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Abstract 
Procedure automation can relieve users of the burden of repetitive, time-consuming, or complex 
procedures, and enable them to focus on more cognitively demanding tasks. Procedural learning is 
a method by which procedure automation can be achieved by intelligent computational assistants. 
This paper explores the use of filtering heuristics based on action models for automated planning to 
augment sequence-mining techniques. Sequential pattern-mining algorithms rely primarily on 
frequency of occurrence to identify patterns, leaving them susceptible to discovering patterns that 
make little sense from a psychological perspective. In contrast, humans are able to form models of 
procedures from small numbers of observations, even without explicit instruction. We posit that 
people can do so because of background knowledge about actions and procedures, which lets them 
effectively filter out incoherent or impractical sequential patterns. The action models foundational 
to artificial intelligence planning provide semantics for actions, supporting the design of heuristics 
for eliminating spurious patterns discovered from event logs. We present experiments with various 
filters derived from these action models, the results of which show that filters in greatly reduce the 
number of sequential patterns discovered without sacrificing the number of correct patterns found, 
even with small, noisy event logs. 

1.  Introduction 
Humans are adept at learning procedures from observation. Children watch and learn from parents 
and teachers, siblings and playmates. New hires shadow experienced professionals to learn about 
the organization’s standard procedures. An apprentice learns new skills by watching a master at 
work. Although interaction and direct teaching typically accompany learning from observation, we 
can recognize meaningful patterns in observed behavior even without explicit demonstration or 
instruction. And we can do so without requiring large numbers of examples. We can identify what 
is relevant and what is not, so that even with just a few cases of some unknown procedure being 
executed, we can learn the underlying process. 

In this work, we set out to address the task of discovering automatable procedures from 
transaction logs of computer applications. The task involves a data set that, in general, contains 
multiple instances of a procedure, with not every procedure present in every log. Furthermore, each 
log may include zero or more such procedures, with the steps of different procedures potentially 
being interleaved. Logs may contain extraneous actions and some actions may not be amenable to 
automation. Given a data set of such logs, can we use learning from observation to identify and 
extract the automatable procedures? 
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The problem of learning procedures from examples has been tackled through macro-operator 
learning in the AI planning community. Some work (Fikes et al., 1972; Minton, 1985; Mooney, 
1988) assumed the availability of examples of the target plan, with the task being to generalize 
those examples. In our setting, such examples are only implicit in the data and one challenge is to 
discover the examples. Other work extracted macros directly from problem-solving traces (Korf, 
1985; Iba, 1989), which would be analogous to the transactions in our setting. Given perfect 
knowledge of the domain actions and their preconditions and effects, and a state evaluation function 
indicating the desirability of a state to help identify possible subgoals, one might apply similar 
techniques to extract candidate macros from a training set of transactions, and then use statistical 
methods on a validation set to identify the high-utility ones. However, although we may have some 
domain knowledge in our setting, such domain knowledge is not guaranteed to be complete and 
correct, leaving this approach susceptible to overlooking potentially useful procedures.  

The inverse of this knowledge-driven approach is unsupervised discovery of procedures from 
transaction data. The discovery of sequential patterns in particular has been tackled through 
sequence mining, a popular computational technique for discovering patterns within records of 
larger sequences. It has been used to identify consumer purchasing behaviors in transaction 
databases (Agrawal & Srikant, 1995), as well as motifs (gene and protein sequences with distinct 
functions) within genomic strings (Abouelhoda & Ghanem, 2010). Process mining, another tech-
nique, has been used to discover process knowledge from event logs (van der Aalst et al., 2012). 
However, these are all designed to operate on large volumes of data and rely on frequency as the 
main indicator of patterns. They find frequent patterns that signify general trends and, in many 
cases, the ‘correctness’ of patterns is immaterial: they are often intended simply as starting points 
for a human expert to analyze or refine.  

In contrast, we wish to discover patterns that enable useful automation, which must correspond 
to meaningful, coherent sequences of actions. Unlike the characters that comprise protein sequences 
or the events in transaction logs, action sequences are also rich in structure, with parameters, 
preconditions and effects, inputs and outputs. Plans similarly involve semantically rich actions with 
formal specifications that let reasoning determine their applicability and effects in a given state, 
enabling both the construction of plans (Ghallab et al., 2004) and composition into macro-operators 
(Fikes et al., 1972; Minton, 1985; Korf, 1985; Mooney, 1988; Iba, 1989). In this paper, we inves-
tigate whether one can augment sequence-mining techniques with filtering heuristics derived from 
planning knowledge to identify promising candidate sequences. Most domains lend themselves 
naturally to the formulation of rules that capture information about what makes a good candidate 
sequence. For procedures, enabling relationships (e.g., conditions that should hold for an action to 
be performed) are a natural focus, as they capture the underlying ‘physics’ of the domain. We use 
action models to represent these relationships, from which we devise two sets of heuristics: action 
filters to eliminate noise from discovered patterns and candidate filters to eliminate undesirable 
patterns. We also report experimental results that show the ability of these filters to improve 
precision without sacrificing recall. 

