to ascribe willful ignorance, deceptive intentions, delusion, and other irrational
attitudes. Far from being the unwanted byproducts of how our cognitive systems represent men-
tal states, recognizing these attitudes in others serves as a soft constraint on future interactions.
After all, most of us find little use in having extended discussion with the serially deluded, or in
committing to a joint intention with an agent who has infelicitous intentions.

2. Although van der Hoek and Lomuscio (2004) attempt to address ignorance formally within the bounds of epistemic
logic, as I read it their approach does not capture total ignorance, but rather captures being in the state ¬Bφ ∧ ¬B¬φ.
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3.2 Probabilistic Approaches to Epistemic Reasoning

Aside from the classical logic-based approaches to belief ascription, a number of other implemented
systems lay claim to being able to represent and reason about the beliefs of other agents. In recent
years, approaches based largely on Bayesian and/or decision-theoretic commitments (e.g., Tenen-
baum et al., 2011) have become fashionable due to their mathematical elegance and well-understood
computational properties. Bayesian epistemology commits to the notion that rational agents have
quantitative degrees of belief in statements, and that these degrees can be modeled using probabil-
ity functions. As in most logical treatments of epistemic reasoning, probability theory entails that
probability functions assign equal probability to logically equivalent statements and therefore equal
degrees of belief. All tautologies generated by any sentential language P are believed with proba-
bility one, leading to the same kind of logical omniscience that characterized the logical language
KD45 discussed earlier.

Some approaches to modeling non-omniscient Bayesian agents have been explored (Garber,
1983). For example, take a simple language with three variables, A, B, and C. One can adopt
the strategy of treating C as the statement A → B, such that Pr(B | A,C) < 1. This seems to be
a rather non-heroic way of rescuing Bayesian epistemology, since it demands that modelers need
to generate a priori instances of every unknown relationship between elements of the language P,
which is clearly undesirable. It is also a strange suggestion vis a vis cognitive architecture, since
it suggests that all such statements are hidden somewhere in the subconscious, just waiting to be
called up to be conditionally updated when the right kind of evidence presents itself.

Upon evaluation against the criteria of ability, breadth and parsimony, probabilistic approaches
fare at least as poorly as classical logical approaches due to assumptions leading rational agents
toward logical omniscience. Such approaches fail to meet the ability criterion as demonstrated by
abundance of evidence for heuristics and biases in probabilistic judgments from the psychology of
decision making (Tversky & Kahneman, 1974). In this sense, they may be good descriptions of
mathematically sophisticated humans performing pen-and-paper exercises, but they are inadequate
for capturing the judgments of untutored subjects. Since probabilistic approaches are fundamentally
accounts of rational agency, they fail to meet the breadth requirement in exactly the same way as
logical approaches. It is unclear how we might use these approaches to provide for the possibility
of human error in decision making, the representation of total ignorance (e.g., a nonexistent or
constantly changing domain of discourse), or the existence of attitudes that are essentially irrational.
As for parsimony, probabilistic approaches fare nominally better than their logical counterparts, but
that is where the good news ends for the Bayesian. The proponent of formal logics must explain
why we ought to help ourselves to new semantics for mental states whenever we see fit, and without
reduction to a core set of primitives. The Bayesian must explain why we do not need to help
ourselves to virtually any semantics for propositional attitudes at all.

4. Cognitive Foundations for a Computational Model of Mindreading

Mindreading is particularly tricky business from an AI perspective, precisely because many of the
standard assumptions employed in AI research – such as maximization of utility, rational belief
updates, and the ability to compute the closure of one’s beliefs seldom apply if we are to successfully
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ascribe mental states to agents who we know are unconstrained by these principles. Below, I give a
preliminary list of features to serve as a starting point for building cognitive models that are roughly
consistent with the data available on human-level mindreading abilities. The list is structured to pull
apart representational considerations from those about cognitive processing and generally desirable
mindreading-related abilities.

• Representational requirements
◦ Perspectives/simulations as a deep representational commitment
◦ Ability to consider nested mental states
◦ Ability to represent and reason about ignorance

• Processing requirements
◦ Lazy inference and/or incrementality
◦ Flexible methods for populating different perspectives/simulations
◦ Mutable ascriptions from mindreader to target.

• Desirable features
◦ Ability to cope with mispredictions and incorrect ascriptions
◦ Consistency with data on human development
◦ Explanation of the relationship between mindreading and introspection

As I present my own work on mindreading in the remainder of this section, I will reference many
of the items listed above.

