
Advances in Cognitive Systems 10 (2023) 53–70 Submitted 5/2020; published 5/2023

© 2023 Cognitive Systems Foundation. All rights reserved.

Learning Procedures by Augmenting Sequential

Pattern Mining with Planning Knowledge

Melinda Gervasio MELINDA.GERVASIO@SRI.COM
Karen Myers KAREN.MYERS@SRI.COM
Artificial Intelligence Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 USA

Abstract
Procedure automation can relieve users of the burden of repetitive, time-consuming, or complex
procedures, and enable them to focus on more cognitively demanding tasks. Procedural learning is
a method by which procedure automation can be achieved by intelligent computational assistants.
This paper explores the use of filtering heuristics based on action models for automated planning to
augment sequence-mining techniques. Sequential pattern-mining algorithms rely primarily on
frequency of occurrence to identify patterns, leaving them susceptible to discovering patterns that
make little sense from a psychological perspective. In contrast, humans are able to form models of
procedures from small numbers of observations, even without explicit instruction. We posit that
people can do so because of background knowledge about actions and procedures, which lets them
effectively filter out incoherent or impractical sequential patterns. The action models foundational
to artificial intelligence planning provide semantics for actions, supporting the design of heuristics
for eliminating spurious patterns discovered from event logs. We present experiments with various
filters derived from these action models, the results of which show that filters in greatly reduce the
number of sequential patterns discovered without sacrificing the number of correct patterns found,
even with small, noisy event logs.

1. Introduction
Humans are adept at learning procedures from observation. Children watch and learn from parents
and teachers, siblings and playmates. New hires shadow experienced professionals to learn about
the organization’s standard procedures. An apprentice learns new skills by watching a master at
work. Although interaction and direct teaching typically accompany learning from observation, we
can recognize meaningful patterns in observed behavior even without explicit demonstration or
instruction. And we can do so without requiring large numbers of examples. We can identify what
is relevant and what is not, so that even with just a few cases of some unknown procedure being
executed, we can learn the underlying process.

In this work, we set out to address the task of discovering automatable procedures from
transaction logs of computer applications. The task involves a data set that, in general, contains
multiple instances of a procedure, with not every procedure present in every log. Furthermore, each
log may include zero or more such procedures, with the steps of different procedures potentially
being interleaved. Logs may contain extraneous actions and some actions may not be amenable to
automation. Given a data set of such logs, can we use learning from observation to identify and
extract the automatable procedures?

M. GERVASIO AND K. MYERS

54

The problem of learning procedures from examples has been tackled through macro-operator
learning in the AI planning community. Some work (Fikes et al., 1972; Minton, 1985; Mooney,
1988) assumed the availability of examples of the target plan, with the task being to generalize
those examples. In our setting, such examples are only implicit in the data and one challenge is to
discover the examples. Other work extracted macros directly from problem-solving traces (Korf,
1985; Iba, 1989), which would be analogous to the transactions in our setting. Given perfect
knowledge of the domain actions and their preconditions and effects, and a state evaluation function
indicating the desirability of a state to help identify possible subgoals, one might apply similar
techniques to extract candidate macros from a training set of transactions, and then use statistical
methods on a validation set to identify the high-utility ones. However, although we may have some
domain knowledge in our setting, such domain knowledge is not guaranteed to be complete and
correct, leaving this approach susceptible to overlooking potentially useful procedures.

The inverse of this knowledge-driven approach is unsupervised discovery of procedures from
transaction data. The discovery of sequential patterns in particular has been tackled through
sequence mining, a popular computational technique for discovering patterns within records of
larger sequences. It has been used to identify consumer purchasing behaviors in transaction
databases (Agrawal & Srikant, 1995), as well as motifs (gene and protein sequences with distinct
functions) within genomic strings (Abouelhoda & Ghanem, 2010). Process mining, another tech-
nique, has been used to discover process knowledge from event logs (van der Aalst et al., 2012).
However, these are all designed to operate on large volumes of data and rely on frequency as the
main indicator of patterns. They find frequent patterns that signify general trends and, in many
cases, the ‘correctness’ of patterns is immaterial: they are often intended simply as starting points
for a human expert to analyze or refine.

In contrast, we wish to discover patterns that enable useful automation, which must correspond
to meaningful, coherent sequences of actions. Unlike the characters that comprise protein sequences
or the events in transaction logs, action sequences are also rich in structure, with parameters,
preconditions and effects, inputs and outputs. Plans similarly involve semantically rich actions with
formal specifications that let reasoning determine their applicability and effects in a given state,
enabling both the construction of plans (Ghallab et al., 2004) and composition into macro-operators
(Fikes et al., 1972; Minton, 1985; Korf, 1985; Mooney, 1988; Iba, 1989). In this paper, we inves-
tigate whether one can augment sequence-mining techniques with filtering heuristics derived from
planning knowledge to identify promising candidate sequences. Most domains lend themselves
naturally to the formulation of rules that capture information about what makes a good candidate
sequence. For procedures, enabling relationships (e.g., conditions that should hold for an action to
be performed) are a natural focus, as they capture the underlying ‘physics’ of the domain. We use
action models to represent these relationships, from which we devise two sets of heuristics: action
filters to eliminate noise from discovered patterns and candidate filters to eliminate undesirable
patterns. We also report experimental results that show the ability of these filters to improve
precision without sacrificing recall.

We begin by defining the sequential pattern-mining problem and our approach to discovering
frequent parameterized action sequences. We then present the results from a baseline study, illus-
trating the problem with using simple frequency-based techniques to find candidate procedures—
a problem exacerbated by the presence of noise. After this, we introduce action models and the
filtering heuristics designed to eliminate undesirable candidates. We next present our experiments
with filters on both noise-free and noisy data sets, which show the effectiveness of filters in increas-
ing precision with minimal decrease in recall. The work is a first attempt to use planning knowledge

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

55

to improve sequence mining for procedure learning, so we discuss its contributions in the context
of related research in procedural learning and sequence mining. We conclude with a discussion of
plans for future work in this area.

