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Abstract
We have recently begun a project to develop a more effective and efficient way to marshal inferences
from background knowledge to facilitate deep natural language understanding. The meaning of a
word is taken to be the entities, predications, presuppositions, and potential inferences that it adds
to an ongoing situation. As words compose, the minimal model in the situation evolves to limit and
direct inference. At this point we have developed our computational architecture and implemented
it on real text. Our focus has been on proving the feasibility of our design.

1. Introduction

Given the compactness of the lexicon relative to the number of objects and relations referred to
in the world, ambiguity would seem to be inevitable. Compounding this problem is the fact that
speakers regularly omit information in what they say yet their listeners fill it in without conscious
effort. In other words, speakers leave gaps, but somehow our semantic lexicon is structured so as to
fill in the holes in our interpretation. This paper presents a model for how this can be done.

We begin this paper by laying out the problem we are addressing and our assumptions. Section 2
will describe and motivate the new techniques and representations we are using. Section 3 provides
an example of how they are used while Section 4 covers the same ground in much greater detail.
We close with a section comparing our approach to others and our plans for future research.

1.1 Filling Gaps

Semantic gaps are everywhere. Consider this text taken from a January 18th, 2006, Al Jazeera news
article about the first bird flu victim in Iraq:

“. . . a 14-year-old girl died in the Kurdish city of Sulaimaniya . . . The rest of the family
is in good health . . . ”

We effortlessly know that this is the family of the girl, even across the three intervening sentences in
the full text. The writer could have said “the girl’s family” but did not have to, knowing that readers
would supply this information through inference.

Gaps like these are a pervasive and even essential component of language use: speakers appre-
ciate what their listeners will infer from their knowledge of the world (e.g., children are presumed to
have families) and from the communicative context that they share. It is one of the points of Grice’s
(1975) Maxim of Quality: do not be more informative than required. The long-standing question,
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of course, is how this is done. How is our extensive body of background knowledge and inference
organized? How do we deploy it so effortlessly? That is the subject of this paper, where we lay out
some of our initial results from a recently initiated project.

1.2 Speed Implies Structure

Psycholinguists have known for decades that language comprehension is immediate, incremental,
and works on all levels at once: syntactic, semantic, discourse, and pragmatic (Marslen-Wilson,
1973). People interpret utterances word by word without noticeable delay. Recent work has shown
that an event verb will activate its prototypical objects in just the time it takes to hear the verb and
that this will influence the interpretation of later syntactic structures (Matsuki et al., 2011).

When cognitive psychologists explain this ability, they talk about people having schemas that or-
ganize their knowledge of ordinary things and events (Bartlett, 1932). This resonates with the ideas
and mechanisms of frames and scripts that were developed in artificial intelligence and linguistics
more than thirty years ago (Minsky, 1975; Fillmore, 1976). These mechanisms encode knowledge
about conventional types of events and situations that people know about or have experienced: birth-
day parties, presidental inaugurations, eating at a restaurant, etc. They provide expectations about
what is likely to happen and what defaults to assume in order to account for things that must have
happened but were not witnessed.

In areas of research such as neuroscience (Speer et al., 2009) or cognitive linguistics (Bergen,
Chang, & Narayan, 2004), what a schema consists of or what it means, computationally, to ‘acti-
vate’ a schema and ‘provide’ expectations has different answers – it is usually not the point of their
research. It is, however, the point of our own research. This paper describes our computational ac-
count of what schemas are, how they are activated, their mechanisms for controlling interpretation,
and how they provide expectations, implicatures, and defaults.

1.3 The Importance of Knowledge

The knowledge-rich approaches of the 1970s and 1980s were abandoned by main-stream natural
language research as part of the move to ‘empirical’ approaches that were made possible by the
construction of large machine-readable text corpora and advances in machine learning (Church &
Mercer, 1993). At about the same time, a shift to ever-larger projects increased the salience of the
“knowledge acquisition problem” – that without a vast amount of knowledge, systems will be too
brittle and will fail on anything outside of what has been expressly modeled. As a result, people
working in natural language typically use shallow techniques that stop with just a description of
what a text says and has none of the active, “fill in the gap” inferential capability that is critical for
full, deep language understanding.