4.1 Cognitive Architectures, Modularity, and Mindreading

One of the problems afflicting the formal approaches covered in the previous section is what I will
call homogeneity. By this I mean that their proposed representations and processing mechanisms
lack the flexibility needed to account for the complexity suggested by recent empirical findings. I
adopt a strategy of constrained heterogeneity that implements mindreading as a principled collec-
tion of interacting modules.3 I contend that the constrained heterogeneity required by a full account
of mindreading can be found in theories of the human cognitive architecture. Such theories make
claims about the representations, processes, and integration mechanisms that underlie human mental
life (Langley et al., 2009). In practice, cognitive architectures are often implemented as a collec-
tion of interacting modules which implement many of the distinctions we find in the psychological
literature. For example, some architectures implement distinctions among long-term and working
memory (Langley & Choi, 2006), between action-related and non-action-related cognition (Sun &
Zhang, 2003), and between mechanisms for dealing with different types of cognitive content (Cas-
simatis, 2006). The modular nature of cognitive architectures let us tie some of the variance we
find in the empirical data to mechanisms defined at a finer grain size. Finally, modularity lets us
constrain our solution in such a way that it is generally consistent with what mechanisms we know
developing children to possess, rather than providing a homogeneous competence-only account that
bears little relation to plausible cognitive capabilities or related performance.

3. By this, I do not mean the classical Fodorian modules that are sometimes invoked in service of explaining mindread-
ing abilities (Leslie et al., 2004). I simply mean a collection of representational and processing elements defined at a
finer grain than those typically used by the formal approaches outlined in Section 3.
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As noted earlier, the three main capabilities to be accounted for in mindreading are ascription
of mental states, prediction of behavior based on ascriptions, and explanation of observed actions
by way of post hoc ascriptions. Even though I have used a specific cognitive architecture in my
explorations in modeling mindreading, nothing that follows precludes the use of different architec-
tures or appropriately constrained integrated intelligent systems. At an abstract level, architectures
for mindreading will likely require some basic capabilities for considering alternate states of affairs,
for reasoning about identity, for forward inference, and for subgoaling. These basics follow directly
from the task requirements imposed by ascription, prediction and explanation, respectively.

If we want to adopt the commonplace ascription-via-simulation strategy, in which A reasons
about B’s beliefs by imagining himself-as-B, there must be some representational provision for
considering alternate states of affairs and reasoning about identity (i.e. himself-as-B). Beliefs and
other mental states are opaque in the sense that they are essentially private. Logically speaking, if
Clemens = Twain, Agent A can believe x is Clemens without believing x is Twain. Agent B can
believe that x is Twain without believing x is Clemens, and so on. Keeping A’s beliefs separate from
B’s beliefs requires a deep commitment to agents having different perspectives on the world. The
requirement for forward inference seems to be obvious in light of the need to predict behavior. Once
ascription is complete, we must match against available plans in order to generate a set of predic-
tions about possible behaviors. Finally, explanation would seem to sometimes involve observing or
inferring an action, and then creating subgoals to identify potential causes.

4.2 A General Framework

My collaborators and I have offered up a theory of mindreading grounded in the domain-general
operations of a computational cognitive architecture (Bello et al., 2007). In past work, we have
shown how both aspects of introspection and third person ascription are reducible to a substrate of
domain-general representational primitives and processing elements that include mental simulation
of counterfactual worlds, reasoning about identity, reasoning about categories, and applying con-
ditional rules. While this sounds like quite a lot of mechanism, all of these abilities seem to be
in place in typical two-year olds, and none of them implies any commitment to innate modules or
special representations for mindreading. We take mental simulation to be a critical operation for the
ascription of beliefs, which according to our theory proceeds in six steps:

Categorize: Categorize the other entity as an agent

Instantiate: Construct a counterfactual world C where self = other is true;

Populate: Select a relevant subset Φ of the self’s candidate beliefs to use in populating C;

Discriminate: Detect differences between the self and the other with respect to Φ;

Amend: For each difference detected, override the truth values of self-related propositions in favor
of other-related propositions; and

Simulate: Proceed with inference in C and predict the other’s behavior.

As a basic notation, I will use expressions like Relation(e1, . . ., worldname) to express propositions
that consist of a relation over a series of arguments. The final argument denotes the "world" in
which the relation takes a truth value in the range true, uncertain, false ({T, U, F }).
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4.3 Inheritance, Overrides and Mindreading

When we mentally simulate an alternate world, we would like as many facts as possible about the
real world to stay the same. If I assume in simulation that the apple is at loc1 in w1, I would also
like to have the fact that the apple is red available to me in w1. Let us call the real world "R." I
know the apple is red in R. What we need is some way to connect R to w1 so that information from
R becomes available for use in w1. This inheritance process is crucial in explicating our particular
account of mindreading. Formally, we say that two worlds are relevant to one another when the
basis of one world is fully contained in the basis of the other.4 The relevance relation is transitive,
making it possible to reason about nested beliefs using our framework.