2. Sequential Pattern Mining for Procedure Learning

Sequential pattern mining is a specialized data-mining task for finding sequential patterns in data
(Chand et al., 2013; Fournier-Viger et al., 2017). It has been applied to problems like market basket
analysis, biological sequence discovery, clickstream analysis, and workflow verification. However,
sequence-mining algorithms almost always rely purely on frequency of occurrence to identify
candidate patterns. In particular, all such algorithms specify a minimum support parameter that
denotes the minimum frequency of occurrence for a pattern to be considered a viable candidate.
And while some algorithms accommodate additional constraints (Negrevergne & Guns, 2015; Pei
et al., 2004; Pei & Wang, 2002), they are still limited to looking at relatively shallow properties
rather than knowledge about what makes a good pattern.

Sequence-mining algorithms today are robust and highly efficient, but they have two main
limitations when applied to procedural learning. First, they operate over sequences of atoms, such
as DNA sequences, items purchased, URL clickstreams, and event logs. In contrast, procedure
mining should handle input sequences that are composed of parameterized actions and discover
relationships between those parameters to achieve generalization. Second, there are no semantics
associated with these atoms, so they are often simply converted into integers for compactness.
Because sequence-mining algorithms are purely statistical, the atoms over which they operate have
no semantics. In contrast, the actions in procedures have meaning: they are intended to achieve
something, they have preconditions and effects, and they manipulate data.

Here we first review how to address the first limitation using a technique described by Gervasio
and Lee (2013) for learning action idioms, i.e., groups of low-level actions from instrumentation
logs abstracted to human-level actions. The work described in the remainder of the paper addresses
the second limitation. Consider the example in Table 1. Event Logs shows three event sequences,

Table 1. Sequential pattern mining is limited to finding patterns over actions (without any arguments) (Result
1). Simply appending arguments to actions (Result 2) does not enable the parameter generalization required
to achieve the Desired Result. (Support refers to the number of times that the pattern appears in the input
sequences.)

Event Logs Result 1 Result 2 Desired Result
Get(John,ID45)
Approve(ID45)

Sequence 1, Support 3:
Get
Approve

Sequence 1, Support 1:
GetJohnID45
ApproveID45

 Sequence 1, Support 2:
 Get(Name1,Id2)
 Approve(Id2))

Get(Jane,ID21)
Approve(ID62)

 Sequence 2, Support 1:
GetJaneID21
ApproveID62

 Sequence 2, Support 1:
 Get(Name1,Id2)
 Approve(Id3)

Get(Jill,ID37)
Approve(ID37)

 Sequence 3, Support 1:
GetJillID37
ApproveID37

M. GERVASIO AND K. MYERS

56

each composed of a Get action followed by an Approve action. Get is an ID retrieval with one input
parameter (the name of the person whose ID to retrieve) and one output parameter (the person’s
ID). Approve is an approval action that takes one input (the ID of the person to approve). The first
and third input sequences are examples of the same procedure, involving the ID retrieval and sub-
sequent approval for the same person. The second sequence involves a different procedure that
retrieves one person’s ID and approves another.

A straight application of sequence mining would look only at the action names (Get and
Approve) and discover a single pattern covering all three sequences (Table 1, Result 1). A possible
approach to including action arguments is to translate each action in the input sequence into a new
string that concatenates the action name with its arguments. However, this leads to the opposite
problem of undergeneralization, with each input sequence being recognized as a different pattern
(Table 1, Result 2). The desired result is one that distinguishes between the patterns by recognizing
the relationships between the action arguments as well (Table 1, Desired Result).

To achieve the desired parameter generalization, Gervasio and Lee’s (2013) method applies
sequence mining on the actions only (Table 1, Result 1). It then applies a postprocessing step to
partition the supporting sequences according to parameter matches by going through each
supporting sequence and assigning unique ids to the different argument values in order. This
enables the recognition that there are two unique argument values in the first and third sequences
but three in the second. It also reveals that the second unique argument value in the first and third
sequences is the second argument for the first action and the sole argument for the second. For list
and set (collection) arguments, unification and variablization can be extended to find supports from
collections to individuals (e.g., first([a,b,c]) → a) and from individuals to collections (e.g.,
list(a,b,c) = [a,b,c]) (Eker et al., 2009). This modified sequential pattern-mining approach serves
as the basic method we use in the study described next.

3. Baseline Study

To verify that this approach to finding action idioms can also discover parameterized sequential
patterns, we applied it to a data set of transactional logs. The purpose of the study was to provide
baseline results against which to evaluate the augmented method that uses filtering heuristics.

3.1 Baseline Data Sets

To evaluate this basic approach, we repurposed transactional log data sets collected by the IEEE
Task Force on Process Mining available through the 4TU.Centre for Research Data (2016).
Specifically, we used the Large Bank Transaction Process data set (Muñoz-Gama, 2014), a
collection of synthetic event logs generated from a model of bank transactions. The IEEE Task
Force collection includes both natural and synthetic logs. We chose to work with the synthetic logs
because they included the Petri net model from which the logs were generated, letting us develop
‘ground truth’ (i.e., the target procedures for our mining algorithm) to use for evaluation. Figure 1
shows the complete bank transactions model and Figure 2 shows the portion corresponding to
sender (customer) authentication: we focused on this portion in our experiments, extracting 28
target (ground truth) procedures, corresponding to the paths depicted in Figure 2.

Like most transactional logs, each entry in the bank transaction data set consists simply of a
log identifier and an event type. To transform the data into a form more akin to the parameterized
action logs that are our focus, we modeled each action (square) in Figure 2 in terms of its inputs

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

57

and outputs—i.e., the information it consumes and produces. We then translated each event in the
data set to its equivalent action to generate the log we used in our experiments. Table 2 illustrates
this transformation. The data set provided a few different synthetically generated logs. For our
experiments, we used the one comprising 2000 noise-free logs of observed transaction sequences
(corresponding to 2000 different customers). However, because we expect to have many fewer logs
in our target application, we mined procedures from only 100 randomly selected logs. We will refer
to this as the noise-free data set.