We agree that knowledge modeling is difficult. It is intellectually challenging to come up with
conceptualizations that have the requisite sensitivity to context, the capacity for composition, and
associated expectations for actions and inference. But this background knowledge is absolutely
needed if automated systems are to learn from reading or fully understand our instructions. We
are not alone in this belief, as witnessed by the steady body of work by other groups (Van Durme,
Michalak, & Schubert, 2009; Montazeri & Hobbs, 2011). Moreover, there are now substantial
knowledge stores to draw on. In addition to Schubert’s KNEXT, there are ConceptNet (Speer,

144



REPRESENTATION OF INFERENCES

Havasi, & Lieberman, 2008), FrameNet (Fillmore & Baker, 2001), and the long-term products of
the CYC project (Guha & Lenat, 1993). Hence, we do not presume to do this by ourselves. Once
our designs have been refined through testing on a realistic corpus against the series of prototypes
we will implement, we intend to formalize our knowledge requirements and look for assistance
from like-minded people in the language-centric part of the knowledge-representation community
for follow-on collaborations.

1.4 Our Research Focus

Our work focuses on how inferences are marshaled from background knowledge when we use
language. In order to focus our efforts, we have pushed to one side issues that we know are important
parts of any operational solution, but which now would just be a distraction.

• We are working from a corpus of written texts, not speech;
• We are not dealing with dialogue;
• We are not trying to acquire background knowledge automatically.

Instead, we are working out how highly efficient, lexically triggered inference and expectation can
happen at all. We are deliberately not yet invested in a particular ontology or a large knowledge
store. We think it is more important to test and refine our computational machinery before drawing
on the work listed above and working at a larger scale.

In the next section we lay out the elements of our architecture and summarize our claims. In
Section 3 we illustrate them with the example that we drew on when formulating our design. We
follow this with a smaller, but thoroughly implemented, example in Section 4 that we walk through
in detail. We conclude with a discussion of related work and our future plans.

2. Representation: Situations, Predicates, and Packets

Every cognitive architecture has a notion of working memory: some means of defining and delimit-
ing what it will attend to and what it can be aware of at any given moment. Every architecture also
has a control structure: a policy or mechanism dictating what actions it will take and in what order.

In our architecture1 – C3 – our working context is a situation, where what we mean by ‘situation’
is close to what it means from situation semantics (Barwise & Perry, 1983). We use a data-directed,
event-driven control structure that adapts techniques used in our language analysis engine Sparser
(McDonald, 1992; McDonald, 1996). We focus on the notion of a “situation type”: a reoccurring
pattern of events and participants.2 A populated situation accompanies an ongoing discourse and
supplies the information that is latent in the words of a text. In our view, situations hold the general
world knowledge that perception unconsciously brings to mind. They supply the bulk of information
that lies below the perceivable tip of the iceberg.

At its base, the situation holds representations of the entities, events, and predications that have
been mentioned in the ongoing discourse. It provides a minimal model that consists of a set of
typed structured objects. For example, if the text is “a 14-year-old girl” then, when that phrase has

1. The name C3 stands for “the Compositional Construction of Context”.
2. The situation semantics literature has instead focused on situations as a device that provides a denotation for a

complex of events and participants.
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been read, the situation contains representations of the girl, the age, and of the fact that the girl is
described as being that age.

2.1 Lexicalized Pragmatics

In a lexicalized grammar, the terminals of the rules are specific words instead of lexical categories
such as proper noun or transitive verb. We propose to lexicalize meaning and inference – to instanti-
ate it directly from the incremental composition of the meaning of the words in a text without using
an intervening logical form.