Relevance: (Basis(?w1) ⊆ Basis(?w2))→ RelevantTo(?w1, ?w2)

Transitivity: RelevantTo(?w1, ?w2) ∧ RelevantTo(?w2, ?w3)→ RelevantTo(?w1, ?w3)

The basic form of a rule that enables inheritance can now be written:

Ibasic: ?Relation(?e1, . . ., ?w1) ∧ RelevantTo(?w1, ?w2)→ ?Relation(?e1, . . ., ?w2)

This inheritance rule allows for hypothetical reasoning. With it, we can consider hypothetical worlds
in which nothing that we assume contradicts anything we know about the actual world. Applying
Ibasic lets us migrate things that we know about the real world into the hypothetical world under
consideration.

However, simulation-based theories of mindreading rely centrally on the notion of entertaining
counterfactuals rather than hypotheticals. Counterfactual worlds are predicated on propositions
we know to be false in the real world. In our framework, counterfactual worlds are no different
from hypothetical worlds or other sorts of simulated worlds in terms of underlying mechanism.
The difference lies in the definition of their relationships to their parent worlds via inheritance.
Entertaining a counterfactual world w2 requires a basis proposition ?CfAtom(?e1 . . ., ?w1) in w2
such that RelevantTo(?w1, ?w2) and ¬?CfAtom(?e1 . . ., ?w1). For example, if I know it is sunny in
the real world, but I would like to consider a counterfactual world cf where it is not sunny, I would
have: Basis(R) = {}, Sunny(E, R), and Basis(cf) = {¬Sunny(E, R)}.

Notice that the proposition in the basis of cf has a world argument that references R (or the
parent world, more generally). This captures the notion that the counterfactual world is about a
proposition in the parent world. If we were to employ the inheritance rule Ibasic to Sunny(E, R), we
end up with an immediate contradiction in cf. To avoid this, we write a new inheritance rule as a
soft constraint of the form:

I↑cf : ?Relation(?e1, . . ., ?w1) ∧ RelevantTo(?w1, ?w2) ∧ IsCounterfactualWorld(?w2, ?w1)→cost

?Relation(?e1, . . ., ?w2),

4. The basis of a world is the set of assumptions on which that world is based. Scally et al. (2011) provide details on
reasoning about second-order beliefs using the definition of relevance provided in this paper.
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where cost takes a value in the range (0,1), but typically in the very upper end of the range (e.g.,
0.95).5 Any proposition that is the consequent in a soft constraint of this form will not have a
truth value in {T, F}, but will instead be considered uncertain and subject to further inference. The
uncertainty about these propositions can then be further resolved by backtracking search. In our
framework, backtracking involves simulating hypothetical worlds in which the uncertain proposition
is true and others in which it is false till a truth value is settled on.

4.3.1 Downward Inheritance

So far, I have explored cases where propositions in a parent world are available to their children,
which we call upward inheritance. In contrast, downward inheritance involves inheriting proposi-
tions from a child world downward into the parent world:

I↓cf : ?Relation(?e1, . . ., ?w2) ∧ RelevantTo(?w1, ?w2)→cost ?Relation(?e1, . . ., ?w1).

In similar fashion to the example of counterfactual reasoning given above, counterfactual conclu-
sions generated in a child world can migrate downward to the parent world as uncertain, with a
backtracking search process resolving the uncertainty where possible.

Most of the time, there will be propositions in the parent world that suppress the counterfactual
consequences inherited downward, however on some occasions this might not occur. Downward
inheritance has the relatively unsettling implication that, in the absence of having real-world infor-
mation to the contrary, content generated within counterfactual simulations becomes available to
the simulating agent’s set of beliefs about the real world. Now, this sounds a bit far-fetched until
we think about emotional engagement with fiction or children engaged in pretense. Information
generated in these worlds must be made available to action selection and generation. Similarly,
when we plan using hypothetical worlds, or when we generate plans prior to ever encountering any
real-world stimuli, we must have a way of inducing conditional actions. The downward inheritance
mechanism is one such method for achieving this sort of functionality.