Because real-world transactional logs are unlikely to be completely devoid of noise, we also
created noisy versions of the data to investigate its effects. To create the noisy versions, we injected
two types of noise: redundant actions and extraneous ones. We also considered removing actions
but decided that this did not make sense in the procedural automation setting because traces with
missing actions would not have accomplished the desired effects and thus are not really examples

Figure 1. Large Bank Transaction Petri Net Model. The callout shows the Sender (Customer) Authentication
subprocess used in the experiments discussed in this paper. The complete model on the left is shown only to
provide context; its details are not relevant here.

Figure 2. The target (ground truth) procedures in the Sender Authentication subprocess consist of all possible
paths between a green square and a red square. The diagram is a Petri net, so all branches emanating from a
square can be traversed in any order. This leads to six different sequences for the High Check subgraph and
two for the Low Check subgraph.

M. GERVASIO AND K. MYERS

58

of any target procedure. We injected redundant actions by repeating each action in the log with 0.1
probability. Similarly, we inserted the extraneous actions by going through each action in a log and
inserting a randomly selected action with 0.1 probability. We created three noisy data sets: one with
redundant actions only, one with extraneous actions only, and one with both redundant and
extraneous actions.1

3.2 Baseline Results

We were interested in how well the candidate sequences discovered by sequence mining would
match ground truth, so we measured precision and recall. We expected recall to be high, since
sequential pattern mining is designed to discover as many patterns as possible. But because every
subsequence of a frequent sequence will also be a frequent sequence, we expected it to find many
spurious procedures and thus precision to be low. This subsumption property has led to much work
in frequent pattern mining to focus on finding only maximal sequences (i.e., frequent sequences
that are not contained in a longer frequent sequence) or closed sequences (i.e., maximal sequences
that are not contained in a longer one with the same support). For procedure mining, however, we
do not want to limit ourselves to closed or maximal sequences because subsequences are likely to
be useful as well, as seen in the ground truth procedures.

To establish a baseline, we ran the CM-SPAM

2 algorithm (Fournier-Viger et al., 2014) over
the transformed action log with a minimum support of five. Table 3 summarizes the results for the
Noise-free case and the three noisy data sets (Redundant, Extraneous, Both). As expected, recall is
high (perfect in the Noise-free case) but precision is fairly poor (12%). Performance degrades with
the noisy data sets, with more incorrect candidates (lower precision) found in all three, and fewer
correct candidates (lower recall) found in the Extraneous and Both noisy data sets.

1 We also tried both smaller and larger probability values. These resulted in the expected decrease and in-

crease, respectively, in the number of candidates generated but the overall results for the later studies using
filters did not change.

2 Sequence-mining algorithms target very large data sets, so they are designed to be highly efficient for
particular problems. Our objective was to see whether we could leverage established techniques to learn
automatable procedures from small amounts of data. We decided to use the CM-SPAM implementation in
the Sequential Pattern Mining Framework (SPMF) library (Fournier-Viger et al., 2016) because it was
particularly efficient, provided all frequent sequences, and had a tunable maximum gap parameter.

Table 2. An example conversion from an event log to an action log. Each atomic event is translated into its
equivalent parameterized action.

Atomic Event Parameterization
 trace_0 SSA StartAuthentication(+Person1, -AuthId2)
 trace_0 CSPID CheckPersonalID(+Person1, +AuthId2)
 trace_0 RBID RequestBankID(+Person1,+AuthId2, -RequestId3)
 trace_0 GBID GenerateBankID(+Person1,+RequestId3, -BankId40)
 trace_0 LCSP LowCheck(+Person1, +BankId4, PROFILE)
 trace_0 ABID ActivateBankID(+Person1, +BankId4)

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

59

4. Knowledge-Guided Candidate Filtering

Sequential pattern mining relies solely on frequency of occurrence to identify candidates. While
this may be sufficient for finding repetitive occurrences such as buying patterns or frequent
clickthrough behavior, it is inadequate for finding procedures—i.e., meaningful action sequences
intended to achieve some goal. Action sequences based purely on frequency of observation may
not always be good candidates for automation. As seen in the baseline study, they may contain
(non-observable) intervening actions, systematic noise, and non-automatable actions. Extraneous
actions that serve no purpose cannot be filtered out, nor can nonsensical action sequences such as
those that start with actions whose preconditions have not been established. The action models used
in AI planning are designed precisely to enable reasoning about such dependencies. With this in
mind, we set out to see how we could use action models to filter out the false candidates from many
candidates generated by sequential pattern-mining algorithms. Unlike in AI planning, our approach
does not require a complete and correct set of action models since we only use the action models
to devise filtering heuristics and not to solve planning problems. Although we should get better
performance with complete and correct models, even imperfect action models should reduce the
noise in the candidate sequential patterns. And in our domains of interest, this partial information
is readily available.

4.1 Action Model

We decided to use a hybrid notation for action models that combines standard STRIPS-style
semantics, which capture preconditions and effects, with a dataflow-oriented representation of
actions in terms of their inputs and outputs.

4.1.1 Planning Domain Definition Language.
The Planning Domain Definition Language (PDDL) (Kovacs, 2011; McDermott et al., 1998), a
descendant of STRIPS (Fikes & Nilsson, 1971), is the de facto standard for encoding first-principles
planning knowledge. In PDDL, the domain description includes a model for each action, which
comprises a set of (typed) parameters, a set of preconditions that specify when it can be applied,
and a set of effects that define the results of its execution. For example, Table 4 (left) shows the
action definition for a FinishAuthentication action in the Bank Transaction domain. It has two
parameters (the sender and the authentication ID), requires that the authentication be in process and
that the customer already have been registered, and results in the sender being authenticated.

In our work on learning procedures from demonstration in informational domains (Gervasio &
Murdock, 2009; Eker et al., 2009; Garvey et al., 2009), we found data flow—i.e., the information

Table 3. Baseline performance. Sequence mining finds all true candidates (perfect recall) but many false ones
(low precision). All types of noise increase the number of incorrect candidates found, while extraneous
actions and both redundant and extraneous actions also decrease this measure.