We begin by defining the sequential pattern-mining problem and our approach to discovering 
frequent parameterized action sequences. We then present the results from a baseline study, illus-
trating the problem with using simple frequency-based techniques to find candidate procedures—
a problem exacerbated by the presence of noise. After this, we introduce action models and the 
filtering heuristics designed to eliminate undesirable candidates. We next present our experiments 
with filters on both noise-free and noisy data sets, which show the effectiveness of filters in increas-
ing precision with minimal decrease in recall. The work is a first attempt to use planning knowledge 
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to improve sequence mining for procedure learning, so we discuss its contributions in the context 
of related research in procedural learning and sequence mining. We conclude with a discussion of 
plans for future work in this area. 

2.  Sequential Pattern Mining for Procedure Learning 

Sequential pattern mining is a specialized data-mining task for finding sequential patterns in data 
(Chand et al., 2013; Fournier-Viger et al., 2017). It has been applied to problems like market basket 
analysis, biological sequence discovery, clickstream analysis, and workflow verification. However, 
sequence-mining algorithms almost always rely purely on frequency of occurrence to identify 
candidate patterns. In particular, all such algorithms specify a minimum support parameter that 
denotes the minimum frequency of occurrence for a pattern to be considered a viable candidate. 
And while some algorithms accommodate additional constraints (Negrevergne & Guns, 2015; Pei 
et al., 2004; Pei & Wang, 2002), they are still limited to looking at relatively shallow properties 
rather than knowledge about what makes a good pattern. 

Sequence-mining algorithms today are robust and highly efficient, but they have two main 
limitations when applied to procedural learning. First, they operate over sequences of atoms, such 
as DNA sequences, items purchased, URL clickstreams, and event logs. In contrast, procedure 
mining should handle input sequences that are composed of parameterized actions and discover 
relationships between those parameters to achieve generalization. Second, there are no semantics 
associated with these atoms, so they are often simply converted into integers for compactness. 
Because sequence-mining algorithms are purely statistical, the atoms over which they operate have 
no semantics. In contrast, the actions in procedures have meaning: they are intended to achieve 
something, they have preconditions and effects, and they manipulate data.  

Here we first review how to address the first limitation using a technique described by Gervasio 
and Lee (2013) for learning action idioms, i.e., groups of low-level actions from instrumentation 
logs abstracted to human-level actions. The work described in the remainder of the paper addresses 
the second limitation. Consider the example in Table 1. Event Logs shows three event sequences, 

Table 1. Sequential pattern mining is limited to finding patterns over actions (without any arguments) (Result 
1). Simply appending arguments to actions (Result 2) does not enable the parameter generalization required 
to achieve the Desired Result. (Support refers to the number of times that the pattern appears in the input 
sequences.) 

Event Logs Result 1 Result 2    Desired Result 
Get(John,ID45) 
Approve(ID45) 

Sequence 1, Support 3: 
Get 
Approve 

Sequence 1, Support 1: 
GetJohnID45 
ApproveID45 

   Sequence 1, Support 2: 
   Get(Name1,Id2) 
   Approve(Id2)) 

Get(Jane,ID21) 
Approve(ID62) 

 Sequence 2, Support 1: 
GetJaneID21 
ApproveID62 

   Sequence 2, Support 1: 
   Get(Name1,Id2) 
   Approve(Id3) 

Get(Jill,ID37) 
Approve(ID37) 

 Sequence 3, Support 1: 
GetJillID37 
ApproveID37 
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each composed of a Get action followed by an Approve action. Get is an ID retrieval with one input 
parameter (the name of the person whose ID to retrieve) and one output parameter (the person’s 
ID). Approve is an approval action that takes one input (the ID of the person to approve). The first 
and third input sequences are examples of the same procedure, involving the ID retrieval and sub-
sequent approval for the same person. The second sequence involves a different procedure that 
retrieves one person’s ID and approves another. 

A straight application of sequence mining would look only at the action names (Get and 
Approve) and discover a single pattern covering all three sequences (Table 1, Result 1). A possible 
approach to including action arguments is to translate each action in the input sequence into a new 
string that concatenates the action name with its arguments. However, this leads to the opposite 
problem of undergeneralization, with each input sequence being recognized as a different pattern 
(Table 1, Result 2). The desired result is one that distinguishes between the patterns by recognizing 
the relationships between the action arguments as well (Table 1, Desired Result). 

To achieve the desired parameter generalization, Gervasio and Lee’s (2013) method applies 
sequence mining on the actions only (Table 1, Result 1). It then applies a postprocessing step to 
partition the supporting sequences according to parameter matches by going through each 
supporting sequence and assigning unique ids to the different argument values in order. This 
enables the recognition that there are two unique argument values in the first and third sequences 
but three in the second. It also reveals that the second unique argument value in the first and third 
sequences is the second argument for the first action and the sole argument for the second. For list 
and set (collection) arguments, unification and variablization can be extended to find supports from 
collections to individuals (e.g., first([a,b,c]) → a) and from individuals to collections (e.g., 
list(a,b,c) = [a,b,c]) (Eker et al., 2009). This modified sequential pattern-mining approach serves 
as the basic method we use in the study described next. 

