
Advances in Cognitive Systems 1 (2012) 73–81 Submitted 1/2012; published 7/2012

When Do Robots Have to Think?

Claude Sammut CLAUDE@CSE.UNSW.EDU.AU

School of Computing Science and Engineering, University of New South Wales, Sydney, Australia

Abstract
An intelligent robot would seem to be an obvious place to implement a cognitive architecture, yet
most robotics applications generally have complex software systems that bear little resemblance to
cognitive systems. Furthermore, architectures are usually heavily engineered for specific applica-
tions. In this paper, we discuss why general architectures that include deliberation and learning are
rarely used in robotics and we pose some challenges for the designers of cognitive architectures to
make them more suitable for robotic applications.

1. Introduction

Brady (1985) describes the field of intelligent robotics as being “concerned with the intelligent
connection of perception to action”. It would seem obvious, given the complex nature of a robotic
system, that a cognitive architecture should govern the design of the robot’s software. If the robot is
expected to achieve human-level intelligence, one would also expect that the architecture to include
symbolic reasoning. However, with a few exceptions (Albus, 1997; Albus et al., 1989; Bonasso
et al., 1997; Ferrein & Lakemeyer, 2008; Hanford et al., 2009), this is rarely the case.

Why is this so? Is it that high-level reasoning has not been necessary in robotic applications so
far? Is it that cognitive architectures are lacking in some important capabilities? Is it due to cultural
differences between robotics researchers and those interested in cognitive architectures? The answer
to all of these questions is “yes” and we will discuss why in the following sections.

Progress in robotics research is somewhat analogous to evolution, beginning with simple mech-
anisms that have primitive perceptual and motor abilities, almost no representation of the world and
extremely simple behaviours. As in the evolutionary development of animals, it necessary for a
robot to develop perceptual and motor skills to be capable of doing anything at all. So it should
not be surprising that a great deal of research has been devoted to these areas. With improving per-
ceptual and motor skills, robots have been deployed in increasingly complex tasks. However, both
hardware and software are usually highly specialised for the task. In part this is due to the hardware
requirements of the application but it also because the behaviours of the robot require extensive
engineering for the application. Present day robots are capable of some flexible behaviour, but if
circumstances stray too far from those anticipated by the human designers, they are usually inca-
pable of adjusting. In addition to not being able to reason about their own behaviour, they are mostly
incapable of describing or explaining it, thus limiting their ability to communicate effectively with
humans. Like human evolution, perhaps the next step in robot evolution is to achieve the kind of
intelligence that enables a robot to learn to perform new tasks and adapt to changing environments.
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An example of state-of-the-art robot technology is Google’s self-driving car (Thrun & Urmson,
2011). This is capable of the remarkable feat of driving safely in urban traffic, but to do so requires
careful preparation. For example, prior to autonomous driving, the car must be driven around a
location manually so that the system can build very accurate maps that let it navigate and distin-
guish moving objects from fixed objects. Carefully designed heuristics are programmed to control
behaviour at stop signs, turning across traffic, avoiding pedestrians, etc. This kind of hand-crafting
of behaviours may be economical in applications such as driving, because there are many millions
of potential users. It is much less economical in low volume applications, so one would still like a
robot to be able to reason about and adapt to novel situations by itself.

It should be noted that the self-driving car has only become feasible in the last few years because
of enormous leaps in sensor technology. For example, the Velodyne (2012) laser imaging system can
create a 360◦ point cloud in real time, which greatly simplifies navigation and obstacle avoidance.
In the DARPA Urban Challenge (DARPA, 2007), which was a precursor to Google’s car, teams that
did not have a sensor capable of a 360◦ field of view were required to do much more reasoning about
objects and what happens to them when they move out of the field of view. This is quite difficult
and is an example where improved perception can obviate the need for reasoning. One explanation
for why robotics researchers are reluctant to put much effort into high-level reasoning is that they
expect improvements in hardware technology will remove the need to reason about many things, as
is the case with 3D laser imaging. This attitude should not be surprising. The large human cortex
that gives us the ability to plan, use language, and th alike, is a late addition in evolution. Most of the
brain’s development has been devoted to sensory-motor skills. Thus, one of the issues we discuss is
how high-level reasoning can take advantage of the machinery developed for low-level skills.