Data set Cands True Recall Prec
Noise-free 229 28 1.0000 0.1223
Redundant 289 28 1.0000 0.0720
Extraneous 252 25 0.8929 0.0992
Both 372 19 0.6786 0.0511

M. GERVASIO AND K. MYERS

60

producer-consumer relationship between actions—to be a particularly useful concept, with most
actions involving the production of information required by subsequent actions and/or the
consumption of data generated by previous actions. By focusing on the identification and
generalization of data flow, we were able to develop techniques for learning general, parameterized
procedures from as little as one example. To support the reasoning required to identify and
generalize data flow, we devised a representation in which actions have typed parameters, each
designated as an input or an output, with the semantics that, given particular input arguments,
executing the action will generate the output arguments. For example, Table 4 (right) shows the
action definition for the StartAuthentication action: Given as input a sender (name), it outputs a
new authentication ID.

We extended this dataflow-oriented action model for task learning with preconditions and
effects, as in PDDL, to encode the planning knowledge for a domain. We note that classic work on
learning plans from examples assumes information not just about the actions that were executed
but also the state of the world before and after the execution of each action (Fikes et al., 1972;
Minton, 1985). However, action or transactional logs typically lack such state information. And yet
humans can look at such action sequences and infer the intervening states based on their knowledge
of the actions. They can also identify related actions and ignore irrelevant ones. This was the
primary motivation behind our investigation into the use of heuristics based on action models to
filter the candidate patterns discovered through sequential pattern mining.

4.2 Candidate Filters

The preconditions and effects and the inputs and outputs of an action provide valuable information
regarding whether inclusion of the action in an observed sequence makes sense. To leverage this
information in identifying good candidates for automation, we developed a set of filtering heuristics
based on common-sense knowledge about the nature of actions and procedures in this domain. We
note that these filters, summarized in Table 5, are intended to serve as examples and to evaluate the
idea of knowledge-based filtering; they are not meant to be complete or definitive.

Table 4. PDDL specification of the FinishAuthentication action (left) and dataflow-based specification of
StartAuthentication action (right).

 PDDL Specification Dataflow-Based Specification
 (:action FinishAuthentication
 :parameters (?sender ?aid)
 :precondition
 (and (authenticating ?sender ?aid))
 (registered ?sender))

 :effect
 (and (not authenticating ?sender ?aid))

 (authenticated ?sender)))

 <action id=“StartAuthentication”>
 <description>
 Start authentication
 </description>
 <inputParam id=“sender”>
 <description>
 the sender
 </description>
 <typeRef typeId=“string”/>
 </inputParam>
 <outputParam id=“aid”>
 <description>
 authentication id
 </description>
 <typeRef typeId=“string”/>
 </outputParam>

 </action>

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

61

The Precondition filter discards any candidate containing an action whose preconditions are
not satisfied. This is because a procedure cannot be executed to completion if any of its actions has
an unsatisfied precondition. Since event logs do not contain state information, we rely on infor-
mation about acceptable initial state conditions instead. To signify that these conditions denote
possible states from which an authentication procedure might be initiated, we augment the action
model with metadata identifying such conditions. For example, in this domain, the condition of a
customer being known is a valid (possible) initial condition but the condition of authority being
notified is not.

The next three filters rely on knowledge about the processes in the domain, as tracked by the
conditions established by the actions. Specifically, processes must start and they must end. By
designating certain conditions as referring to a process, we can recognize when an action starts the
process (i.e., establishes the condition) or finishes it (i.e., negates the condition). For example, the
action StartAuthentication has the effect of (authenticating ?customer) (that is, starting an authenti-
cation process), while the action FinishAuthentication has the effect of (not (authenticating
?customer)) (i.e., finishing it). The Start filter requires candidates to begin with an action that starts
a process, while the Finalize filter requires them to end with an action that finishes a process. The
Complete filter combines the two constraints, requiring that every action that starts a process have
a corresponding action that ends it.

The final filter, Branch, discards candidates that do not begin with an action recognized to be
one of the options. This may not apply to procedures in some domains, but for banking transactions,
we know there are often steps that can be executed in any order—i.e., any of the steps can start a
procedure provided the other steps are carried out later. In the banking transaction model, for
example, the check for high-risk (i.e., new or unknown) clients involves checking the customer’s
banking history, checking the customer’s profile, and notifying authorities. The intuition behind
the Branch filter is that action sequences beginning with any of these branching actions are likely
to correspond to good candidates.

In addition to the candidate filters in Table 5, we also devised action filters for discarding
unnecessary actions in candidates, as summarized in Table 6 (a). The Contribution filter requires
that every action serve a purpose—i.e., it either establishes a condition or produces an output
required by a subsequent action or it requires a condition or input produced by a preceding action.
The Duplicate filter discards actions that are exact repetitions of the previous actions, the rationale
being that repeating the same action serves no purpose. We designed these action filters to eliminate

Table 5. Heuristics for filtering candidate sequential patterns based on common-sense knowledge about
actions and procedures in the banking domain.

Filter Description
Precondition Discards candidates with any action having an unsatisfied or unsatisfiable

precondition
Start Discards candidates that do not begin with an action that starts a process
Finalize Discards candidates that do not end with an action that completes a process
Complete Discards candidates that have an action that starts (ends) a process without a

matching action that ends (starts) it
Branch Discards candidates that do not start with a recognized branching action

M. GERVASIO AND K. MYERS

62

extraneous actions, whether due to inadvertent execution, multitasking, or some other reason, and
that may lead to spurious patterns being discovered. Meanwhile, the Gap filter uses the maximum
gap constraint in pattern-mining algorithms such as CM-SPAM, which is designed to accommodate
noise by allowing gaps up to a certain length within a sequence. For the experiments described
below, we allowed up to one intervening action between elements of a candidate sequence, which
we implemented by setting the CM-SPAM maximum gap parameter accordingly.

The Precondition and Contribution filters each check for necessary conditions, while the rest
check for desirable ones. To determine whether first eliminating invalid sequences would improve
the precision of the heuristics, we also devised two composite filters that require passing both the
Contribution and Precondition filters and at least one of the other candidate filters. Table 6 (b)
describes these combinations.