Downward inheritance also provides a way to deal with deception in a way that BDI-style frame-
works fail to do. If I have information in the real world that my interlocutor often lies to people,
and then he tries to inform me of the proposition P, one of the inferences I would normally make is
that he believes that P. In our framework, this would amount to P being true in the counterfactual
world where I am him, and downward inheritance makes P immediately available to my own set
of beliefs. But since P inherits back into my own beliefs as uncertain, and the knowledge I have
about my interlocutor leads me to believe he is lying (and actually ¬P), I am in a situation where
my convictions about ¬P trump the information made available through downward inheritance. In-
terestingly enough, our commitment to these rather counterintuitive mechanisms has recently been
vindicated. In a recent Science article, it has been found that entertaining the beliefs of other agents
(even if they are false) influences reaction time measures for simple tasks in a way consistent with
our downward inheritance hypothesis (Kovacs et al., 2010). Less than a month after publication, I
was able to build a model using our framework that is consistent with their findings without altering
our existing theory of mindreading (Bello, 2011).

5. One approach to using costs in processing soft constraints is presented by Scally et al. (2011).
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4.3.2 Overriding Default Ascriptions

The account I have presented relies centrally on the notion of default ascription. This consists of
assigning one’s own mental states to a target agent when no specifics about the target’s mental life
are known a priori. But what happens when I as the mindreader know that you as the target have
a false belief? When I simulate the counterfactual world in which I am you, I have to suppress
egocentric attributions (e.g., my own beliefs about the world) and promote attributions that I know
to be consistent with your beliefs. Two additional rules make self-indexed beliefs look like other-
indexed beliefs in the context of the counterfactual world where self = other:

O+: IsA(?other, Agent, E, ?w1) ∧ IsA(self, Agent, E, ?w1) ∧ ?Relation(?other, . . ., ?w1) ∧
¬?Relation(self, . . ., ?w1) ∧ RelevantTo(?w1, ?w2) ∧ Same(self, ?other, E, ?w2)→cost

?Relation(self, . . ., ?w2)

O−: IsA(?other, Agent, E, ?w1) ∧ IsA(self, Agent, E, ?w1) ∧ ¬?Relation(?other, . . ., ?w1) ∧
?Relation(self, . . ., ?w1) ∧ RelevantTo(?w1, ?w2) ∧ Same(self, ?other, E, ?w2)→cost

¬?Relation(self, . . ., ?w2)

These rules are quite general, and cover any differences between the self and the other that might
be salient. They predict that costs will accrue linearly when mindreading increasingly dissimilar
targets. This prediction has recently been lent some support by results reported in (Tamir & Mitchell,
in press). Learning additional overriding constraints associated with individual targets is possible
within the framework I have described, but brevity precludes a detailed discussion.

4.3.3 Controlling Inheritance

Implementing inheritance as soft constraints offers critical flexibility since it is possible for the
numerical costs associated with each constraint to be externally influenced. One way this might
happen is via the influence of other events occurring in the architecture during an episode of min-
dreading. For example, multitasking during episodes of mindreading has been shown to increase
egocentric misattributions of mental states from a mindreader to a target agent. Let us assume that
costs on inheritance constraints reflect the amount of attention we pay to self/other differences. If
these costs are recomputed periodically with respect to other events occurring in the architecture,
we could imagine that multitasking would lower sensitivity to differences and lead to egocentric
misattributions.

Another way that costs on constraints can be influenced externally is via explicit judgments
made by the mindreader. It has been shown that the degree to which mindreaders self-identify with
target agents (usually measured by questionnaires) affect the number and quality of attributions
made. This should not come as a surprise to any of us. We typically have richer models of the
mental lives of close others than we do of perfect strangers. Recent studies indicate that we pay less
attention to differences between ourselves and those identified as close others than we do when con-
sidering dissimilar others (Savitsky et al., 2011). If quantified, such self/other similarity measures
could modulate costs on inheritance constraints that would reproduce such patterns.

Finally, it should be clear that giving a complete account of inheritance involves solving some
form of the relevance problem in AI. My account of mindreading predicts that whatever cognitive
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mechanisms enable relevance calculations for the mindreader should be operative in the selection
of inheritance rules to consider during mindreading.