The meaning of words, phrases, and meaning-bearing constructions is defined in terms of the
set of entities, predicates, relations, propositions, or potential inferences they convey. Situations
are created dynamically by composing these packets of content and inference as the words of a
text are scanned. Most packets correspond to small individual categories or inferences, such as
the affordances of a cup as a container or the consequences of a process being canceled. Packets
are small because they are designed to compose with other packets to collectively define the suite
of inferences that are active in a situation. Packets are activated singly or in groups according to
what work they are designed to do and how and where they are triggered. The notion of packet
composition is how we expect to satisfy one of the fundamental properties of language recognized
since the time of von Humboldt: the ability to make infinite use of finite means.

2.2 Predicates Linked to Language

As a concrete example of a packet, consider the word black. It is the English realization of the
individual in the ontology that is used to represent the color black (denoted as black), as opposed to
other colors such as red or titanium white. Like all colors, it is associated with a two-place predicate
that establishes a relationship between an entity that can have a color (tree leaves, cars, etc.) and the
specific color black. We encode this predicate as

λxhas−surface[color_of(x, black)]

where the type of object to which the predicate can apply is restricted: it must include the type
has-surface. The object and the predicate together constitute the contents of the packet. When the
parser scans black, this packet is introduced into the situation.

Every predicate in the ontology must specify what words or fixed phrases can express it along
with their linguistic properties.3 The knowledge engineer adding colors to his conceptual model
must indicate the word or phrase that names the color and that it has the syntactic patterns of a
predicate adjective. For C3, we do this using the notation for simultaneously defining semantic
categories and their realizations described by McDonald (1994).

2.3 Latent Predicates

When a phrase is fully instantiated, as in “a black SUV,” the predicates receive values and establish
predications. For example, the value of the color property of this SUV is bound to black. The
meaning of substantive nouns or verbs will typically include a great many predicates, only a few of
which will be present in a text and therefore explicitly represented as predications in the minimal

3. We use a Lexicalized Tree Adjoining Grammar for analysis and generation. A word’s linguistic properties are estab-
lished by its TAG tree family or families (McDonald & Pustejovsky, 1985; McDonald, 1996).
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model. The other predicates are latent. They may be relevant as the text continues; they may supply
default assumptions that drive implicatures; or they may simply remain part of the background
knowledge associated with the word, as we discuss in Section 4.3.

In C3 we treat predicates formally as lambda variables. These are structured objects defining a
relationship between individuals of a specific category, constrained in the range of values they can
take, i.e., what the variable can be bound to (McDonald, 2000). This information is self-contained
within the object defining the variable: the category of individuals to which it applies, the restrictions
on possible values, and the default values that can be assumed in the absence of actual ones.

For example, if the participants of an event are physical objects then it is always the case that
the event happened at some location, even if we do not know its identity. When the analysis of our
initial example had only gotten this far: “a 14-year-old girl died,” we knew that the death must have
happened at some location, but we didn’t know what that location was. The location could still be
described, but only indirectly: “where the girl died” or “the place where the girl died.” Once the text
continued, “. . . in the Kurdish city of Sulaimaniya,” the latent variable that represented the location
of the event is accessed and bound to that city. Note that this narrows the category of the location to
a city, and we would say “the city where the girl died.”

In our implementation, a composite category defines all the possible properties, relationships,
and habitats (see below) that its instance individuals can have or can participate in, all represented
by lambda variables. When we introduce a packet into the situation, this potential becomes acces-
sible, even when just a small part is present in the minimal situation model. We employ a wrapper
around all variables, effectively a programming trick, that lets C3 create an instance of each variable
(potential predication) linked to the relevant individual instantaneously in one step, at the moment
the individual is introduced into the situation.

2.4 Frames and Habitats

Packets are C3’s building blocks. Most packets contain roughly the same amount of information
as we intuitively associate with a single word (black, cancel). But of course there are relational
structures that are considerably larger, structures that should be instantiated as a single unit but that
have multiple parts and activities, such as an airport or a birthday party.