3.  Baseline Study 

To verify that this approach to finding action idioms can also discover parameterized sequential 
patterns, we applied it to a data set of transactional logs. The purpose of the study was to provide 
baseline results against which to evaluate the augmented method that uses filtering heuristics. 

3.1  Baseline Data Sets 

To evaluate this basic approach, we repurposed transactional log data sets collected by the IEEE 
Task Force on Process Mining available through the 4TU.Centre for Research Data (2016). 
Specifically, we used the Large Bank Transaction Process data set (Muñoz-Gama, 2014), a 
collection of synthetic event logs generated from a model of bank transactions. The IEEE Task 
Force collection includes both natural and synthetic logs. We chose to work with the synthetic logs 
because they included the Petri net model from which the logs were generated, letting us develop 
‘ground truth’ (i.e., the target procedures for our mining algorithm) to use for evaluation. Figure 1 
shows the complete bank transactions model and Figure 2 shows the portion corresponding to 
sender (customer) authentication: we focused on this portion in our experiments, extracting 28 
target (ground truth) procedures, corresponding to the paths depicted in Figure 2.  

Like most transactional logs, each entry in the bank transaction data set consists simply of a 
log identifier and an event type. To transform the data into a form more akin to the parameterized 
action logs that are our focus, we modeled each action (square) in Figure 2 in terms of its inputs 
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and outputs—i.e., the information it consumes and produces. We then translated each event in the 
data set to its equivalent action to generate the log we used in our experiments. Table 2 illustrates 
this transformation. The data set provided a few different synthetically generated logs. For our 
experiments, we used the one comprising 2000 noise-free logs of observed transaction sequences 
(corresponding to 2000 different customers). However, because we expect to have many fewer logs 
in our target application, we mined procedures from only 100 randomly selected logs. We will refer 
to this as the noise-free data set.  

Because real-world transactional logs are unlikely to be completely devoid of noise, we also 
created noisy versions of the data to investigate its effects. To create the noisy versions, we injected 
two types of noise: redundant actions and extraneous ones. We also considered removing actions 
but decided that this did not make sense in the procedural automation setting because traces with 
missing actions would not have accomplished the desired effects and thus are not really examples 

 

Figure 1. Large Bank Transaction Petri Net Model. The callout shows the Sender (Customer) Authentication 
subprocess used in the experiments discussed in this paper. The complete model on the left is shown only to 
provide context; its details are not relevant here.  

 

Figure 2. The target (ground truth) procedures in the Sender Authentication subprocess consist of all possible 
paths between a green square and a red square. The diagram is a Petri net, so all branches emanating from a 
square can be traversed in any order. This leads to six different sequences for the High Check subgraph and 
two for the Low Check subgraph.  
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of any target procedure. We injected redundant actions by repeating each action in the log with 0.1 
probability. Similarly, we inserted the extraneous actions by going through each action in a log and 
inserting a randomly selected action with 0.1 probability. We created three noisy data sets: one with 
redundant actions only, one with extraneous actions only, and one with both redundant and 
extraneous actions.1 

3.2  Baseline Results 

We were interested in how well the candidate sequences discovered by sequence mining would 
match ground truth, so we measured precision and recall. We expected recall to be high, since 
sequential pattern mining is designed to discover as many patterns as possible. But because every 
subsequence of a frequent sequence will also be a frequent sequence, we expected it to find many 
spurious procedures and thus precision to be low. This subsumption property has led to much work 
in frequent pattern mining to focus on finding only maximal sequences (i.e., frequent sequences 
that are not contained in a longer frequent sequence) or closed sequences (i.e., maximal sequences 
that are not contained in a longer one with the same support). For procedure mining, however, we 
do not want to limit ourselves to closed or maximal sequences because subsequences are likely to 
be useful as well, as seen in the ground truth procedures. 

To establish a baseline, we ran the CM-SPAM 

2 algorithm (Fournier-Viger et al., 2014) over 
the transformed action log with a minimum support of five. Table 3 summarizes the results for the 
Noise-free case and the three noisy data sets (Redundant, Extraneous, Both). As expected, recall is 
high (perfect in the Noise-free case) but precision is fairly poor (12%). Performance degrades with 
the noisy data sets, with more incorrect candidates (lower precision) found in all three, and fewer 
correct candidates (lower recall) found in the Extraneous and Both noisy data sets.  

 
1 We also tried both smaller and larger probability values. These resulted in the expected decrease and in-

crease, respectively, in the number of candidates generated but the overall results for the later studies using 
filters did not change. 

2 Sequence-mining algorithms target very large data sets, so they are designed to be highly efficient for 
particular problems. Our objective was to see whether we could leverage established techniques to learn 
automatable procedures from small amounts of data. We decided to use the CM-SPAM implementation in 
the Sequential Pattern Mining Framework (SPMF) library (Fournier-Viger et al., 2016) because it was 
particularly efficient, provided all frequent sequences, and had a tunable maximum gap parameter. 

Table 2. An example conversion from an event log to an action log. Each atomic event is translated into its 
equivalent parameterized action. 