5. Experiments with Filters

To evaluate our approach of augmenting sequential pattern mining with filtering heuristics derived
from action models, we conducted experiments using the data sets created for the baseline study.
As in that study, we ran the CM-SPAM algorithm augmented with parameter unification and
variabilization to generate the candidate sequences, and then applied our filtering heuristics to
eliminate undesirable candidates. The one exception to this post-processing approach to filtering
was the Gap filter, which we implemented using the maximum gap constraint of the CM-SPAM
algorithm instead. Our main hypothesis was that the filters would eliminate bad candidates from
consideration, thereby improving precision over baseline results. However, we were also interested
in whether recall would suffer and by how much.

5.1 Experimental Results

Table 7 summarizes the results with the different filters, alone and in combination, applied over the
frequent sequences found by CM-SPAM on the noise-free data set. The individual candidate filters
never degrade precision and, in most cases, improve it, although recall, unsurprisingly, is some-
times affected. Among the individual filters, the Branch filter results in the highest precision, but

Table 6. (a) Heuristics for filtering unnecessary actions from candidate sequential patterns; (b) Combinations
of heuristics for filtering candidate sequential patterns.

Filter Description
Contribution Discards actions that are not required by any succeeding action or that do not

require any preceding action
Duplicate Discards immediate repeated actions in a sequence
Gap Ignores up to a certain number of intervening actions

x

Combo1 Discards actions that do not pass the Contribution filter and then candidates
that do not pass the Precondition filter and at least two of Branch, Start,
Finalize, and Complete

Combo2 Discards actions that do not pass the Contribution filter and then candidates
that do not pass the Precondition filter and either the Branch or Complete filter

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

63

it also has markedly lower recall. The best performance overall is achieved by the Combo1 filter,
which records the highest precision and almost perfect recall.

The Contribution, Duplicate, and Gap action filters were designed primarily to address noise
and so we did not expect them to help much in the noise-free case. Because the noise-free data set
contained no repeated actions, the Duplicate filter offers no improvement over the baseline. The
Gap filter, because it is designed to recognize patterns even with segments that do not match
(allowable gaps), results in an explosion in the number of patterns found, greatly decreasing
precision. The Contribution filter has a mild positive effect on performance, removing a small
number of false positives for a slight improvement in precision.

Table 8 summarizes the results of applying the different filters on the noisy data set with only
Redundant actions. With the exception of the Gap filter, every filter improved precision. Not sur-
prisingly, the Duplicate filter, which removes repeated actions (i.e., exactly the injected noise),
resulted in the best precision on the Redundant data set, matching the performance of the baseline
in the noise-free case. And applying the Duplicate filter in combination with any other filters

Table 7. Results of filtering on noise-free data set showing the number of candidates found, the number of
correct candidates among those, recall, and precision.

Filter Cands True Recall Prec
Precondition 229 28 1.0000 0.1223
Start 94 17 0.6071 0.1809
Finalize 87 15 0.5357 0.1724
Complete 156 28 1.0000 0.1795
Branch 92 17 0.6071 0.1848
Contribution 215 28 1.0000 0.1302
Duplicate 229 28 1.0000 0.1223
Gap 1020 28 1.0000 0.0275
Combo1 128 26 0.9286 0.2031
Combo2 169 28 1.0000 0.1657

Table 8. Results of filtering on noisy data set with Redundant actions.

Filter Cands True Recall Prec
Precondition 251 28 1.0000 0.1116
Start 156 17 0.6071 0.1090
Finalize 134 15 0.5357 0.1119
Complete 272 28 1.0000 0.1029
Branch 149 17 0.6071 0.1141
Contribution 357 28 1.000 0.0784
Duplicate 229 28 1.000 0.1223
Gap 2201 28 1.0000 0.0127
Combo1 128 26 0.9286 0.2031
Combo2 169 28 1.0000 0.1657

M. GERVASIO AND K. MYERS

64

matched performance in the corresponding noise-free case (results omitted for brevity). The best
performance, however, results from the combination filters.

The Gap filter, as in the noise-free case, substantially increased the number of candidates,
resulting in greatly degraded precision. The Gap filter is designed to find candidates that would not
otherwise be found because of insufficient support due to noise. For example, if there are three
sequences ACB, AB, and ADB, then an allowable gap of one would find the sequence AB with
support three, while allowing no gap would not find any sequence with support greater than one.
Thus, the result here may be explained by the fact that, without filtering, all ground truth candidates
are already found—i.e., there is nothing useful left for the Gap filter to find. Instead it detects many
other extra candidates. We had expected the Gap filter to have some positive effect on small data
sets having patterns that have frequencies of occurrence close to the minimum, but the extremely
high number of other patterns found makes it unlikely to be useful. Table 9 shows the results for
the different filters on the noisy data set with Extraneous actions only and Table 10 shows the
results for the noisy data set with Both redundant and extraneous actions. The results are similar to
those for noise due to only Redundant actions. Again, with the exception of the Gap filter, all the
filters aid performance, with the combination filters resulting in the greatest improvement.

5.2 Discussion

The experimental results support our conjecture that standard sequential pattern-mining techniques
discover many irrelevant action sequences and that filters based on action models can eliminate
most of them. Sequential pattern mining relies almost exclusively on frequency of occurrence to
identify patterns. This is often sufficient for applications such as consumer product recommend-
dations, motif detection, or compliance checking, where the cost of an incorrect pattern is small
and thus there is generally a greater emphasis on recall. Often, there is also a human to ultimately
assess the quality of the discovered patterns: a consumer deciding whether to accept a product
recommendation, a scientist verifying a motif, or a business ensuring best practices. However, with
patterns that are intended for automation, it is important to find correct procedures and thus there
is a need for greater precision.

Inspired by the action models used in AI planning to reason about how actions in a plan estab-
lish preconditions or generate the inputs for subsequent actions, we set out to develop heuristic

Table 9. Results of filtering on noisy data set with Extraneous actions.