For C3, we represent these as habitats (Pustejovsky, 2013a). The notion of a habitat has its
intellectual roots in two places. The first is as an extension and deepening of qualia theory (Puste-
jovsky, 1995). We introduce a habitat into the situation all at once, but which aspect of it is in focus
(which gets priority in dictating interpretations and making inferences) depends on what is in focus
in the text being read, as we illustrate in Section 3.1.2. The term “habitat” deliberately plays on the
ecological metaphor to guide intuition as to what should or should not be included in a frame.

The other source for habitats is the knowledge representation techniques of classical AI: scripts
for representing stereotypical events and episodic knowledge (Schank & Abelson, 1977), and espe-
cially the notion of a frame (Minsky, 1975). Minsky developed this concept during a seminar in the
spring of 1972 dedicated to Newell and Simon’s (1972) book Human Problem Solving, starting from
Bartlett’s (1932) notion of a schema. Over time, frames evolved into today’s RDF triple-stores and
weakly expressive description logics, retaining just the notion of a taxomically organized classes as
containers for “slots” (properties) that can be restricted to a range of possible values.
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We have returned to something close to Minsky’s original conception, where frame theory em-
phasized the transformations that would occur as perspectives changed or scenarios progressed, and
focused on frame recognition and repair to account for variations. Inferences and other actions
are tied to the creation of frames and to changes in their slot values by invoking “attached proce-
dures.” Minsky’s frame “systems” are mirrored in our habitats by sets of frames that are organized
according the qualia they focus on (see 3.1.2). We are, however, using modern computational tools
for abstraction and inheritance. Early knowledge-based language comprehension research used pre-
build monolithic frames; ours are assembled dynamically according to what is actually needed given
the content of the text.

2.5 Indexical Functional Variables

The contents of a situation reside in a web of relationships and possibilities, most of them coming
from the active habitats, others coming from the discourse relationships that structure the interpre-
tation of the text, including relations that keep track of partial information as the text is being read.
To represent this, we use a set of indexical functional variables similar to those in the Pengi sys-
tem (Agre, 1988). These variables designate constant, functionally identical relationships within the
processes of the system, while their values vary transparently to fit the moment-to-moment situation.

One of Agre’s examples was the variable the-cup-I-am-drinking-from, which would be bound to
whichever of the three cups that he kept in his office that he was drinking from at the moment. The
things he could do with this cup were always the same, while the identity of the cup would vary.
The actions the system takes are stated once in terms of indexical variables – the presuppositions
and significance of a functionally designated object is always the same. Actions are not dependent
on particular values, only on the function those values serve. Their actual values are managed
automatically and transparently according to the situation at hand.

2.6 Pegs

In Pengi, the deictic variables are managed by its perceptual system. In our framework they are
managed by the parser and identify the structure it has observed and the relationships it expects. In
most instances an indexical such as theme or new will be bound to specific individual, but since the
situation is being updated incrementally as each word is scanned, there are always moments where
a phrase is incomplete, its head and type not yet identified, but its impact on the situation still needs
to be established. To do this we use Luperfoy’s (1992) notion of a peg.

For example, at the point in the parse where we have read just “a 14-year-old,” the indexical
variable current-np-referent is bound to a peg that was created when the parser scanned the “a” and
recognized that it was starting a noun phrase that would have a referent. The peg provides a place
to accumulate predications and establish expectations. For example we know that whatever this
referent may turn out to be, it is something for which it makes sense to have an age measured in
years. The peg’s properties are transferred to a regular individual once the head of the NP (girl) has
been scanned. Section 4.2 provides another example of this process.

It is an interesting psycholinguistic question whether earlier context has already established
the overall topic and narrowed the semantic field from which the referent of an incomplete phrase
like “14-year-old” will be drawn. The term “bird flu” was in the title of the news article that this
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excerpt appeared in. Anyone familiar with the subject will know the types of individuals that will
be discussed and, given the age mentioned in the phrase, will presume that it refers to a person. In
other contexts, for example at a bar, the presumption might be that the 14-year-old was a single malt
scotch. Whether people use such pre-established semantic fields or wait a moment to hear the head
word is an open question that could be tested in a well-designed experiment.

