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Abstract 
For over sixty years, the artificial intelligence and cognitive systems communities have represented 
problems to be solved as a combination of an initial and goal state along with some background 
domain knowledge. In this paper, I challenge this representation because it does not adequately 
capture the nature of a problem. Instead, a problem is a state of the world that limits choice in terms 
of potential goals or available actions. To capture this view of a problem, a representation should 
include a characterization of the context that exists when a problem arises and an explanation that 
causally links the part of the context that contributes to the problem with a goal whose achievement 
constitutes a solution. The challenge to the research community is not only to represent such features 
but to design and implement agents that can infer them autonomously. 

1.  Introduction 

The task of problem solving was a central cognitive process examined during the genesis of the 
field of artificial intelligence. Like humans, a machine should be capable of solving difficult 
problems if it were to be considered intelligent. To illustrate such behavior, programs like the 
General Problem Solver (GPS) were given an initial starting state and a goal description, and they 
would output a sequence of steps that would achieve the goal if executed (Newell & Simon, 1963; 
Newell, Shaw, & Simon, 1959). This sequence of steps was considered a solution to the problem. 
Problem-solving itself was cast as heuristic search through the state space implicit in a given body 
of knowledge (in the case of GPS, inherent in its difference table) to find a combination of steps 
that met the goal criteria (Amarel, 1968; McCarthy & Hayes, 1969).1 
 Over the years, many types of problems have been studied. Initially, scientists developed 
procedures for various puzzles and games, such as the Towers of Hanoi2 (e.g., Ernst, 1969; 
Knoblock, 1990), chess (e.g., Bilalić, McLeod, & Gobet, 2008; Chase & Simon, 1973; Hsu, 2002), 
and the Eight Puzzle and its derivations (e.g., Ratner & Warmuth, 1986; Russell, & Norvig, 2003). 
As research matured, attention turned toward complex design and planning tasks. For design 
problems, solutions are configurations for an artifact that meet given functional requirements and 
structural constraints (Chandrasekaran, 1990; Dinar et al., 2015; Goel, 1997; Maher, Balachandran, 

 
1 The Logic Theorist (Newell & Simon, 1956) proved theorems, where the given axioms formed an initial state, and the 

proposition to be proved represented the goal. The logical deductions from the initial state to the goal became the 
solution, but the representations used in GPS are more appropriate for this paper. 

2 At least 340 articles were published on the game in the 100 years from its invention in 1883–1983 (Stockmeyer, 2013), 
and apparently even ants can learn to solve an isomorphic version of the problem (Reid, Sumpter, & Beekman, 2010). 
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& Zhang, 1995; Vattam, Helms, & Goel, 2010). For automated planning, solutions are sequences 
of actions (i.e., steps) that achieve a goal (Fikes & Nilsson, 1971; Ghallab, Nau, & Traverso, 2016). 
This paper will focus on planning problems to illustrate our arguments in some depth.  
 Further, we will distinguish puzzles from problems. Puzzles do not contain a threat, entail risk, 
or in any significant way limit the choices available to an agent as do problems. We claim that the 
defining attribute of a problem is the restriction of an agent’s choice. The contributions of this paper 
are to question the commonly accepted assumptions of the classical problem representation and to 
offer a formal alternative along with a computational implementation serving as an example. 
 This paper continues with three major sections. The first outlines the classical representation of 
a problem and enumerates some drawbacks of this construction. The second proposes an alternative 
problem representation and then challenges our research community to take seriously the three 
computational tasks of recognizing a problem, explaining what causes it, and generating a goal to 
remove the problem’s cause. The third section illustrates how such concepts can be implemented. 
The subsequent section discusses related research and the closing section briefly reiterates the 
central challenge.  

2.  The Classical Problem Definition 

What is a problem? An initial state, a goal state, and the means to get from one to the other. 

2.1  Classical Problem Representation 

Over time, the representation of a problem has been formalized with a standardized notation. Here 
we adapt the notation used by the automated planning community (e.g., Bonet & Geffner, 2001; 
Ghallab et al., 2016). Variations across AI, however, all have similarities to the format below. 
 Formal Problem Definition: A problem, 𝒫, is a triple consisting of an initial state, 𝑠$, a goal 
expression, 𝑔, and a transition model for the domain. 

 𝒫	 = 	(Σ, 𝑠$, 𝑔) where 𝑠$ ∈ 𝑆, 𝑔 ∈ 𝐺 ⊂ 𝑆 (1) 

 State Transition System: This model is represented as a triple composed of the set of all possible 
states, 𝑆, a set of available actions, 𝐴, and a successor function, 𝛾: 𝑆 ⨯ 𝐴 → 𝑆, that	returns the next 
state, 𝑠456, given a current state, 𝑠4, and one or more actions, 𝛼 ∈ 𝐴. 

 Σ = (𝑆, 𝐴, 𝛾)	 (2) 

 Problem Solution: The solution to a problem is an ordered sequence of 𝑛 actions, 𝜋	(i.e., a plan). 
In this paper, 𝜋[𝑖] denotes the 𝑖=> action, 𝛼4, in the sequence, and 𝜋[𝑖. . 𝑗] is the subplan starting 
with action 𝛼4 and ending at 𝛼A.  

 𝜋: 2C	 = 𝛼6	|	𝜋[2…𝑛] = ⟨𝛼6, 𝛼G …𝛼H⟩ (3) 

 Plan Execution: Starting from the initial state, 𝑠$, recursive action executions result in the goal 
state, 𝑠J that entails the goal expression, 𝑔. We say entails because a goal may be abstract (e.g., 
have some block on top of block A); thus, many states may satisfy the goal expression. 