Atomic Event                             Parameterization 
  trace_0 SSA         StartAuthentication(+Person1, -AuthId2) 
  trace_0 CSPID         CheckPersonalID(+Person1, +AuthId2) 
  trace_0 RBID         RequestBankID(+Person1,+AuthId2, -RequestId3) 
  trace_0 GBID         GenerateBankID(+Person1,+RequestId3, -BankId40) 
  trace_0 LCSP         LowCheck(+Person1, +BankId4, PROFILE) 
  trace_0 ABID         ActivateBankID(+Person1, +BankId4) 
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4.  Knowledge-Guided Candidate Filtering 

Sequential pattern mining relies solely on frequency of occurrence to identify candidates. While 
this may be sufficient for finding repetitive occurrences such as buying patterns or frequent 
clickthrough behavior, it is inadequate for finding procedures—i.e., meaningful action sequences 
intended to achieve some goal. Action sequences based purely on frequency of observation may 
not always be good candidates for automation. As seen in the baseline study, they may contain 
(non-observable) intervening actions, systematic noise, and non-automatable actions. Extraneous 
actions that serve no purpose cannot be filtered out, nor can nonsensical action sequences such as 
those that start with actions whose preconditions have not been established. The action models used 
in AI planning are designed precisely to enable reasoning about such dependencies. With this in 
mind, we set out to see how we could use action models to filter out the false candidates from many 
candidates generated by sequential pattern-mining algorithms. Unlike in AI planning, our approach 
does not require a complete and correct set of action models since we only use the action models 
to devise filtering heuristics and not to solve planning problems. Although we should get better 
performance with complete and correct models, even imperfect action models should reduce the 
noise in the candidate sequential patterns. And in our domains of interest, this partial information 
is readily available. 

4.1  Action Model 

We decided to use a hybrid notation for action models that combines standard STRIPS-style 
semantics, which capture preconditions and effects, with a dataflow-oriented representation of 
actions in terms of their inputs and outputs. 

4.1.1  Planning Domain Definition Language.  
The Planning Domain Definition Language (PDDL) (Kovacs, 2011; McDermott et al., 1998), a 
descendant of STRIPS (Fikes & Nilsson, 1971), is the de facto standard for encoding first-principles 
planning knowledge. In PDDL, the domain description includes a model for each action, which 
comprises a set of (typed) parameters, a set of preconditions that specify when it can be applied, 
and a set of effects that define the results of its execution. For example, Table 4 (left) shows the 
action definition for a FinishAuthentication action in the Bank Transaction domain. It has two 
parameters (the sender and the authentication ID), requires that the authentication be in process and 
that the customer already have been registered, and results in the sender being authenticated. 

In our work on learning procedures from demonstration in informational domains (Gervasio & 
Murdock, 2009; Eker et al., 2009; Garvey et al., 2009), we found data flow—i.e., the information 

Table 3. Baseline performance. Sequence mining finds all true candidates (perfect recall) but many false ones 
(low precision). All types of noise increase the number of incorrect candidates found, while extraneous 
actions and both redundant and extraneous actions also decrease this measure. 

Data set Cands True Recall   Prec 
Noise-free 229 28 1.0000 0.1223 
Redundant 289 28 1.0000 0.0720 
Extraneous 252 25 0.8929 0.0992 
Both 372 19 0.6786 0.0511 
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producer-consumer relationship between actions—to be a particularly useful concept, with most 
actions involving the production of information required by subsequent actions and/or the 
consumption of data generated by previous actions. By focusing on the identification and 
generalization of data flow, we were able to develop techniques for learning general, parameterized 
procedures from as little as one example. To support the reasoning required to identify and 
generalize data flow, we devised a representation in which actions have typed parameters, each 
designated as an input or an output, with the semantics that, given particular input arguments, 
executing the action will generate the output arguments. For example, Table 4 (right) shows the 
action definition for the StartAuthentication action: Given as input a sender (name), it outputs a 
new authentication ID. 

We extended this dataflow-oriented action model for task learning with preconditions and 
effects, as in PDDL, to encode the planning knowledge for a domain. We note that classic work on 
learning plans from examples assumes information not just about the actions that were executed 
but also the state of the world before and after the execution of each action (Fikes et al., 1972; 
Minton, 1985). However, action or transactional logs typically lack such state information. And yet 
humans can look at such action sequences and infer the intervening states based on their knowledge 
of the actions. They can also identify related actions and ignore irrelevant ones. This was the 
primary motivation behind our investigation into the use of heuristics based on action models to 
filter the candidate patterns discovered through sequential pattern mining. 

4.2  Candidate Filters 

The preconditions and effects and the inputs and outputs of an action provide valuable information 
regarding whether inclusion of the action in an observed sequence makes sense. To leverage this 
information in identifying good candidates for automation, we developed a set of filtering heuristics 
based on common-sense knowledge about the nature of actions and procedures in this domain. We 
note that these filters, summarized in Table 5, are intended to serve as examples and to evaluate the 
idea of knowledge-based filtering; they are not meant to be complete or definitive.  

Table 4. PDDL specification of the FinishAuthentication action (left) and dataflow-based specification of 
StartAuthentication action (right). 