2.7 Representational Principles and their Consequences

We have arrived at a set of principles for the representation of world knowledge in C3. These are an
overlay on an otherwise conventional system of categories and properties in a specialization lattice.
The aim is to provide a flexible link from language to the ontology while retaining the economy of
only having to state axioms and relation types once. These principles include:

• Only add a category to the ontology if it makes a contribution, e.g., it adds predicates, state-
change affordances, presuppositions, or defaults.

• No representation without realization. Every category should correspond to one or more words,
phrases, features, or syntactic constructions.

• Predicates are only defined once; they may be restricted to different values at different levels in
the category lattice but they retain their identity.

In a conventional representation, there is a substantial distance in the specialization lattice between
the particulars that appear in a text, such as a sport utility vehicle, which will be close to the bottom,
and what we know about the vehicle, e.g. that it is a container, which is stated at a high level and
applies to a great many things besides SUVs. It is difficult to use language in such a system. Our
need to have packets for domain-specific words that refer to general predicates and affordances (our
lexicalized pragmatics) cannot be easily accommodated.

2.7.1 Unique Variables

We chose instead to separate the realization facts (what words and construction are used) from the
axiomatic facts (what predicates and operations apply and what follows from them). In C3, an SUV
acts like a container because its category literally incorporates the container category and uses its
variables to express the affordances available to its passengers and to state facts such as when one
passenger gets out there is one fewer inside.

We do this by making all variables (predicates) unique. They are defined once, as one object
in the representation, on a category as far up in the lattice as possible for maximal application. On
more specific categories a variable will usually be restricted. For example the contents variable
of container is defined there as a collection of an unknown number of entities of unknown types.
When we move down to, say, passenger-transporter (see Section 3.2), the type of the collection is
restricted to person. On a particular type of passenger-transporter, say airplane, the restriction on
the variable will be further restricted to the different roles of people on an airplane.

The vocabulary is stated against these restrictions. Any packet that includes container adds to
the situation model the fact that its contents are in one of two states, expressible as being in (inside)
or out (outside) of the container, and have the affordance of being able to move between these
states. But we say that we take or pick out jelly beans from a jar (they cannot move on their own).
We watch a squirrel climb out of a garbage can (they can move on their own, and the movement
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involves ascending a height). When the variable is restricted to the category person, we refer to
passengers or use their roles (driver, pilot, steward), and they go into or get out of the container.

2.7.2 Pre-cached, “Composite” Categories

Allowing different local restrictions on the same predicate object lets us achieve an economy of ex-
pression for axioms, which is essential for working with large ontologies, while retaining flexibility
in how to define packets of the vocabulary since realization facts can refer to restriction categories
at very different levels in the ontology. But this comes at a cost, since any word with a rich mean-
ing will have a packet that introduces dozens if not hundreds of latent variables (particularly for
habitats) that will entail including a proportional number of categories.

We make this manageable by using what we call composite categories. We define them as a
conjunction of regular categories. We then pre-cache the categories’ variables (with their restric-
tions) to create a single computation object. The result has the behavior we would get by using
ordinary inheritance, but with none of the costs of traversing the lattice to collect the variables and
apply their restrictions.

While a composite category often just collects the categories that are above it in the hierarchy,
there is no requirement that it do so. Categories from very different parts of the ontology can be
incorporated into a single composite. This makes for an ontology that is easier to maintain, since
there is no requirement to force everything into a single lattice with single lines of inheritance. Com-
posite categories can be incorporated into other composites. When this happens, the incorporated
composites are treated like macros that are unpacked inline and repackaged as a new class.4

2.8 The C3 Architecture

Figure 1 shows the basic framework of C3. Solid blue lines from the text trace the activation path
up from the first part of the text to add packets (in green) or larger habitat frames (in blue) to the
situation as a whole (outer box). Dotted lines show later additions to the situation (upward arrows)
or inferred interpretations made by the situation (downward arrows). Orange arrows within the
situation sketch relationships developed among the packets by binding variables.