 𝛾(𝑠$, 𝜋) = 𝛾(𝛾(𝑠$, 𝛼6), 𝜋[2…𝑛]) →	𝑠J⊨	𝑔	 (4) 
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2.2  Problems with the Classical Representation 

Significant issues exist with the classical representation of a problem. Representations of the form 
shown in equation (1) amount to arbitrary states to achieve and hence constitute a class of puzzles 
rather than problems. The problematic characteristics for the agent posed by the initial state and the 
relative attractiveness of the goal state are lacking in the representation. At best, we might say that 
𝑠$ may be of lower utility than 𝑠J. The reason that achieving the goal state solves the problem is 
not actually clear. Indeed, this choice of representation leaves the problem itself implicit and 
opaque rather than declarative and open to inspection by the cognitive system. Instead, the causal 
justification for classifying 𝒫 as a problem remains in the head of the researcher; the machine has 
no access to it and thus must blindly follow its set of problem-solving procedures. Reasoning about 
problems that arise in dynamic environments, formulating new goals as a result, and changing them 
as needed are essentially outside of the scope of the agent and remain the responsibility of a human. 
 Summarizing these arguments, the classical problem representation tends to possess three 
important limitations:  

1. What is wrong with the initial state is left implicit; 
2. The desirability of the goal state is opaque and cannot be explained; and 
3. Problems must be provided by humans rather than inferred by a cognitive system or agent. 

Hence, the representation for a problem is often overly simplified in the literature. Consider the 
Blocks World planning domain (Gupta & Nau, 1992; Winograd, 1972). Initial states in this domain 
are random configurations of blocks, and so too are the goals. For example, in the first panel of 
Figure 1, the initial state (a) is the arrangement of three blocks on the table, and the goal state (c) 
is to have block A on top of block B. The planner executes a plan to pick up A and stack it on B, 
but the planner has no reason why this goal state is valued. If the world changes dramatically, the 
agent simply adapts the plan to maintain the intended state without a causal justification for the 
adaptation other than the goal was given to it by a human. It does not have a solid basis to reason 
about the nature of the problem or its solution except perhaps for minimizing the solution’s cost. 
 In the second panel, we assume a larger context such as the construction of buildings and towers. 
In this context, the planner wishes to have the triangle D on the block A to keep water out when it 
rains. Here the pyramid D represents the roof of the house composed of A, B, and C. Water being 
able to get into a person’s living space is a problem for the person; stacking random blocks in 
various arrangements is not. 
 The next section examines a novel alternative to the classical definition of a problem. We explore 
what it means for a problem to be cast as a situation that restricts an agent and its problem-solving 
ability. A house with no roof allows a thief to steal the owner’s property and the weather to ruin it. 
Property (e.g., an instrument such as a tool or a resource such as fuel) enables effective actions that 
achieve one’s goals. Therefore, without the property, the owner has limited choice in terms of the 
goals that can be achieved and the actions that can be executed. Indeed, a house with no roof (or 
even a leaky one) represents a serious problem for any homeowner. 
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3.  An Alternative Problem Definition  

What is a problem? A situation that limits choice in terms of potential goals or available actions. 

Problems are not simply puzzles or arbitrary states to be achieved. A problem is a situation relative 
to an agent (or agents) with some existing history of intent, executed actions, and decisions. 
Furthermore, problems arise even as one is working on other, independent problems. We claim that 
a situation is a problem for an agent whenever a significant risk exists (either immediate or latent) 
of a loss in ability to achieve its current or future goals or to select and execute various actions.
 Potential goals are those that might be possible to formulate in the future; kinetic goals are those 
currently in an agent’s agenda. Risks to either can pose a particular class of problems. For example, 
the loss of home value due to negative neighborhood trends (e.g., uncut lawns and abandoned 
vehicles) is a problem for a house’s owner. It limits the potential goal of having the house sold, 
even if the owner does not currently have the desire to do so. 
 Alternatively, a problem can stem from a restricted action set, 𝐴. If an agent lacks the required 
action models (i.e., planning operators) to achieve its goals, then a limitation of choice also exists. 
For example, such a situation can occur when new technology is introduced into the workplace and 
older workers lack the necessary skills to perform a manufacturing job. In a sense, environmental 
change can cause similar outdating if an agent cannot learn new actions or adapt old ones. 
 Formal Problem Definition: In contrast to 𝒫 in equation (1), the current problem, 𝒫L, is a tuple 
consisting of the currently observed and expected states, 𝑠L and 𝑠M, the background knowledge, 𝐵𝑘, 
an episodic problem-solving history, 𝐻L, a causal explanation of the problem, 𝜒, and a new goal, 
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Figure 1. Blocks World state sequences that distinguish a justified problem in the lower panel from an 
arbitrary problem in the upper panel (adapted from Cox, 2013). 
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𝑔′, whose achievement solves 𝒫L. The next three subsections examine each of these in turn. In 
particular, 𝐻L (defined by equation 15 on page 21) includes components described in Section 3.1 
and Section 3.2 . 

 𝒫L = (𝑠L, 	𝑠M, 	𝐵𝑘, 𝐻L, 	𝜒, 𝑔′)	where	𝑠L, 𝑠M ∈ 𝑆	 (5) 

3.1  Representing the Intent Context 

The key to understanding problems is to recognize the importance of goals or the intended future 
directions of an agent. The area of research called goal reasoning has attempted to develop 
cognitive systems with a capability to reason about their goals, to change them when warranted, 
and to formulate new goals when confronted with new problems (Aha, 2018;3 Cox, 2007, 2013; 
Hawes, 2011; Klenk, Molineaux, & Aha, 2013; Muñoz-Avila, 2018; Vattam, Klenk, Molineaux, 
& Aha, 2013). To do so, problems must include a representation of the agent’s dynamic context 
with respect to its intent. This includes: the agent’s background knowledge, 𝐵𝑘; an interpretation 
function, 𝛽, that can change or formulate goals; the changing trajectory, 𝑔⃑, of the current goal; the 
system’s current goal agenda, 𝐺UL; and the agenda’s history of change, 𝐺U>. 
 Background Knowledge: The system’s background knowledge, 𝐵𝑘, consists of the state 
transition system (see Section 2.1 equation 2) along with a set of goal operations, ∆	= {d	|d ∶
𝐺®	𝐺}, an interpretation function, 𝛽, and a planning function, 𝜑 (Section 3.2 expression 12).  