In the following sections, we consider the advantages and disadvantages of high-level repre-
sentation and reasoning for robots. We examine the limitations of relying too heavily on low-level
skills and we will discuss where the balance should be struck between skill and reasoning systems.
We conclude by looking at what aspects of cognitive architectures need further development to be
more useful in robotics.

2. Intelligence Without Representation

Planning systems for robots are often characterised as being reactive, deliberative or some combi-
nation of the two. By reactive, we mean a system that uses something similar to a classic feedback
loop to achieve a goal such as driving a specified distance or moving until coming into contact with
an object. That is, the planner has a simple but fast mapping from sensor measurements to motor
commands that is executed repeatedly to achieve a specified goal. A reactive system generally does
not try to make predictions about the future. It just responds to the current situation, whereas a
deliberative planner makes projections into the future, creating a sequence, or partial sequence, of
actions needed to achieve a goal. Deliberative planning can be more flexible than reactive control
but it is generally slower.

Perhaps the earliest example of a robot architecture that combined reactive and deliberative
control was Shakey (Fikes et al., 1972). Although this work is best known for introducing the
STRIPS planner, the software architecture also included a reactive component. Once the planner
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had generated a sequence of actions, those actions then had to be executed by the hardware. This
was controlled by a reactive system. Shakey was truly impressive, given the hardware available at
the time, but even taking into account the speed of computers in the 1970s, the architecture could
not respond rapidly if the environment were dynamic. In part, this was due to its sense-plan-act
cycle, shown in Figure 1.
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Figure 1. Brooks’ (1986) characterisation of a “traditional” robot control architecture.

Brooks (1986) argued that a control system that was organised as a sequence of perception,
modelling, planning, task execution and motor control is slow and introduces many unnecessary
operations in the control cycle. He proposed that the connection between perception and action
should be shorter and that the robot’s architecture should be layered, as in Figure 2.
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Figure 2. A layered subsumption architecture for a mobile robot [after (Brooks, 1986)].

In this configuration, the layers of the control system execute in parallel. The lowest layer uses
a very simple reactive control system that is capable of responding rapidly to dynamic situations,
such as avoiding obstacles. Progressively higher layers operate more slowly but are capable of
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modifying the behaviour of lower layers lower, e.g., overriding obstacle avoidance if the goal is to
push an object. Brooks also made a much stronger claim, that symbolic representations were not
necessary and that they encouraged researchers to believe that general purpose solutions to many
problems were possible, whereas their efforts would be better spent devising task-specific methods
(Brooks, 1990; Brooks, 1991).

The bottom-up approach of allowing the task to dictate the requirements for the robot has been
highly successful, as exemplified by the self-driving car. Our own experience in the international
RoboCup robot soccer competitions (Sammut, 2010) has shown that, to achieve competent real-
time performance, sensing, modelling and control must be specialised for the task. Unfortunately,
this entails a great deal of work customising algorithms, devising special purpose behaviours and
time-consuming fine tuning. Currently this is done by engineers. For a robot to have general
intelligence, it should capable of learning specialised skills, and this is where representation and
reasoning become important. Generality comes from the accumulation of many special skills rather
than from a single skill that is general.

Brooks’ strong position was, in a sense, a debating stance. His intention was to push the notion
of intelligence without representation to its limits. It is now common to combine behaviour-based
robotics with different kinds of representation and reasoning. This can be seen in various layered
architectures for robots, to which we now turn.

3. Layered Architectures for Robots

Robot software architectures are usually layered (Nilsson, 2001; Albus, 1997; Gat, 1998; Ferrein,
2007), with the lowest layer consisting of reactive skills and progressively higher layers handling
more deliberative tasks. In architectures like Gat’s, shown in Figure 3, a deliberative layer is re-
sponsible for generating plans. The intermediate “sequencing” layer is responsible for choosing the
plan that is appropriate for the current situation and the reactive layer executes the actions specified
in the plan. The sequencer may change plans if the situation changes sufficiently.