                  PDDL Specification          Dataflow-Based Specification 
   (:action FinishAuthentication 
     :parameters (?sender ?aid) 
     :precondition  
       (and (authenticating ?sender ?aid)) 
            (registered ?sender)) 

   :effect  
     (and (not authenticating ?sender ?aid)) 

            (authenticated ?sender))) 

   <action id=“StartAuthentication”> 
   <description> 
     Start authentication 
   </description> 
   <inputParam id=“sender”> 
     <description> 
       the sender 
     </description> 
     <typeRef typeId=“string”/> 
   </inputParam> 
   <outputParam id=“aid”> 
     <description> 
       authentication id 
     </description> 
     <typeRef typeId=“string”/> 
   </outputParam> 

   </action> 
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The Precondition filter discards any candidate containing an action whose preconditions are 
not satisfied. This is because a procedure cannot be executed to completion if any of its actions has 
an unsatisfied precondition. Since event logs do not contain state information, we rely on infor-
mation about acceptable initial state conditions instead. To signify that these conditions denote 
possible states from which an authentication procedure might be initiated, we augment the action 
model with metadata identifying such conditions. For example, in this domain, the condition of a 
customer being known is a valid (possible) initial condition but the condition of authority being 
notified is not. 

The next three filters rely on knowledge about the processes in the domain, as tracked by the 
conditions established by the actions. Specifically, processes must start and they must end. By 
designating certain conditions as referring to a process, we can recognize when an action starts the 
process (i.e., establishes the condition) or finishes it (i.e., negates the condition). For example, the 
action StartAuthentication has the effect of (authenticating ?customer) (that is, starting an authenti-
cation process), while the action FinishAuthentication has the effect of (not (authenticating 
?customer)) (i.e., finishing it). The Start filter requires candidates to begin with an action that starts 
a process, while the Finalize filter requires them to end with an action that finishes a process. The 
Complete filter combines the two constraints, requiring that every action that starts a process have 
a corresponding action that ends it.  

The final filter, Branch, discards candidates that do not begin with an action recognized to be 
one of the options. This may not apply to procedures in some domains, but for banking transactions, 
we know there are often steps that can be executed in any order—i.e., any of the steps can start a 
procedure provided the other steps are carried out later. In the banking transaction model, for 
example, the check for high-risk (i.e., new or unknown) clients involves checking the customer’s 
banking history, checking the customer’s profile, and notifying authorities. The intuition behind 
the Branch filter is that action sequences beginning with any of these branching actions are likely 
to correspond to good candidates.  

In addition to the candidate filters in Table 5, we also devised action filters for discarding 
unnecessary actions in candidates, as summarized in Table 6 (a). The Contribution filter requires 
that every action serve a purpose—i.e., it either establishes a condition or produces an output 
required by a subsequent action or it requires a condition or input produced by a preceding action. 
The Duplicate filter discards actions that are exact repetitions of the previous actions, the rationale 
being that repeating the same action serves no purpose. We designed these action filters to eliminate 

Table 5. Heuristics for filtering candidate sequential patterns based on common-sense knowledge about 
actions and procedures in the banking domain. 

Filter                                               Description 
Precondition Discards candidates with any action having an unsatisfied or unsatisfiable 

precondition 
Start Discards candidates that do not begin with an action that starts a process 
Finalize Discards candidates that do not end with an action that completes a process 
Complete Discards candidates that have an action that starts (ends) a process without a 

matching action that ends (starts) it 
Branch Discards candidates that do not start with a recognized branching action 
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extraneous actions, whether due to inadvertent execution, multitasking, or some other reason, and 
that may lead to spurious patterns being discovered. Meanwhile, the Gap filter uses the maximum 
gap constraint in pattern-mining algorithms such as CM-SPAM, which is designed to accommodate 
noise by allowing gaps up to a certain length within a sequence. For the experiments described 
below, we allowed up to one intervening action between elements of a candidate sequence, which 
we implemented by setting the CM-SPAM maximum gap parameter accordingly. 

The Precondition and Contribution filters each check for necessary conditions, while the rest 
check for desirable ones. To determine whether first eliminating invalid sequences would improve 
the precision of the heuristics, we also devised two composite filters that require passing both the 
Contribution and Precondition filters and at least one of the other candidate filters. Table 6 (b) 
describes these combinations. 

5.  Experiments with Filters 

To evaluate our approach of augmenting sequential pattern mining with filtering heuristics derived 
from action models, we conducted experiments using the data sets created for the baseline study. 
As in that study, we ran the CM-SPAM algorithm augmented with parameter unification and 
variabilization to generate the candidate sequences, and then applied our filtering heuristics to 
eliminate undesirable candidates. The one exception to this post-processing approach to filtering 
was the Gap filter, which we implemented using the maximum gap constraint of the CM-SPAM 
algorithm instead. Our main hypothesis was that the filters would eliminate bad candidates from 
consideration, thereby improving precision over baseline results. However, we were also interested 
in whether recall would suffer and by how much.  

5.1  Experimental Results 

Table 7 summarizes the results with the different filters, alone and in combination, applied over the 
frequent sequences found by CM-SPAM on the noise-free data set. The individual candidate filters 
never degrade precision and, in most cases, improve it, although recall, unsurprisingly, is some-
times affected. Among the individual filters, the Branch filter results in the highest precision, but 

Table 6. (a) Heuristics for filtering unnecessary actions from candidate sequential patterns; (b) Combinations 
of heuristics for filtering candidate sequential patterns. 