 𝐵𝑘 = (Σ, ∆, 𝛽, 𝜑)  (6) 

Here, the action models within Σ enable an agent to predict subsequent states, 𝑠M, and to use these 
expectations in comparison with observed states, 𝑠L, to suspect the presence of problems 
(Dannenhauer & Muñoz-Avila, 2015; Dannenhauer, Muñoz-Avila, & Cox, 2020)  
 Interpretation Function: Given a state and a (possibly empty) goal, the interpretation function, 
𝛽, performs goal operations from ∆ outputting a desired goal expression (Cox, 2017; Cox, 
Dannenhauer, & Kondrakunta, 2017). This cognitive process is the dual to the planning function, 
𝜑, defined in the next section. 

 𝛽: 𝑆 × 𝐺 → 𝐺 (7) 

A specific operation from 𝛥 is represented as the 4-tuple d = (ℎ𝑒𝑎𝑑(d), 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(d), 𝑝𝑟𝑒(d),
𝑟𝑒𝑠(d)), where 𝑝𝑟𝑒(d) and 𝑟𝑒𝑠(d) are its preconditions and result. The transformation’s identifier 
is ℎ𝑒𝑎𝑑(d), and its input goal argument is 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(d). There are two essential goal operations. 
Goal formulation (𝛽(𝑠, ∅) → 𝑔) infers a new goal given some state (Cox, 2007, 2013; Paisner, Cox, 
Maynord, & Perlis, 2014), whereas, goal change (𝛽(𝑠, 𝑔) → 𝑔′) transforms an existing goal into 
another (Choi, 2011; Cox & Veloso, 1998; Cox & Dannenhauer, 2016).4 
 Goal Trajectory: The trajectory represents the original goal, 𝑔6, and its evolution into the 
agent’s current goal, 𝑔L. It consists of an ordered sequence of state-goal pairs. 

 𝑔⃑ = ⟨(𝑠$, 	𝑔6), (𝑠4, 𝛽(𝑠4, 𝑔6)), … (𝑠A, 𝑔L)⟩ (8) 

 
3 This paper summarizes work presented at the Robert S. Engelmore Memorial Lecture by David Aha at the Twenty-

Ninth Conference on Innovative Applications of Artificial Intelligence in San Francisco. 
4 Goal formulation is implemented as the insertion transformation d∗(∅) → 𝑔. A trivial example of goal change would 

be the identity transformation dg(𝑔4) → 𝑔4 for all 𝑔4 ∈ 𝐺, i.e., the tuple (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑔, {𝑡𝑟𝑢𝑒}, 𝑔). Cox (2017) provides 
further detail, whereas Cox and Dannenhauer (2017) offer a more expressive goal representation. 
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Goals do not always remain as given or first formulated. They are malleable objects that change 
over time as an agent changes its intent. Goals go through arcs or trajectories in a goal hyperspace 
over time (Bengfort & Cox, 2015; Eyorokon, 2018; Eyorokon, Panjala, & Cox, 2017; Eyorokon, 
Yalamanchili, & Cox, 2018). 
 Current Goal Agenda: This set includes all goals that the agent intends to achieve. The current 
goal being solved, 𝑔L, may be one, some, or all the goals in the agenda. 

 𝐺UL = {𝑔6, 𝑔G, …𝑔H} (9) 

 Agenda History: This knowledge structure records the evolution of the goal agenda up to and 
including its current instance, 𝐺UL. It is a simple sequence of the variations the agenda has undergone. 

 𝐺U> = ⟨𝐺U6, 𝐺UG, …𝐺UL⟩ (10) 

3.2  Representing the Problem-Solving Context 

Finally, the problem representation requires a formalism for the problem-solving process itself and 
its unfolding solution to a goal. The reason for this requirement is that new problems can arise 
during the act of solving a previous problem or during plan execution. To capture the problem-
solving process so that a system can reason about potential limitations restraining it, this section 
describes the plan, 𝜋, the planning function, 𝜑, the planning trajectory, 𝜋j⃑ , and the current execution 
episode, 𝜀L. These formalisms complete the constituents of the episodic, problem-solving history, 
𝐻L, first mentioned at the beginning of Section 3. 
 Plan: The dynamically executing plan consists of the previously executed steps (including 
current step, α𝒄) concatenated with all remaining steps (p𝒓) of the plan. 

 𝜋: 2C	 = 	⟨⍺𝟏, ⍺𝟐, …⍺𝒄⟩ ∘ 	p𝒓 = p𝒄 ∘ p𝒓 (11) 

 Planning Function: Given a state, a goal, and a (possibly empty) plan, the planning function, 𝜑, 
performs a (re)planning operation using Σ (Cox, 2017). 