Depending on the nature of the task, deliberation and learning may be too time consuming or
too risky to do at run time. If tennis players think about their strokes during a rally or golf players
are too conscious of their swing, they inevitably play badly. They must learn and practice these
skills to automatise them so that they can execute them rapidly during a game. There may be some
adjustment during a game to counter an opponent’s play but the place for most planning and learning
is during practice. So too, a robot should do most of the thinking it needs to do before it is deployed,
so when it goes into operation, it does not need to deliberate. Thus, in Gat’s model, the upper layer
may be run “offline”.

Robot soccer (Sammut, 2010) is a good example of the need for learning and deliberation prior
to task execution and for reactive control during execution. A game can change so quickly that
there is little time for a player to think about strategies. Instead, these are worked out in advance,
just like a coach working with a team. Plans are made and practiced thoroughly before taking the
field. In the laboratory, teams invent and program different behaviours and strategies and test them
as well as they can. Often the behaviours are so specialised that they are only invoked in certain
parts of the field or when team members and opponents are in certain positions. All behaviours are
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Figure 3. A three-layered architecture [after (Gat, 1998)].

reactive. Circumstances can change so rapidly and the outcomes of actions are so unpredictable that
looking ahead more than one or two steps is futile. Rather than humans hand crafting skills, we
would like the robot to be able to learn these for itself. Currently, some components of the soccer
robot’s software can be learned. For example, locomotion requires careful design and parameter
tuning. Much of this time-consuming effort for this can avoided by learning the parameters for the
gait during practice before the competition (Kim & Uther, 2003; Hester et al., 2010).

Different domains may have different time scales, some of which permit planning. For example,
the real-time skills of the self-driving car must be reactive. However, route planning is not as
time critical, so it can be done in advance and re-planned if changes are necessary, such as when
unexpected traffic jams or blocked roads are encountered (Rogers et al., 1999). In some cases,
extreme caution is required, so prior planning is extensive. For example, AI planning for space
missions, such as the Mars rovers, has steadily increased (Estlin et al., 2007). However, much of
this planning is done off-line in simulations because trying out a new plan onboard could cause an
irrecoverable error. When a rover must traverse difficult terrain or extricate itself from sand, a twin
rover is set up in a “Mars yard” on Earth to test a variety of strategies and nothing is executed on
Mars until there is a high degree of confidence in chosen strategy.

4. Is Symbolic Representation Needed?

Brooks claimed that a robot did not need to model the world. However, almost all mobile robots
do build models. One of the most important advances in mobile robotics has been the development
of Simultaneous Localisation and Mapping (SLAM) (Dissanayake et al., 2001). These are methods
that allow a robot to explore an unknown environment, make a map and localise itself within the
map. SLAM is one of the innovations that made the self-driving car possible. The insight behind
SLAM was that the world is inherently uncertain. Sensors are never entirely accurate. Motors never
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behave precisely as commanded, and even if they do, external factors in the environment like the
terrain or other agents make the outcome of an action unpredictable. These realisations gave rise to
probabilistic robotics (Thrun et al., 2005).

In recent years, probabilistic approaches have dominated robotics and have pushed aside sym-
bolic AI. However, the appearance that symbolic reasoning is not needed may be due to the fact
that most applications that have been attempted so far have not needed it. When a powerful tool
has been created, there is a temptation to seek out those problems for which the tool is well suited,
avoiding those for which it is not.

As an example, let us consider a domestic robot. This is still more science fiction than reality,
but why is creating a domestic robot so hard? There are hardware limitations. We would expect
a robot to be capable of dextrous manipulation so that it can make the bed, clean the dishes, etc.,
but research in robot manipulation still has a long way to go before such things are possible. In
addition, a domestic robot must be able to interact with the human occupants, which includes un-
derstanding commands and conversations. The challenge here is not just in speech recognition or
gesture understanding. The robot must have a model of the home and models of what the human
occupants expect the robot to do for them. It needs the models so that robot and human know they
are referring to the same objects and so it can reason about commands or questions given to it. They
are also needed when the robot is asked to explain its reasoning. Thus, symbolic representations are
particularly important when a robot must work with humans and with other agents, not only in the
home but in many applications where human-robot interaction is required.