Filter                                                 Description 
Contribution Discards actions that are not required by any succeeding action or that do not 

require any preceding action 
Duplicate Discards immediate repeated actions in a sequence 
Gap Ignores up to a certain number of intervening actions 

x 

Combo1 Discards actions that do not pass the Contribution filter and then candidates 
that do not pass the Precondition filter and at least two of Branch, Start, 
Finalize, and Complete 

Combo2 Discards actions that do not pass the Contribution filter and then candidates 
that do not pass the Precondition filter and either the Branch or Complete filter 
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it also has markedly lower recall. The best performance overall is achieved by the Combo1 filter, 
which records the highest precision and almost perfect recall.   

The Contribution, Duplicate, and Gap action filters were designed primarily to address noise 
and so we did not expect them to help much in the noise-free case. Because the noise-free data set 
contained no repeated actions, the Duplicate filter offers no improvement over the baseline. The 
Gap filter, because it is designed to recognize patterns even with segments that do not match 
(allowable gaps), results in an explosion in the number of patterns found, greatly decreasing 
precision. The Contribution filter has a mild positive effect on performance, removing a small 
number of false positives for a slight improvement in precision. 

Table 8 summarizes the results of applying the different filters on the noisy data set with only 
Redundant actions. With the exception of the Gap filter, every filter improved precision. Not sur-
prisingly, the Duplicate filter, which removes repeated actions (i.e., exactly the injected noise), 
resulted in the best precision on the Redundant data set, matching the performance of the baseline 
in the noise-free case. And applying the Duplicate filter in combination with any other filters 

Table 7. Results of filtering on noise-free data set showing the number of candidates found, the number of 
correct candidates among those, recall, and precision. 

Filter    Cands   True   Recall     Prec 
Precondition 229 28 1.0000 0.1223 
Start 94 17 0.6071 0.1809 
Finalize 87 15 0.5357 0.1724 
Complete    156 28 1.0000 0.1795 
Branch 92 17 0.6071 0.1848 
Contribution 215 28 1.0000 0.1302 
Duplicate 229 28 1.0000 0.1223 
Gap 1020 28 1.0000 0.0275 
Combo1 128 26 0.9286 0.2031 
Combo2 169 28 1.0000 0.1657 

 

Table 8. Results of filtering on noisy data set with Redundant actions. 

Filter    Cands   True   Recall   Prec 
Precondition 251 28 1.0000 0.1116 
Start 156 17 0.6071 0.1090 
Finalize 134 15 0.5357 0.1119 
Complete 272 28 1.0000 0.1029 
Branch 149 17 0.6071 0.1141 
Contribution 357 28 1.000 0.0784 
Duplicate 229 28 1.000 0.1223 
Gap 2201 28 1.0000 0.0127 
Combo1 128 26 0.9286 0.2031 
Combo2 169 28 1.0000 0.1657 
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matched performance in the corresponding noise-free case (results omitted for brevity). The best 
performance, however, results from the combination filters. 

The Gap filter, as in the noise-free case, substantially increased the number of candidates, 
resulting in greatly degraded precision. The Gap filter is designed to find candidates that would not 
otherwise be found because of insufficient support due to noise. For example, if there are three 
sequences ACB, AB, and ADB, then an allowable gap of one would find the sequence AB with 
support three, while allowing no gap would not find any sequence with support greater than one. 
Thus, the result here may be explained by the fact that, without filtering, all ground truth candidates 
are already found—i.e., there is nothing useful left for the Gap filter to find. Instead it detects many 
other extra candidates. We had expected the Gap filter to have some positive effect on small data 
sets having patterns that have frequencies of occurrence close to the minimum, but the extremely 
high number of other patterns found makes it unlikely to be useful. Table 9 shows the results for 
the different filters on the noisy data set with Extraneous actions only and Table 10 shows the 
results for the noisy data set with Both redundant and extraneous actions. The results are similar to 
those for noise due to only Redundant actions. Again, with the exception of the Gap filter, all the 
filters aid performance, with the combination filters resulting in the greatest improvement.  

5.2  Discussion 

The experimental results support our conjecture that standard sequential pattern-mining techniques 
discover many irrelevant action sequences and that filters based on action models can eliminate 
most of them. Sequential pattern mining relies almost exclusively on frequency of occurrence to 
identify patterns. This is often sufficient for applications such as consumer product recommend-
dations, motif detection, or compliance checking, where the cost of an incorrect pattern is small 
and thus there is generally a greater emphasis on recall. Often, there is also a human to ultimately 
assess the quality of the discovered patterns: a consumer deciding whether to accept a product 
recommendation, a scientist verifying a motif, or a business ensuring best practices. However, with 
patterns that are intended for automation, it is important to find correct procedures and thus there 
is a need for greater precision. 

Inspired by the action models used in AI planning to reason about how actions in a plan estab-
lish preconditions or generate the inputs for subsequent actions, we set out to develop heuristic 

Table 9. Results of filtering on noisy data set with Extraneous actions. 