 𝜑: 𝑆 × 𝐺 × 2C → 2C (12) 

Traditional plan generation is of the grounded form p6 ← 𝜑(𝑠$, 𝑔6, ∅).	If	the	goal	was	inferred	
instead	of	 given,	 then	we	have	p6 ← 𝜑(𝑠$, 𝛽(𝑠$, ∅), ∅).	Replanning (e.g., Kunze et al., 2018; 
Langley et al., 2017; Pettersson, 2005) takes the form p�56 ← 𝜑�𝑠4, 𝑔A, 𝜋��. Replanning with goal 
change would instead be p�56 ← 𝜑�𝑠4, 𝛽(𝑠4, 𝑔A), 𝜋��.	
 Planning Trajectory: This trajectory is the sequence over time of changing plans paired with 
the goals they purport to solve starting from the first goal and plan (𝑔6, p6) and ending with the 
current goal and the remainder of the plan that awaits execution (𝑔L, 𝜋�).  

 𝜋j⃑ = ⟨(𝑔6, 𝜋6), �𝑔4, 𝜑�𝑠A, 𝑔4, 𝜋6[𝑘 …𝑛]�� , … (𝑔L, 𝜋�)⟩ (13) 

Sometimes the plan changes because of exogenous events in the world or because previous 
uncertainty is removed; sometimes it changes because the goal changed. In other circumstances, 
both conditions may precipitate an alteration to the plan. 
 Current Execution Episode: The episode consists of the sequence of all states and executed 
actions that occurred up to but not including the current state, 𝑠L. 

 ԑL = ⟨𝑠$, ⍺6, g(𝑠$, 𝛼6), ⍺G, … 𝑠L�6, ⍺L⟩ (14) 



 THE PROBLEM WITH PROBLEMS  

 21 

 Episodic Problem-Solving History: This final knowledge structure encapsulates the goal, 
agenda, plan, and execution trajectories. It represents the dynamical, problem-solving context 
within which a problem is understood and solved by the cognitive system.  

 𝐻L = (𝑔⃑, 𝐺U>,pj⃑ , ԑL) (15) 

The new work developed in this paper centers about this representational structure and enables a 
cognitive system to reason about the full scope and content of problems, including the intent context 
(Section 3.1) and the overall problem-solving context in which intent is situated. 	

3.3  The Cognitive Systems Challenge: Inferring the Problem 

Now we have the prerequisites for specifying a problem and the restriction of choice it represents 
for an agent. For example, if an agent is building a physical structure to contain its possessions and 
to safely house itself, it will have a typical set of goals to achieve and reasons for each. The goal to 
add the roof is causally connected to the need for guarding one’s possessions and for personal safety 
and comfort. However, these ancillary needs are not threatened at construction time given that the 
possessions are safe elsewhere, it is not raining, and the agent does not currently live in the house. 
But if possessions are moved into the house and a proper roof is not in place, the possessions will 
lose substantial value when it rains. Lost value signifies reduced benefit and therefore fewer 
choices. This explanation (or others like it that relate the current state to what can occur in the 
future) supports the goal of having a roof placed on the structure. Such relationships become 
institutionalized in best practices (e.g., building codes), but they are crucial in relatively novel 
situations that pose new problems for any agent.  

 Problem Explanation: The explanatory graph consists of sets of vertices (𝑉) and edges (𝐸) that 
link the current state, 𝑠L, causally to the limitation of choice:  

 𝜒 = (𝑉, 𝐸) (16) 

To be fully effective in complex, uncertain, and changing environments, an intelligent agent must 
do more than just solve problems and achieve the goals given to it. Rather, it should be able to (1) 
recognize problems on its own; (2) explain what caused them; and (3) formulate an independent 
goal to solve the problem or remove the cause (Cox, 2013). Preliminary findings show benefits to 
this approach (Kondrakunta et al., 2019; Gogineni, Kondrakunta, Molineaux, & Cox, 2018, 2020), 
although it is quite difficult to cleanly separate out “true” problems from minor discrepancies 
encountered by an agent in such environments. 
 The claim is that the combination of these three tasks constitutes the next grand challenge for the 
AI community, especially for the cognitive systems community. Although the community has 
investigated non-traditional settings such as design tasks that require problem reformulation (e.g., 
Grace & Maher, 2016) and insight tasks that require viewing problems from different perspectives 
(e.g., Ohlsson, 2012), the representation of a problem often resembles the classical formulation, 
and much is externally provided by the user or researcher. If cognitive systems are to be genuinely 
autonomous with a human-like measure of independence, they should infer both the explanation 𝜒 
and the new goal 𝑔′ by themselves (placing the latter in their agenda, 𝐺UL). They should not simply 
generate some plan p and then wait for a human to given them further direction.  
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 Reduced Problem Definition: In accordance with this challenge, a current problem would be 
represented as a 4-tuple adapted from equation (5) on page 18. Neither the goal nor the explanation 
would be given a priori. 

 𝒫L = (𝑠L, 𝑠M, 𝐵𝑘, 𝐻L) (17)5 

Therefore, instead of a sole plan, 𝜋, the solution to 𝒫L would be a 3-tuple �𝜒, 𝑔�, pJ��, where 𝜒 is 
an explanation that justifies a new goal 𝑔′ and pJ� is a plan to achieve it. Prevailing over time in 
the above tasks will enable cognitive systems to manage problems flexibly on their own and, if 
necessary, to explain to others the reasons for their choices, appropriately outputting 𝜒 when asked 
about a new goal or 𝑔′ when asked about unexpected actions.  
 In summary, this section has presented a novel formalization of a problem that serves as an 
alternative to the classical formulation. The representation encodes the problem context in terms of 
the agent’s intent and a history of the agent’s current problem solving when a new problem arises. 
This knowledge is encapsulated in the episodic problem-solving history, which is composed of four 
cognitive trajectories: 

• The goal trajectory: How the current active goal set has changed over an interval of time; 
• The agenda history: How the entire set of active and inactive goals has changed over time; 
• The plan trajectory: How the current plan has changed; and 
• The current execution episode: A record of actions and resulting states during plan execution. 