C3’s workflow begins with the perceived input; in our research this is the sequence of words
in a text. Words are interpreted as they are reached by the parser and contribute packets of content
of different sizes and function to a growing situation. This leads to the instantiation and assem-
bly of highly structured sets of prototype relations and events, anticipated scenarios, and specific
or prototypical individuals, places, and the like. The situation then governs the expectations and
interpretations of words and phrases as the analysis continues.

The C3 architecture assumes that utterances are interpreted incrementally, making use of infer-
ential packets which drive the compositional construction of meaning. The result of the interpreta-
tion process is a minimal simulation of the situation denoted by the utterance.

4. We work in Lisp and make heavy use of the multiple inheritance capabilities of the Common Lisp Object System
(Gabriel, White, & Bobrow, 1991).
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Most	  flights	  were	  canceled,	  leaving	  550	  people	  stranded	  at	  the	  airport.	  	  

Habitat:	  Airport	  
	  
	  
	  
	  
	  
	  
	  

Fly,	  Flight	  
	  person	   airplane	  

Wait	  
	  person	   event	  

Cancel	  
	  flight	  

Stranded	  
	  person	   loc	  

SyntacAc	  
expectaAons	  

Lexical	  
semanAcs	  

SemanAc	  
Lexicon	  
(Packets)	  

SemanAc	  
Frames	  

VP	  

Takeoff	  

Land	  

Figure 1. The C3 architecture. As described in Section 3, the airport habitat includes a latent representation
of its normal entities, roles, and activities. The C3 analysis incrementally brings some of these into focus,
instantiating relationships and grounding otherwise anonymous text references such as the 550 people.

2.9 Our Claims

We make two principal claims about the nature of natural language understanding as a computa-
tional process:

• Language understanding is an incremental process, where all levels of analysis – syntactic,
semantic, and pragmatic – are carried out simultaneously.

• This process is governed by a highly structured, predictive model of the ongoing situation that
actively incorporates our background knowledge of the world.

These claims are consistent with what is known from psycholinguistics about human language com-
prehension – the only example we have of fully effective language processors (see Section 1.2).
However, substantiating these claims from a computational perspective requires an implementation
to establish that the claims are coherent and to provide a platform for experimenting with different
mechanisms and representations. The two sections that follow illustrate how different facets of the
new or newly revived technical capabilities we have just described are deployed. In particular:

• Organizing the meaning of words as ‘packets’ of model-level content along with overt and
implicit predications (in Section 3.1.1).

• Providing a partial, incremental predictive representation of phrases’ referents as they are read
(in Section 4.2).

• Using the situation to provide defaults through coercion to create a real-time simulation of an
utterance as it unfolds through the semantic interpretation process (in Section 3.2).
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• Treating situations computationally as the sum of the understanding of what has been said,
along with what is implied and what might follow (in Section 3.2).

• Providing functional landmarks to the content of a situation to permit one-step application of
anaphoric-style inferential gaps (in Sections 4.1 and 4.3).

Together, these mechanisms operationalize the theoretical framework that we have described, to
support the deep interpretation of texts.

3. Creating and Applying a Situation
In this section we describe how the situation is established and drives inferences during C3’s com-
prehension of an utterance. We focus on this text.

“Most flights from the Luis Munoz Marin Airport in San Juan to the Leeward Islands
were canceled Monday, leaving about 550 people stranded at the airport.” 5

Taken just for its literal content, as most of today’s language understanding systems would do, the
result leaves many questions open. In particular, where did these 550 people come from, and why
are they stranded? In the section below, we show how lexical semantic knowledge associated with
the words in this example direct our inferences towards “filling in the gaps” in the literal assertions
from the text. We then demonstrate how packets of information are formed from lexical items and
how they compositionally build contextually salient inferences.