Filter Cands True Recall Prec
Precondition 232 25 0.8929 0.1078
Start 99 15 0.5357 0.1515
Finalize 89 13 0.4643 0.1461
Complete 159 25 0.8929 0.1572
Branch 98 15 0.5357 0.1531
Contribution 208 25 0.8929 0.1202
Duplicate 251 25 0.8929 0.0996
Gap 1266 28 1.0000 0.0221
Combo1 116 26 0.8214 0.1983
Combo2 159 28 0.8929 0.1572

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

65

filters that identify coherent candidate action sequences. The idea was to encode in these filters the
knowledge of which patterns ‘made sense’ from a procedural perspective—i.e., patterns whose
actions were related in some way or were otherwise indicative of a procedure. Our experiments
showed that filters derived from action models can successfully find coherent action sequences
suitable for automation. Every candidate filter and all but the Gap action filter eliminated
undesirable candidates and most did so without sacrificing recall. Baseline precision, based on
standard sequential pattern-mining techniques, is just over 12% in the noise-free case and ranges
from 5 to 10% for the noisy data sets. With the filters, however, precision can reach up to almost
20% in the noise-free case and up to 15 to 20% for the noisy data sets. This is a substantial 100–
200% improvement in performance. It remains to be seen whether a one-in-five hit rate for
discovered procedures suffices for automation is sufficient. Nevertheless, these results show that
knowledge-based heuristics for filtering candidates can be an effective addition to standard
sequential pattern mining and guide discovery toward meaningful action sequences that correspond
to useful, automatable procedures.

6. Related Work

Procedural learning—the acquisition of skills for performing tasks—has been well studied in the
cognitive science and AI communities. A broad array of approaches has been explored, including
learning from problem solving (Laird et al., 1986), observation (van Lent & Rosenbloom, 2001),
instruction (Blythe, 2005), multiple modalities (Allen et al., 2007), demonstration (Gervasio &
Murdock, 2009), and solution traces (Li et al., 2009).

In the AI planning community, the concept of macro-operators was conceived as a means to
improve the efficiency of planning by compiling the search to determine a sequence of actions to
achieve a goal from a given initial state. Some approaches to learning macro-operators attempt to
extract them from available solutions (Korf, 1985; Mooney, 1988), while others analyze problem-
solving traces generated during search for solutions. These rules can be learned from problem-
solving traces (Minton et al., 1989; Gratch & DeJong, 1991) or through static analysis of problem
space definitions (Etzioni, 1993). The procedure automation that drives our work on procedure
discovery is similarly motivated by efficiency, but our setting involves finding procedures in logs

Table 10. Results of filtering on noisy data set with both Redundant and Extraneous actions.

Filter Cands True Recall Prec
Precondition 218 19 0.6786 0.0872
Start 135 11 0.3929 0.0815
Finalize 131 9 0.3214 0.0687
Complete 252 19 0.6786 0.0754
Branch 134 12 0.4286 0.0896
Contribution 296 19 0.6786 0.0642
Duplicate 268 26 0.9286 0.0970
Gap 1339 28 1.0000 0.0209
Combo1 108 17 0.6071 0.1574
Combo2 149 19 0.6786 0.1275

M. GERVASIO AND K. MYERS

66

of actions executed by any number of people rather than the actions of the planning agent itself or
intentional demonstrations by an expert. Furthermore, the work on learning macro-operators and
search control rules relies on having complete and correct domain knowledge to ensure the correct-
by-construction plans that underpin learning. Our approach instead utilizes the available domain
knowledge to identify promising patterns from candidates obtained through unsupervised methods.

Procedures are a type of sequential pattern and the idea of finding sequential patterns in data
has been explored in a number of fields. In the data mining community, Agrawal and Srikant (1995)
introduced sequential pattern mining in their seminal work on market basket analysis, which can
be used to drive decisions about marketing activities, such as campaigns to recommend products,
based on discovered patterns in consumer behavior. Pattern-mining methods developed since then
(e.g., Fournier-Viger et al., 2014; Pei et al., 2004; Srikant & Agrawal, 1996; Zaki, 2001) differ in
how they search the space of patterns, how they represent the database, how they generate next
candidates, and how they determine support (frequency of occurrence) for patterns (Fournier-Viger
et al., 2017). Because the applications driving the work in the data mining community involve very
large databases, research in this area has focused primarily on time and space efficiency.

Sequence mining in bioinformatics (Abouelhoda & Ghanem, 2010) also involves large data
sets and emphasizes efficient algorithms. In contrast to data-mining tasks, which involve finding
patterns in large numbers of relatively short sequences over many possible items (alphabets),
biological sequence mining finds patterns in very long sequences for small alphabets. Furthermore,
the main driver for biological mining is finding repeated strings that correspond to some significant
biological structure or function, such as motifs (e.g., Bailey et al., 2009; Chou & Schwartz, 2011).

Our particular interest is in discovering repeated action sequences that correspond to execution
traces of processes or procedures that could be automated. This is closest to process mining, which
attempts to discover process knowledge from event logs (van der Aalst et al., 2012). Process mining
has been applied to a variety of domains, including health care (Rojas et al., 2016), software
development (Cook & Wolf, 1998), public works infrastructure (van der Aalst et al., 2007), and
other business settings. Much work in this area is concerned with finding processes to support
analysis, such as conformance checking and workflow enhancement. Because real-life processes
can be quite complex, process mining is designed to discover control structures like loops and cond-
itionals, with Petri nets being a popular representation for learned models. However, consideration
of other attributes such as actors, time stamps, and resources is typically done outside mining itself.