Existing systems cannot make full use of such knowledge structures or completely generate the 
solutions and explanations discussed here. However, the next section and its examples demonstrate 
some initial steps and how an implemented system could begin to exploit these representations and 
start to address the challenge of Section 3.3. 

4.  Computational Implementation and Example 

This section examines how the alternative representation for problems can be implemented in an 
existing computational framework. Subsection 4.1 briefly characterizes this framework, after 
which Subsection 4.2 describes the mine clearance domain used for its implementation. Finally, 
Subsection 4.3 examines the structure of an example problem and details how the implementation 
uses the pieces of the problem representation described in Section 3.  

4.1  The MIDCA Framework 

The Metacognitive, Integrated, Dual-Cycle Architecture (MIDCA)6 (Cox et al., 2016; Cox, Oates, 
& Perlis, 2011; Paisner, Cox, Maynord, & Perlis, 2014) is an architectural framework for intelligent 
cognitive systems. Figure 2 depicts the cognitive layer as an iterative repetition of six phases along 
with an abstract depiction for the metacognitive layer. MIDCA consists of an “action-perception” 

 
5 In many ways, 𝐵𝑘 is like long-term memory and 𝐻L is like a working memory. Then, considering an agent’s memory 

to be 𝑀 = (𝐵𝑘,𝐻L), the problem becomes 𝒫L = (𝑠L, 𝑠M,𝑀). 
6 See http://www.midca-arch.org and, for the code repository, https://github.com/COLAB2/midca. Dannenhauer et al. 

(2022) provide documentation for the implementation. 
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cycle at both levels. The output side of each cycle consists of intention, planning, and action 
execution; whereas the input side consists of perception, interpretation, and goal evaluation. 
 The Intend phase selects a current goal set (𝑔L) from its goal agenda (𝐺UL) and commits to 
achieving it. The Plan phase then generates a sequence of actions (i.e., the plan p�) to achieve the 
goal, and subsequently the Act phase executes the next action (a4) from the plan to move the current 
state (𝑠L) toward the goal state (𝑔L). The Perceive phase observes percepts (𝑝) that represent 
changes to the environment resulting from each action; the Interpret phase interprets the resulting 
state (𝑠A) with respect to the plan; and the Evaluate phase assesses the interpretation (MΨ) with 
respect to the goal, determining whether or not it has been achieved. Note that the Interpret phase 
implements the three tasks mentioned in Section 3.3, including components that (1) recognize a 
problem (anomaly detection), (2) explain what causes it (explanation), and, if necessary, (3) 
generate a new goal, 𝑔H (goal formulation). Details are available in Cox (2013, 2017) and Paisner, 
Cox, Maynord, and Perlis (2014).  
 The meta-level cycle is analogous to the cognitive cycle, consisting of Intend, Plan, and Control 
for the problem-solving (output) side and comprising Monitor, Interpret, and Evaluate on the 
comprehension (input) side. The Monitor phase “perceives” a trace of the cognitive-level process 
phases and the Control phase executes meta-level planning “actions” to regulate the cognitive-level 

Figure 2. A functional decomposition of the major cognitive processes in MIDCA: The Perceive, Interpret, 
Intend, Plan, and Act phases. Although abstracted here, these are duplicated at the meta-level. A similar six-
phase cycle operates at the metacognitive layer. Note that Interpret also formulates new goals (𝑔H).  
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cycle. The focus of the current paper is on cognitive-level problem representations, but 
Dannenhauer, Cox, and Muñoz-Avila (2018) and Cox et al., (2021) report further details of the 
metacognitive cycle in MIDCA. 

4.2  The Mine Clearance Domain 

To prepare a harbor for use during maritime operations, it is essential to conduct mine clearance 
activities to ensure that ships can operate safely as they transit between the open sea and a port. A 
network of safe shipping lanes is typically established to reduce the size of the area within the 
harbor. Such a system is known as a Q-route (Li, 2009). For experimentation, we modeled the 
mine clearance domain (Gogineni, Kondrakunta, Molineaux, & Cox, 2018; Kondrakunta et al., 
2018) with a fixed Q-route that consists of a single shipping lane (see Figure 3). In this simulation, 
MIDCA controls a Remus autonomous underwater vehicle through an interface to the MOOS IvP 
software (Benjamin, Schmidt, Newman, & Leonard, 2010) and performs both mine detection and 
clearance. For planning in this domain, MIDCA uses the Pyhop hierarchical task network (HTN) 
planner that is based on the SHOP2 HTN planner (Nau et al., 2003).7 Actions include deploying, 
transiting between locations, clearing mines from areas, avoiding obstacles, and being picked up. 
 For this domain, we developed several test scenarios. In each scenario, the agent knows of two 
previously identified areas within the Q-route (i.e., green area one, 𝐺𝐴1, and green area two, 𝐺𝐴2) 
where mines are expected (see again Figure 3). MIDCA is given goals to clear each area, although 
the location and number of mines are not known in advance. An area is clear if all mines within it 
satisfy the is-cleared relation (the effect of a do-clear action).  

cleared(𝑎𝑟𝑒𝑎) ⇔ ∀𝑚, 𝑙	|	location(𝑙) ∧ mine(𝑚)	⋀	within(𝑎𝑟𝑒𝑎, 𝑙) ∧ at-location(𝑚, 𝑙)
→ is-cleared(𝑚)	

As such, any mines encountered that do not lie within GA1 or GA2 constitute discrepancies. 
However, only mines within the Q-route are classified as problems, because ones outside the route 
will not pose a hazard to shipping. The agent’s role is to determine how to respond to all mines in 
each scenario. 