4.4 Ability, Breadth and Parsimony

The account I have presented above fares substantially better on the ability, breadth and parsimony
metrics than those we reviewed earlier. Fully worked examples of mindreading using the assump-
tions in this section have been provided elsewhere, especially in Bello et al. (2007), Bello (2011),
and Scally et al. (2011). In the present account, an agent A representing the belief BName of an
agent B consists of: Basis(Bworld) = {Same(A, B, R)} and BName(e1, . . ., Bworld). This concep-
tion of belief does not demand any special representations or domain-specific processes, but relies
on the domain-general ability to simulate counterfactual worlds. Performance on counterfactual
reasoning tasks has been consistently seen to be correlated to performance on mindreading tasks
(Riggs & Peterson, 2000). Coincidentally, recent data on the ability of children to reason about
false beliefs places the emergence of such reasoning in roughly the same developmental timeframe
as when children start to spontaneously engage in pretense. Both activities are served by the same
cognitive mechanisms including the simulation of worlds and controlling the flow of content be-
tween worlds via inheritance relationships. The downward inheritance of content from child worlds
into their parents is an assumption we make about counterfactual reasoning that explains some of
the puzzling phenomena we see in the empirical data. Arousal generated by engagement with fic-
tion and altercentric ascription errors are side effects of assumptions we make about counterfactual
reasoning, rather than being hand-coded features.

Lazy inference coupled with the aforementioned mechanisms provide a highly parsimonious
account of how even pre-verbal infants can entertain the mental states of others. The considerable
flexibility of inheritance rules provide for the possibility of both egocentric and altercentric attri-
bution errors, such as those documented by Kovacs et al. (2010) and modeled by Bello (2011).
Reasoning about deceptive agents and agents with false beliefs is possible through the process of
overriding uncertain propositions that move from one world into the other, depending on the re-
spective direction of inheritance. The assumptions I have made to account for basic mindreading
capabilities are widely thought to be in the possession of infants between 12 and 18 months of
age. Most of what I have assumed are mechanisms crucial for reasoning about the physical world,
such as basic capacities for spatial, temporal, categorical, and causal inference. New developmental
studies (e.g., Onishi & Baillargeon, 2005) that employ sensitive non-verbal measures of false belief
understanding are finding competence with mindreading during roughly the same time frame as
when infants begin to spontaneously entertain pretenses, lending support to our assertion that belief
and pretense overlap to some degree at the implementation level.

5. Conclusions

Mindreading represents one of the most complicated and interesting cognitive activities in which
we routinely engage. As such, we ought to take it seriously as a major desideratum in the develop-
ment of cognitive systems. The overall aim of this paper has been to illustrate the complexities of
mindreading and the relative difficulty in trying to account for them using assumptions that typify
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standard techniques in AI. Many of these assumptions are prescriptive by their nature, and enforce
constraints on rationality that are rarely satisfied during real-world episodes of mindreading or even
during controlled studies performed in laboratory settings. I have argued that a deflationary account
of the mental states of others consisting primarily of counterfactual simulations and inheritance ex-
plains the close relationship between performance on mindreading tasks and data on entertaining
pretenses.

Standard accounts of propositional attitudes assume a sharp delineation between mental states,
usually related to the kinds of actions that they tend to motivate. At best I think we have seen that this
assumption is questionable, and at at worst it seems wrong. When taken to unreasonable extremes,
it seems as if totally decoupling mental states from one another at the level of implementation makes
it difficult to explain engagement with fiction, empathy, wishful thinking, self-deception, pretense,
delusions or hallucinations. While some theorists see these as unfortunate outliers, I have argued
that mindreading-enabled systems should be able to recognize them in others and modify their
interaction strategies accordingly. Having a system that initially is capable of exhibiting all of these
behaviors and using simulation to recognize them in others seems to be a reasonable alternative to
the rather ugly option of trying to axiomatize them in service of reasoning about them.

I have further argued that inheritance rules implemented as soft constraints lets us fit a wide
swath of data on mindreading than spans the gap between totally incorrect and perfectly correct at-
tributions. Under assumptions of unlimited inferential resources, this range of attributions accounts
for systematic mispredictions and perfectly rational epistemic inference alike. There is much work
to be done to flesh out my suggestions into a robust implementation. While the representation of
inheritance as soft constraints allows for variance in the attribution process, it is unclear how to sys-
tematically link costs on constraints to other features of ongoing cognition, including explicit judg-
ments and resource limitations in the cognitive system. I have also intentionally left the discussion
of learning new inheritance constraints from successful and unsuccessful episodes of mindreading
as an open issue. The issue of whether or not such learning is automatic or intentionally initiated
remains open, and computational expressions of the learning process are equally undeveloped. The
influence of affect, emotions, feelings, and physiological variables on inheritance is completely un-
explored in this paper, as is the question of how to reason when uncertain about the mental states of
the target or when knowing the target to be uncertain about a proposition of interest. I have also not
spent any time on the relationship between third person mindreading and introspection. In short,
this paper has barely scratched the surface, but I hope the suggestions that I have provided will
serve as a good starting point for researchers who are interested in accounting for both mindreading
competence and architecture-level performance in a parsimonious way.
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