Constraint-based mining (Negrevergne & Guns, 2015; Pei et al., 2004; Pei & Wang, 2002)
provides an avenue for biasing the search for frequent patterns by requiring that they satisfy user-
specified constraints. However, the constraints have typically been limited in scope and focused on
syntactic features of sequential patterns. Negrevergne and Guns categorize them into constraints on
patterns (e.g., minimum size), constraints on cover sets (e.g., minimum frequency), constraints on
inclusion relations (e.g., maximum gap), and preferences over candidate patterns (e.g., maximal
patterns). Most work on sequence mining develops specialized algorithms for a subset of them. Our
task requires extensions to semantic constraints on action sequences of task-oriented procedures.
The patterns we wish to discover are intended for automation and must thus correspond to
meaningful, coherent sequences of actions. Unlike the characters that comprise protein sequences
or the simple events in transaction logs, actions are rich in structure. They have parameters (often
typed), preconditions, and effects, they take inputs and generate outputs, and they are organized in
hierarchies. Furthermore, in our setting, we cannot assume voluminous action logs from which to
discover patterns. This greatly lowers the tolerance for noise and increases the need for effective
generalization from small numbers of examples.

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

67

7. Conclusions and Future Work

In this paper, we proposed a hybrid approach to procedure mining that combines knowledge-based
heuristics derived from AI planning models with statistical techniques from sequential pattern
mining to discover candidate action sequences for automation. This leverages efficient sequence-
mining techniques to find frequent action sequences from logs of user actions that serve as
candidate action sequences for automation. Using action models that provide a semantic represent-
ation of actions in terms of their preconditions and effects, as well as their inputs and outputs, we
devised filtering heuristics to help identify good candidate sequences for automation. We conducted
several experiments to evaluate the usefulness of filters on both noise-free and noisy data sets. The
results showed that the filtering heuristics based on action models eliminate many irrelevant
sequences discovered by standard sequential pattern mining.

Our approach introduces an additional cost to deployment above and beyond that of purely
statistical methods in that it requires the formulation of action models for any new domain to which
it is applied. However, this is a one-time expense that could be justified for many applications if
our preliminary results on improved quality of recognition hold more generally. As discussed
previously, the filtering heuristics presented in this paper may not apply to all domains. Some, like
the Branch filter, take advantage of characteristics specific to banking transactions. On the other
hand, we are likely to be able to leverage characteristics specific to any domain by designing new
filters that encode the knowledge about its processes. For example, in a customer support call-
center application, all procedures might begin with creating an incident report and filling in the date
and time of the call. They may also include retrieving resolution options based on a standard
operating manual or similar incidents, and they may all conclude with a resolution or an escalation.

Some applications may require learning from even smaller numbers of examples. These will
need heuristics like the Gap filter to enable finding sequences for which there is not enough support
otherwise. For example, an abstraction filter that recognizes some actions are variants of others
because they achieve the same cumulative effects would allow sequences that differed only in the
variant used to be grouped. Prior work on learning disjunctive macro-operators (Shell & Carbonell,
1989) may provide other techniques for generalizing structure and learning compact procedures.

We believe that our use of action models to inform statistical sequence mining has potential
benefits that go beyond increased precision. One such benefit is providing rationale for mined
sequences. The preconditions and effects characterize the causal structure of the procedure: what it
does, when it can be done (its accumulated preconditions), and why it would be done (its
accumulated effects). We might use this information to generate explanations for a user to
accompany suggestions for task automation, drawing on explanatory techniques such as those
described in Seegebarth et al. (2012).

Our work has been motivated by the ultimate objective of enabling process automation for real-
world usage. The focus to date has been on a collaborative task management tool called Task
Assistant (Peintner et al., 2009). This system supports distributed human teams in collectively
executing complex coordinated processes (e.g., Standard Operating Procedures) through an explicit
representation of tasks, dependencies, deadlines, and status. Task Assistant has been deployed
successfully to a number of operational user communities, including the U.S. Pacific Fleet
(PACFLT), the U.S. Strategic Command (STRATCOM), and the Kansas National Guard. With
those deployments, we have seen the opportunity to improve team and individual efficiency by
introducing automation of frequently executed support tasks, many of which focus on information
retrieval to aid human decision making. Our first approach to procedure automation for Task
Assistant relied on learning from demonstration (Myers et al., 2011), which required substantial

M. GERVASIO AND K. MYERS

68

user effort to recognize the need for automation and to explicitly walk through the procedures. Our
engagement with the user community has shown a strong desire for automating procedures with
little human intervention, as would be enabled by the procedure-mining technique in this paper.

Acknowledgements

This material is based upon work supported by the Office of Naval Research (ONR) under Contract
N00014-15-C-5040. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of ONR.

References
Abouelhoda, M., & Ghanem, M. (2010). String mining in bioinformatics. In M. M. Gaber (Ed.),

Scientific data mining and knowledge discovery: Principles and foundations, 207–247, Berlin,
Germany: Springer-Verlag.

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the Eleventh
International Conference on Data Engineering (pp. 3–14). Taipei, Taiwan: IEEE.

Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., Swift, M., & Taysom, W. (2007).
PLOW: A collaborative task learning agent. Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence (pp. 1514–1519). Vancouver, BC: AAAI Press.

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., &
Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids
Research, 37, W202–W208.

Blythe, J. (2005). Task learning by instruction in Tailor. Proceedings of the Tenth International
Conference on Intelligent User Interfaces (pp. 191–198). San Diego, CA: ACM.

Chand, C., Thakkar, A., & Ganatra, A. (2013). Sequential pattern mining: Survey and current
research challenges. International Journal of Soft computing and Engineering, 2, 185–193.

Chou, M. F., & Schwartz, D. (2011). Biological sequence motif discovery using motif-x. Current
Protocols in Bioinformatics, 35, 13.15.1–13.15.24

Cook, J. E., & Wolf, A. L. (1998). Discovering models of software processes from event-based data.
ACM Transactions on Software Engineering and Methodology, 7, 215–249.

Eker, S., Lee, T. J., & Gervasio, M. (2009). Iteration learning by demonstration. Papers from the
AAAI 2009 Spring Symposium on Agents that Learn from Human Teachers (pp. 40–47). Stanford,
CA: AAAI Press.

Etzioni, O. (1993). Acquiring search-control knowledge via static analysis. Artificial Intelligence,
62, 255–301.

Fikes, R. E., Hart, P. E., & Nilsson, H. J. (1972). Learning and executing generalized robot plans.
Artificial Intelligence, 3, 251–288.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2, 189–208.