4.3  Representing Mine Clearance Problems 

Now we will describe how MIDCA represents and solves new problems in this domain as they 
arise. At initialization time, each element of the problem-solving history, 𝐻L, from equation (15) is 
initialized to empty sequences such that 𝐻L = (𝑔⃑ ← 〈	〉, 𝐺U> ← 〈	〉, pj⃑ ← 〈	〉, ԑL ← 〈	〉). MIDCA 
always starts with the Perceive phase to establish the initial state, 𝑠$, and to set the execution 
episode from equation (14) to ԑL = 〈𝑠$〉. The Interpret phase detects the initial three goals (i.e., 
𝑔6 = cleared(𝐺𝐴1), 𝑔G = cleared(𝐺𝐴2), and 𝑔� = stored(𝑝)) and adds them to the starting goal 
agenda from equation (9), 𝐺UL ← {𝑔6, 𝑔G, 𝑔�}. The Evaluate phase checks to see if the goal state is 
achieved (it is not), after which the Intend phase chooses all three goals by setting the current goal 
expression, 𝑔L, as their conjunct. 

𝑔L ← 𝑔6	⋀	𝑔G	⋀	𝑔�	

 
7 The link https://bitbucket.org/dananau/pyhop/src/master/ points to the open source code for Pyhop. 
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 Subsequently, the Plan phase produces a seven-step plan, 𝜋, to achieve the goals and sets the 
beginning plan trajectory to pj⃑ = 〈(𝑔L, 𝜋)〉, as shown in expression (12). 

𝜋[1. .7] ← 𝜑(𝑆$, 𝑔L, ∅) = 〈
deploy(𝑝, 𝑠𝑡𝑎𝑟𝑡), transit(𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝐺𝐴1),

	do-clear(p,GA1), transit(𝑝, 𝐺𝐴1, 𝐺𝐴2),	do-clear(p,GA2),	transit(𝑝, 𝐺𝐴2, 𝑑𝑒𝑠𝑡),	pick-up(𝑝, 𝑑𝑒𝑠𝑡)
〉 

Finally, the Act phase executes the first step, deploy(𝑝, 𝑠𝑡𝑎𝑟𝑡), and sets the execution history to 
ԑL ← εL ∘ 〈𝛼6〉 = 〈𝑠$,	deploy(𝑃,	start)〉. These six phases are then repeated in succession. At each 
instance 𝑖 throughout the MIDCA cycle, Act changes ԑL ← εL ∘ 〈𝛼4〉. 

4.3.1  First Encountered Problem: Discrepancy, Explanation, and Goal 

MIDCA discovers a surprise after it starts to execute the second action of its plan above. Figure 3 
shows the state of the environment (𝑠G) during the transit from the starting position to 𝐺𝐴1. Here, 
the Remus’ side-scanning sonar detects the mine 𝑚1. Perceive then adds 𝑠G to the current execution 
episode, 𝜀L, and changes the second action from transit(𝑝,	start,	GA1) to transit�𝑝,	start,	loc(𝑚6)�.  

𝜀L = 〈𝑠$,	deploy(𝑝, 𝑠𝑡𝑎𝑟𝑡), 𝑠6,	transit�𝑝,	start,	loc(𝑚6)�, 𝑠G〉	
 MIDCA’s Interpret phase recognizes a discrepancy because it expects the transit area to be clear, 

but it observes a mine in the area. That is, the expectation, 𝑠M, is equivalent to the expression 
∀𝑙	|	location(𝑙) ∧ within(clear-area, 𝑙) ∧ ∄𝑚|mine(𝑚) ∧ at-location(𝑚, l), and the observed 
predicate at-location(𝑙,𝑚) ⊂ 𝑠G violates it. At this point, MIDCA has established a new episodic 
problem-solving history that lets it reason about changes in the future. Now instantiated from 
equation (17), the current problem is:  

𝒫L = (𝑠G, ∄𝑚1,	(Σ,Δ,β,φ),	𝐻L)	where 𝐻L = (𝑔⃑, 𝐺U>, pj⃑ , ԑL)	
 The Interpret phase explains that this might have been placed in the area by an enemy mine-
laying vessel (see Figure 4) and that, because it is outside of the Q-route, it does not represent a 

Figure 3. Simulation of the mine clearance domain in Moos IvP. The Q-route extends from the left to the 
right side of the map. Shipping (shown in yellow) awaits on the left side of the map, and the Remus platform 
(in red) encounters a mine (𝑚1 in the pentagon) as it transits to the 𝐺𝐴1 location.  

m1

m2

Q-route
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problem to friendly shipping.8 Instead, it generates a goal to avoid the mine itself, adds this to the 
goal agenda, and updates the agenda history to reflect the new status. 

𝑔ª ← 𝛽(𝑠G, 𝑔L) = avoided(𝑚1)	
𝐺UL ← 𝐺UL 	∪ 𝑔ª	

𝐺U> ← �𝐺U> ∘ 〈𝐺UL〉� = 〈{𝑔6	⋀	𝑔G	⋀	𝑔�}, {𝑔6	⋀	𝑔G	⋀	𝑔�⋀𝑔ª}〉	
 The Evaluate phase does nothing since the goal has not yet been achieved, but the Intend phase 
adds 𝑔ª to the current goal conjunct, i.e., 𝑔L ← 𝑔L⋀	𝑔ª, after which Intend updates the goal 
trajectory.  

𝑔⃑ = 	 〈(𝑠$, 𝑔6	⋀	𝑔G	⋀	𝑔�), (𝑠G, 𝑔6	⋀	𝑔G	⋀	𝑔�⋀𝑔ª)〉	
 MIDCA’s Plan phase then modifies the remaining current plan fragment, 𝜋� = 𝜋[3. .7], to 
achieve the new current goal by adding two steps to the front of the plan. The phase also changes 
the plan trajectory to incorporate the expanded current goal and the newly updated plan. 