Filter    Cands   True   Recall   Prec 
Precondition 232 25 0.8929 0.1078 
Start 99 15 0.5357 0.1515 
Finalize 89 13 0.4643 0.1461 
Complete 159 25 0.8929 0.1572 
Branch 98 15 0.5357 0.1531 
Contribution 208 25 0.8929 0.1202 
Duplicate 251 25 0.8929 0.0996 
Gap 1266 28 1.0000 0.0221 
Combo1 116 26 0.8214 0.1983 
Combo2 159 28 0.8929 0.1572 
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filters that identify coherent candidate action sequences. The idea was to encode in these filters the 
knowledge of which patterns ‘made sense’ from a procedural perspective—i.e., patterns whose 
actions were related in some way or were otherwise indicative of a procedure. Our experiments 
showed that filters derived from action models can successfully find coherent action sequences 
suitable for automation. Every candidate filter and all but the Gap action filter eliminated 
undesirable candidates and most did so without sacrificing recall. Baseline precision, based on 
standard sequential pattern-mining techniques, is just over 12% in the noise-free case and ranges 
from 5 to 10% for the noisy data sets. With the filters, however, precision can reach up to almost 
20% in the noise-free case and up to 15 to 20% for the noisy data sets. This is a substantial 100–
200% improvement in performance. It remains to be seen whether a one-in-five hit rate for 
discovered procedures suffices for automation is sufficient. Nevertheless, these results show that 
knowledge-based heuristics for filtering candidates can be an effective addition to standard 
sequential pattern mining and guide discovery toward meaningful action sequences that correspond 
to useful, automatable procedures.  

6.  Related Work 

Procedural learning—the acquisition of skills for performing tasks—has been well studied in the 
cognitive science and AI communities. A broad array of approaches has been explored, including 
learning from problem solving (Laird et al., 1986), observation (van Lent & Rosenbloom, 2001), 
instruction (Blythe, 2005), multiple modalities (Allen et al., 2007), demonstration (Gervasio & 
Murdock, 2009), and solution traces (Li et al., 2009).  

In the AI planning community, the concept of macro-operators was conceived as a means to 
improve the efficiency of planning by compiling the search to determine a sequence of actions to 
achieve a goal from a given initial state. Some approaches to learning macro-operators attempt to 
extract them from available solutions (Korf, 1985; Mooney, 1988), while others analyze problem-
solving traces generated during search for solutions. These rules can be learned from problem-
solving traces (Minton et al., 1989; Gratch & DeJong, 1991) or through static analysis of problem 
space definitions (Etzioni, 1993). The procedure automation that drives our work on procedure 
discovery is similarly motivated by efficiency, but our setting involves finding procedures in logs 

Table 10. Results of filtering on noisy data set with both Redundant and Extraneous actions. 

Filter    Cands   True   Recall   Prec 
Precondition 218 19 0.6786 0.0872 
Start 135 11 0.3929 0.0815 
Finalize 131 9 0.3214 0.0687 
Complete 252 19 0.6786 0.0754 
Branch 134 12 0.4286 0.0896 
Contribution 296 19 0.6786 0.0642 
Duplicate 268 26 0.9286 0.0970 
Gap 1339 28 1.0000 0.0209 
Combo1 108 17 0.6071 0.1574 
Combo2 149 19 0.6786 0.1275 

 



M. GERVASIO AND K. MYERS 

66 

of actions executed by any number of people rather than the actions of the planning agent itself or 
intentional demonstrations by an expert. Furthermore, the work on learning macro-operators and 
search control rules relies on having complete and correct domain knowledge to ensure the correct-
by-construction plans that underpin learning. Our approach instead utilizes the available domain 
knowledge to identify promising patterns from candidates obtained through unsupervised methods. 

Procedures are a type of sequential pattern and the idea of finding sequential patterns in data 
has been explored in a number of fields. In the data mining community, Agrawal and Srikant (1995) 
introduced sequential pattern mining in their seminal work on market basket analysis, which can 
be used to drive decisions about marketing activities, such as campaigns to recommend products, 
based on discovered patterns in consumer behavior. Pattern-mining methods developed since then 
(e.g., Fournier-Viger et al., 2014; Pei et al., 2004; Srikant & Agrawal, 1996; Zaki, 2001) differ in 
how they search the space of patterns, how they represent the database, how they generate next 
candidates, and how they determine support (frequency of occurrence) for patterns (Fournier-Viger 
et al., 2017). Because the applications driving the work in the data mining community involve very 
large databases, research in this area has focused primarily on time and space efficiency. 

Sequence mining in bioinformatics (Abouelhoda & Ghanem, 2010) also involves large data 
sets and emphasizes efficient algorithms. In contrast to data-mining tasks, which involve finding 
patterns in large numbers of relatively short sequences over many possible items (alphabets), 
biological sequence mining finds patterns in very long sequences for small alphabets. Furthermore, 
the main driver for biological mining is finding repeated strings that correspond to some significant 
biological structure or function, such as motifs (e.g., Bailey et al., 2009; Chou & Schwartz, 2011). 