Fournier-Viger, P., Gomariz, A., Campos, M., & Thomas, R. (2014). Fast vertical mining of
sequential patterns using co-occurrence information. Proceedings of the Eighteenth Pacific-Asia
Conference on Knowledge Discovery and Data Mining (pp. 40–52). Tainan, Taiwan: Springer.

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

69

Fournier-Viger, P., Lin, J. C.-W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., & Lam, H. T.
(2016). The SPMF OpenSource data mining library version 2. Proceedings of the Nineteenth
European Conference on Principles of Data Mining and Knowledge Discovery (pp. 36–40). Riva
del Garda, Italy: Springer.

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., & Thomas, R. (2017). A survey of
sequential pattern mining. Data Science and Pattern Recognition, 1, 54–77.

Garvey, T., Gervasio, M., Lee, T., Myers, K., Angiolillo, C., Gaston, M., Knittel, J., &
Kolojejchick, J. (2009). Learning by demonstration to support military planning and decision
making. Proceedings of the Twenty-First International Conference on Innovative Applications
of Artificial Intelligence (pp. 1597–1604). Pasadena, CA: AAAI Press.

Gervasio, M., & Lee, T. J. (2013). Discovering action idioms. Proceedings of the 2013 IEEE
Symposium on Visual Languages and Human-Centric Computing (pp. 11–14). San Jose, CA:
IEEE.

Gervasio, M. T., & Murdock, J. L. (2009). What were you thinking? Filling in missing dataflow
through inference in learning from demonstration. Proceedings of the Fourteenth International
Conference on Intelligent User Interfaces (pp. 157–166). Sanibel Island, FL: ACM.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: Theory and practice. San
Francisco, CA: Morgan Kaufmann.

Gratch, J., & DeJong, G. (1991). A hybrid approach to guaranteed effective control strategies.
Proceedings of the Eighth International Conference on Machine Learning (pp. 509–513).
Evanston, IL: Morgan Kaufmann.

Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial Intelligence, 26, 35–
77.

Kovacs, D. L. (2011). BNF definition of PDDL 3.1. Unpublished manuscript from the IPC-2011
website. https://helios.hud.ac.uk/scommv/IPC-14/repository/ kovacs-pddl-3.1-2011.pdf

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning, 1,
285–317.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a general
learning mechanism. Machine Learning, 1, 11–46.

Li, N., Stracuzzi, D. J., Langley, P., & Nejati, N. (2009). Learning hierarchical skills from problem
solutions using means-ends analysis. Proceedings of the Thirty-First Annual Meeting of the
Cognitive Science Society (pp. 1858–1863). Amsterdam: Cognitive Science Society.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., & Wilkins,
D. (1998). PDDL–The Planning Domain Definition Language. CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.

Minton, S. (1985). Selectively generalizing plans for problem-solving. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence. Los Angeles, CA: AAAI.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O., and Gil, Y. (1989).
Explanation-based learning: A problem solving perspective. Artificial Intelligence, 40, 63–118.

Mooney, R. J. (1988). Generalizing the order of operators in macro-operators. Proceedings of the
Fifth International Conference on Machine Learning (pp. 596–599). Ann Arbor, MI: Morgan
Kaufmann.

M. GERVASIO AND K. MYERS

70

Muñoz-Gama, J. (2014). Large bank transaction process. Universitat Politècnica de Catalunya
Data Set. https://doi.org/10.4121/uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7c7c

Myers, K., Kolojejchick, J., Angiolillo, C., Cummings, T., Garvey, T., Gervasio, M., Haines, W.,
Jones, C., Knittel, J., Morley, D., Ommert, W., & Potter, S. (2011). Learning by demonstration
technology for military planning and decision making: A deployment story. Proceedings of the
Twenty-Third International Conference on Innovative Applications of Artificial Intelligence (pp.
1597–1604). San Francisco, CA: AAAI Press.

Negrevergne, B., & Guns, T. (2015). Constraint-based sequence mining using constraint program-
ming. Proceedings of the Twelfth International Conference on Integration of Artificial Intel-
ligence and Operations Research in Constraint Programming for Combinatorial (pp. 288–305).
Barcelona, Spain: Springer.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2004).
Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Transactions on
Knowledge and Data Engineering, 16, 1424–1440.

Pei, J., Han, J., & Wang, W. (2002). Mining sequential patterns with constraints in large databases.
Proceedings of the Eleventh International Conference on Information and Knowledge Manage-
ment (pp. 18–25). McLean, VA: ACM.

Peintner, B., Dinger, J., Rodriguez, A., & Myers, K. (2009). Task Assistant: Personalized task
management for military environments. Proceedings of the Twenty-First International Confer-
ence on Innovative Applications of Artificial Intelligence. Pasadena, CA: AAAI Press.

Rojas, E., Muñoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A
literature review. Journal of Biomedical Informatics, 61, 224–236.

Seegebarth, B., Schattenberg, B., & Biundo, S. (2012). Making hybrid plans more clear to human
users—A formal approach for generating sound explanations. Proceedings of the Twenty-Second
International Conference on Automated Planning and Scheduling (pp. 225–233). Sāo Paulo,
Brazil: AAAI Press.

Shell, P. & Carbonell, J. G. (1989). Towards a general framework for composing disjunctive and
iterative macro-operators. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence (pp. 596–602). Detroit, MI: AAAI.

Srikant, R. & Agrawal, R. (1996). Mining sequential patterns: Generalization and performance
improvements. Proceedings of the International Conference on Extending Database Technology,
(pp. 1–17). Berlin: Springer.

van der Aalst, W. (2012). Process mining: Overview and opportunities. ACM Transactions on
Management Information Systems, 3, 1–17.

van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M. van Dongen, B. F., Alves De Medeiros,
A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial appli-
cation. Information Systems, 32, 713–732.

van Lent, M., & Laird, J. E. (2001). Learning procedural knowledge through observation. Proceed-
ings of the First International Conference on Knowledge Capture (pp. 179–186). Victoria, BC:
ACM.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning, 42, 31–60.