𝜋′ ← 𝜑(𝑠G, 𝑔L, 𝜋�) = 〈avoid(𝑝,𝑚1),	transit(𝑝,	loc(𝑚1), 𝐺𝐴1)	〉 ∘ 𝜋�	
𝜋j⃑ = 〈(𝑔6	⋀	𝑔G	⋀	𝑔�, 𝜋), (𝑔6	⋀	𝑔G	⋀	𝑔�⋀𝑔ª, 𝜋′)〉	

4.3.2  Second Encountered Problem: Discrepancy, Explanation, and Goal 

After continuing execution from the location of 𝑚1, the Remus platform continues to 𝐺𝐴1 and 
clears all mines in that location. During the transit from 𝐺𝐴1 to 𝐺𝐴2, however, MIDCA encounters 
the mine 𝑚2, as shown in Figure 5. The presence of this mine also constitutes a discrepancy because 
no mines were expected in the area between 𝐺𝐴1 and 𝐺𝐴2.  

 
8 Previous papers provide further details on explanation patterns, their representation, and how they are retrieved, 

selected, and applied (Cox, 2011; Cox & Ram, 1999; Gogineni et al., 2018, 2020; Kondrakunta et al., 2019; Ram, 1990; 
Schank, 1986; Schank et al., 1994). 

Figure 4. The abstract Mine-XP (taken from Kondrakunta et al., 2019). Explanation patterns (XPs) (Schank, 
1986; Schank, Kass, & Riesbeck, 1994) map observed Pre-XP nodes to inferred XP-Asserted nodes that 
cause the Explains node. Bold symbols represent variables that are matched against and unified with objects 
and relations in the state.  
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 At this point, the Perceive phase updates the current execution episode. As in the previous 
example from Section 4.3.1, it replaces ⍺ª in 𝜀L with transit(𝑝, 𝐺𝐴1,	loc(𝑚2)) and adds 𝑠­. 

𝜀L = 〈 𝑠$,	deploy(𝑃,	start), 𝑠6,	transit�𝑝,	start,	loc(𝑚6)�, 𝑠G,	avoid(𝑝,𝑚6), 𝑠�,
transit(𝑝,	loc(𝑚1), 𝐺𝐴1), 𝑠ª,	do-clear(𝑝, 𝐺𝐴1), 𝑠®,	transit(𝑝, 𝐺𝐴1, loc(𝑚2)), 𝑠­

〉 

 
 Here, the Interpret phase recognizes another discrepancy because it expects the transit area 

between the two target areas to be clear, but it observes the mine 𝑚2. Once again, the discrepancy 
is caused because it expects no mine (i.e., ∄𝑚2) and it observes one in state 𝑠­. The problem is:  

𝒫L = (𝑠­, ∄𝑚2,	(Σ,Δ,β,φ),	𝐻L) 
 As before, the system explains that this might have been placed in the area by an enemy mine-

laying vessel, but in this case the mine is inside the Q-route and so does represent a problem to 
friendly shipping. A new goal is formulated to clear m2 and it is added to the agenda. Subsequently, 
MIDCA updates the agenda history. 

𝑔® ← 𝛽(𝑠­, 𝑔6	⋀	𝑔G	⋀	𝑔�	⋀	𝑔ª) = is-cleared(𝑚2)	
𝐺U ← 𝐺U 	∪ 	𝑔®	
𝐺U> 	← 𝐺U> ∘ 〈𝐺U〉	

Again the Evaluate phase does nothing, but the Intend phase adds 𝑔® to the current goal and 
updates the goal trajectory. 

𝑔L ← 𝑔L ∧ 𝑔® = (𝑔6	⋀	𝑔G	⋀	𝑔�⋀	𝑔ª)	⋀	𝑔®	
𝑔⃑ ← 	 𝑔⃑ ∘ 〈(𝑠­, 𝑔L)〉	

 In the Plan phase, MIDCA takes the remaining plan, 𝜋�� = 𝜋′[5. .7], and generates a new plan. 
As a result, it also adjusts the plan trajectory. This new plan can now be carried out by the Act 
phase with the result that ships can safely traverse the channel to deliver supplies in the harbor. 

𝜋" ← 𝜑(𝑠­, 𝑔L, 𝜋�� ) = 〈do-clear(𝑝,𝑚2),	transit(𝑝,	loc(𝑚2), 𝐺𝐴2)	〉 ∘ 𝜋�� 	
𝜋j⃑ = 〈(𝑔6⋀𝑔G⋀𝑔�, 𝜋), (𝑔6⋀𝑔G⋀𝑔�⋀𝑔ª, 𝜋′), (𝑔6⋀𝑔G⋀𝑔�⋀𝑔ª⋀𝑔®, 𝜋")〉	

m1

m2

Q-route

Figure 5. The Remus encounters another surprise in the mine clearance domain. The mine 𝑚2 is within the 
Q-route and hence represents a problem to the ships as they traverse the channel. 
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Finally, the Evaluate phase checks that the current state entails the goal state and clears the 
agenda. As such, this example demonstrates the potential of the alternative representations 
specified in this paper. Because the knowledge structures capture not just the initial and goal state 
but the problem-solving context within which problems arise, the agent has access to much more 
problem-relevant information when reasoning about the direction the agent is headed (both 
cognitively and physically) within a dynamically changing world. 