Our particular interest is in discovering repeated action sequences that correspond to execution 
traces of processes or procedures that could be automated. This is closest to process mining, which 
attempts to discover process knowledge from event logs (van der Aalst et al., 2012). Process mining 
has been applied to a variety of domains, including health care (Rojas et al., 2016), software 
development (Cook & Wolf, 1998), public works infrastructure (van der Aalst et al., 2007), and 
other business settings. Much work in this area is concerned with finding processes to support 
analysis, such as conformance checking and workflow enhancement. Because real-life processes 
can be quite complex, process mining is designed to discover control structures like loops and cond-
itionals, with Petri nets being a popular representation for learned models. However, consideration 
of other attributes such as actors, time stamps, and resources is typically done outside mining itself.  

Constraint-based mining (Negrevergne & Guns, 2015; Pei et al., 2004; Pei & Wang, 2002) 
provides an avenue for biasing the search for frequent patterns by requiring that they satisfy user-
specified constraints. However, the constraints have typically been limited in scope and focused on 
syntactic features of sequential patterns. Negrevergne and Guns categorize them into constraints on 
patterns (e.g., minimum size), constraints on cover sets (e.g., minimum frequency), constraints on 
inclusion relations (e.g., maximum gap), and preferences over candidate patterns (e.g., maximal 
patterns). Most work on sequence mining develops specialized algorithms for a subset of them. Our 
task requires extensions to semantic constraints on action sequences of task-oriented procedures. 
The patterns we wish to discover are intended for automation and must thus correspond to 
meaningful, coherent sequences of actions. Unlike the characters that comprise protein sequences 
or the simple events in transaction logs, actions are rich in structure. They have parameters (often 
typed), preconditions, and effects, they take inputs and generate outputs, and they are organized in 
hierarchies. Furthermore, in our setting, we cannot assume voluminous action logs from which to 
discover patterns. This greatly lowers the tolerance for noise and increases the need for effective 
generalization from small numbers of examples.  
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7.  Conclusions and Future Work 

In this paper, we proposed a hybrid approach to procedure mining that combines knowledge-based 
heuristics derived from AI planning models with statistical techniques from sequential pattern 
mining to discover candidate action sequences for automation. This leverages efficient sequence-
mining techniques to find frequent action sequences from logs of user actions that serve as 
candidate action sequences for automation. Using action models that provide a semantic represent-
ation of actions in terms of their preconditions and effects, as well as their inputs and outputs, we 
devised filtering heuristics to help identify good candidate sequences for automation. We conducted 
several experiments to evaluate the usefulness of filters on both noise-free and noisy data sets. The 
results showed that the filtering heuristics based on action models eliminate many irrelevant 
sequences discovered by standard sequential pattern mining.  

Our approach introduces an additional cost to deployment above and beyond that of purely 
statistical methods in that it requires the formulation of action models for any new domain to which 
it is applied. However, this is a one-time expense that could be justified for many applications if 
our preliminary results on improved quality of recognition hold more generally. As discussed 
previously, the filtering heuristics presented in this paper may not apply to all domains. Some, like 
the Branch filter, take advantage of characteristics specific to banking transactions. On the other 
hand, we are likely to be able to leverage characteristics specific to any domain by designing new 
filters that encode the knowledge about its processes. For example, in a customer support call-
center application, all procedures might begin with creating an incident report and filling in the date 
and time of the call. They may also include retrieving resolution options based on a standard 
operating manual or similar incidents, and they may all conclude with a resolution or an escalation. 

Some applications may require learning from even smaller numbers of examples. These will 
need heuristics like the Gap filter to enable finding sequences for which there is not enough support 
otherwise. For example, an abstraction filter that recognizes some actions are variants of others 
because they achieve the same cumulative effects would allow sequences that differed only in the 
variant used to be grouped. Prior work on learning disjunctive macro-operators (Shell & Carbonell, 
1989) may provide other techniques for generalizing structure and learning compact procedures.  

We believe that our use of action models to inform statistical sequence mining has potential 
benefits that go beyond increased precision. One such benefit is providing rationale for mined 
sequences. The preconditions and effects characterize the causal structure of the procedure: what it 
does, when it can be done (its accumulated preconditions), and why it would be done (its 
accumulated effects). We might use this information to generate explanations for a user to 
accompany suggestions for task automation, drawing on explanatory techniques such as those 
described in Seegebarth et al. (2012). 

Our work has been motivated by the ultimate objective of enabling process automation for real-
world usage. The focus to date has been on a collaborative task management tool called Task 
Assistant (Peintner et al., 2009). This system supports distributed human teams in collectively 
executing complex coordinated processes (e.g., Standard Operating Procedures) through an explicit 
representation of tasks, dependencies, deadlines, and status. Task Assistant has been deployed 
successfully to a number of operational user communities, including the U.S. Pacific Fleet 
(PACFLT), the U.S. Strategic Command (STRATCOM), and the Kansas National Guard. With 
those deployments, we have seen the opportunity to improve team and individual efficiency by 
introducing automation of frequently executed support tasks, many of which focus on information 
retrieval to aid human decision making. Our first approach to procedure automation for Task 
Assistant relied on learning from demonstration (Myers et al., 2011), which required substantial 
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user effort to recognize the need for automation and to explicitly walk through the procedures. Our 
engagement with the user community has shown a strong desire for automating procedures with 
little human intervention, as would be enabled by the procedure-mining technique in this paper.  
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