Now that many low-level robotics problems have at least been partially solved, we are in a
position to address problems where symbolic AI comes to the fore again.

5. The Role and Requirements of Cognitive Architectures in Robotics

As we have already seen, the main drawback of current robot software architectures is their in-
flexibility. Any significant change in the task or environment requires substantial re-engineering.
However, a system capable of abstract representation and planning should be capable of adapting
much more easily. For example, if the task-level specification of behaviours is expressed in a pro-
duction rule language (Laird et al., 1987; Laird, 2008; Nilsson, 1994; Anderson & Lebiere, 1998)
or logic (Levesque et al., 1997; Langley et al., 2009), then goals and behaviours are easy to change.
More importantly, they are learnable.

Symbolic representations also make it possible for a robot to introspect, which is necessary for
learning and also for human-robot interaction. As an example, consider a system like SOAR, which
includes an episodic memory. Such a mechanism lets the robot learn from accumulated experience
and also lets it engage in conversations about its past interactions with other agents, which can
include other robots, software agents and humans. The fact that the representation is symbolic
means that it can be mapped onto sentences in natural language.

Langley et al. (2009) describe the capabilities expected in a cognitive architecture. They briefly
mention the need for dealing with uncertainty and being able to operate in dynamic environments.
In robotics these are of paramount importance. Robots must operate in real time. The typical
frame rate for a video camera is 25 or 30 frames per second. If the software cannot keep up with
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the camera, important information may be missed, particularly when objects are moving quickly.
Therefore, it must be possible to complete perception, modelling, decision making, execution and
monitoring in the time it takes to grab one frame. Layered architectures achieve this speed by
running the different layers at different time scales. The most time-critical code is confined to the
lower levels and is kept as simple and efficient as possible. To be useful in real-time systems, a
cognitive architecture must adopt a similar approach that allows several threads of computation to
run concurrently, with reactive components being given the highest priority. Architectures that can
compile plans into fast chunks should be amenable to such an implementation.

In addition to the requirements of real-time processing, the architecture must deal with uncer-
tainty. It is tempting to assume that uncertainty can be confined to the lower layers of the archi-
tecture, which might use a probabilistic approach, allowing the higher layers to treat the world as
if it were deterministic. Unfortunately, the effects of noise and other disturbances propagate up-
ward. For example, sensor noise can lead to incorrect measurements, which can lead to the robot
not knowing its location. It may be confident enough to believe it is in one of several possible loca-
tions or it may be completely lost, in which case it requires strategies for re-localising. In trying to
find itself again, it will almost certainly interrupt its previous plan and must have a further recovery
strategy.

Having some abstract knowledge of the capabilities of sensors and actuators allows a robot
to compensate for shortcomings. For example, a rescue robot may use an infrared camera as its
primary sensor for finding victims of a disaster. However, this may be deceived by other heat
sources. A combination of thermal images with other visual, acoustics or chemical sensors often
provides enough additional information to confirm recognition. Use of multiple sensors can be pre-
programmed but, in unknown environments, novel combinations might be useful. The robot may
also use its ability to change viewing angles or to manipulate objects to gain additional information.
Thus, it is useful to have knowledge about the sources of uncertainty and to be able to reason about
the capabilities of resources to determine how to minimise uncertainty.

6. Conclusion

In his classic introduction to mathematics, A. N. Whitehead (1911) claimed that:

It is a profoundly erroneous truism . . . that we should cultivate the habit of thinking what
we are doing. The precise opposite is the case. Civilisation advances by extending the
number of important operations which we can perform without thinking about them.

That is, we become expert at something by learning it so well that we no longer have to think about
it. So too, a robot becomes competent in a task when most of its actions can be determined with
minimal processing. This does not mean the cognitive architectures have no benefit for robotics.
Rather, the place for deliberation and learning lies in creating specialised skills in offline training,
prior to actual missions. Cognitive architectures will find increasing use in robots as they become
physically capable of more complex tasks, especially those requiring human interaction. To be
useful, cognitive architectures must pay particular attention to being able to respond rapidly in
dynamic environments where uncertainty is always present.
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