5.  Related Research 

An alternative formal model (Johnson, Roberts, Apker, & Aha, 2016; Roberts et al., 2015, 2014) 
treats goal reasoning as goal refinement. Using an extension of the plan-refinement model of 
planning, Roberts and colleagues model goal reasoning as refinement search over a goal memory 
𝑀, a set of goal transition operators 𝑅, and a transition function delta that restricts the applicable 
operators from 𝑅 to those provided by a fundamental goal lifecycle. Unlike the formalism here, 
which represents much of the goal reasoning process with the function b, they propose a detailed 
lifecycle that consists of goal formulation, selection, expansion, commitment, dispatching, 
monitoring, evaluation, repair, and deferment. Thus, many of the differential functionalities in b	are 
distinct and explicit in the goal reasoning cycle, but problems are represented classically.  

Both goal reasoning and explainable AI (Aha et al., 2017; Cox, 2011, 1994; Gunning, 2016; Lane 
et al., 2005) are research areas that question the status quo and push the frontiers of what we think 
machines should be able to accomplish on their own. These lend support to the proposition that 
both goals and explanations of problem solving or performance are important for representing and 
understanding problems. The planning community is beginning to entertain the view that planners 
are more than generators of action sequences; they must consider dynamic and uncertain 
environments where decisions, action execution, collaboration, and replanning interact (Ghallab, 
Nau, & Traverso, 2014, 2016). Yet the representation of a problem remains much the same as it 
has for some sixty years (cf., Patra, Traverso, Ghallab, & Nau, 2018). 

Many researchers in the cognitive systems community have proposed problem representations 
and specified numerous problem-solving mechanisms. However, most of these assume some 
variation on the basic representation of an initial state and goal description given by a human or 
otherwise input to the system. Although progress has been made, existing research emphasizes 
developing methods to produce solutions. Thus, most problems that appear in the literature are 
closer to puzzles. For example, Klenk and Forbus (2009) developed an analogical method that 
solves AP Physics problems. These problems consist of a set of given facts and a goal query that 
seeks a particular value for some quantity. Langley et al. (2016) use heuristic search through a 
space of candidate decompositions of a problem, but problems themselves consist of state-goal 
pairs. Still, many cognitive systems such as PUG (Langley et al., 2017) recognize that goals are not 
simple predicate states. Instead, they differ widely according to utility and other attributes, and 
problem solutions must be monitored in dynamic environments. 

Additionally, the concept of a MacGyver problem (Sarathy & Scheutz, 2018) is quite interesting 
because it represents a problem that resides partially outside the transitive closure of the existing 
background knowledge of the agent, hence requiring insight for a solution. However, like most 
other representations in the community, it assumes the formalism from equation (1), although with 
a novel twist that can be stated:  

𝒫² = (𝕎=, 𝑠$, 𝑔) where 𝕨= = (S=, A=, γ=) (18) 
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Like the state transition system of equation (2), the world 𝕨= is composed of a set of possible states, 
actions, and a successor function, each specific to agents of type 𝑡. This world contains a portion 
of a larger universe 𝕦 that includes further possible states, actions, and transitions not initially 
available to the agent. To solve 𝒫𝑀, an agent must learn or infer missing constituents. Although the 
representation of MacGyver problems suffer from many of the limitations enumerated in Section 
2.2 , Sarathy and Scheutz also represent the evolving context of the agent:  

ℂ4 = (Σ4=, 𝑠4)	where	Σ4= = (𝑆4=, 𝐴4=, 𝛾4=)	 (19) 

The context ℂ4 consists of the current state 𝑠4 and the subdomain existing at time step 𝑖. A 
subdomain Σ4= represents the perceptions and actions currently available to an agent within its 
world. Therefore, a solution to 𝒫𝑀 is obtained by iteratively extending (or contracting) its domain 
using a set of domain modifications 𝛥 until the goal is reachable from its current state. At this point, 
the solution 𝜋 to the problem can be output. Although these conceptualizations are certainly steps 
in the right direction, such work accepts most assumptions that underly the classical representation. 

Finally, Simon (1973) distinguishes between well-structured and ill-structured problems. The 
former, like the classical representation, has initial and goal states, along with a means to recognize 
goal achievement and a model of state transitions. Despite this similarity, Simon claims that all 
problem domains defy precise formalization. Instead, each domain lies along a spectrum of well-
understood characteristics and weakly understood ones. He further asserts that all problems are 
more or less ill-structured when examined closely. The actual problem solving occurs with the 
researcher who establishes the state representations, the solution evaluator, and the range of action 
models or operators used by a cognitive system. Simon’s core critique thus remains an impediment 
to those of us who study problem solving and believe we are making significant progress.  

6.  Conclusion 
This paper redefined a problem as a state of the world that limits choice in terms of potential goals 
or available actions. It proposed a formal notation to support this definition and presented an 
implemented example to illustrate its application. Unlike the traditional notion of a problem, this 
definition has the benefit of declaratively representing the larger problem-solving context within 
which problems arise and thus lets cognitive systems reason about the causal factors that make the 
current situation a problem and the opportunities that exist for solving it. Furthermore, we claim 
this can be done even while managing pre-existing goals that may be independent of any new one.  
 However, the task of independently recognizing a problem remains an open question. This paper 
is not about complete solutions; rather, its focus is to recast the problem we are trying to solve as a 
community. The challenge I have posed constitutes a significant research issue that borders on 
many of the scientific questions we already address. Thus, under any theoretical framework or 
within any implemented cognitive system, the fundamental research question becomes “How can 
a system recognize, represent, and reason about a new problem given the backdrop of a current set 
of physical and cognitive activities?” The vision is to develop an alternative to the current 
overdependence upon human monitoring of the larger situation and subsequent manual 
intervention. Although this paper does not address the equally important issue of properly 
circumscribing an agent’s capacity to act independently, it looks at an old research question in a 
new light. Most importantly, the work reexamines underexplored issues central to the 
understanding of human cognition and problem solving. 
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