3.1 Lexical Structures
Outside of a specific context, most high frequency words are ambiguous. Even once a word sense
has been determined, there are still differences in logical perspective to sort out or metonymies to
decode. We describe our approaches to these problems in this section.

3.1.1 Simple Ambiguity

Consider the word flights, which has different meanings in different domains. It could refer to a
flight of stairs or be part of a fixed phrase like flight from stocks. It could refer to a quantity of beer
or champagne or it could be a nominalization of flee. A fully populated language understanding
system would have all of those readings and more. In the context of this example it refers to
an airline flight, but C3 must establish that fact before it can instantiate the air-travel habitat and
activate its affordances.

We know from psycholinguistic studies that all of the senses of a polysemous word are available
for about 250 msec after the word is read and that after about 500 msec, roughly when the next word
has been read, only the contextually appropriate sense is available (Swinney & Hakes, 1976). The
context provided by the situation is sufficient for people to rapidly and unconsciously disambiguate
words that are ambiguous in isolation, like flight. But how do they do this? ‘Sublexical’ techniques
have been explored, including marker passing (Charniak, 1983) and lateral inhibition (Cottrell &
Small, 1983) though only in small systems.

In C3, each kind of ‘flight’ that the architecture knows about (for which it has a packet in its
lexicon) has its own projection to the grammar, and will introduce its own semantically-labeled

5. This is a self-contained excerpt from a news article about the impact of Hurricane Earl on Puerto Rico (The New
York Times, August 31, 2011).
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reading into the analysis when it is scanned, such as airline-flight and flight-amount. This mirrors
the observed immediate activation of all the word’s senses. When the next word is scanned, the
word from in this example, it introduces its own projections, including its possibilities for compo-
sition in C3’s lexicalized semantic grammar. This lets us use a simple disambiguation policy: only
senses that can extend through composition with the phrases around them can have their meaning
incorporated into the situation. The others are ignored. In this example we get airline-flight because
the preposition from is part of the rule pattern that applies to ‘flights’ as movement (i.e., “flights
from the Luis Munoz Marin Airport”).

As we suggested earlier, another possibility is that in an ongoing, established context such
as news about a hurricane, the set of available readings for ambiguous words has already been
narrowed to just those that are applicable in that semantic field. The psycholinguistic studies of
lexical access (Small, Cottrell, & Tanenhaus, 1988) may well be based on stimulus conditions and
probes that do not apply in the normal use of language between interlocutors aware of their shared
situation. This would replace the problem of word sense disambiguation with the more realistic
problem of recognizing the situation type. We intend to investigate this question in our future work.

3.1.2 Lexical Entries in the Generative Lexicon

In Pustejovsky’s (1995, 2013b) Generative Lexicon theory, the lexical entry for a content word (as
opposed to a grammatical function word such as most or from) encodes three kinds of information:

• Its argument structure, which spells out what arguments the word takes, how they are realized
syntactically and govern semantic role selection;

• Its event structure, its class of event (state, process, transition) and how it structures its impli-
catures (Pustejovsky, 1991);

• Its qualia structure, the basis of logical polysemy, implicated in coercion and type shifting.

The argument structure is integrated into the rule sets of the grammar and helps with simple disam-
biguation. The event structure is part of the habitats that are added to the situation and provides a
scaffolding for anchoring events and action sequences. The qualia structure organizes the applicable
predicates and affordances.

The qualia consist of four basic roles, each of which can be seen as answering a specific question
about its associated object. Each contributes a complementary set of latent predicates to a word’s
meaning:

• Formal roles encode taxonomic information about the lexical item (the is-a relation). What
kind of thing is it; what is its nature?

• Constitutive roles encode information about the parts and constitution of an object (part-of or
made-of relation). What is it made of; what are its constituents?

• Telic roles encode information on purpose and function (the used-for or functions-as relation).
What is it for; how does it function?

• Agentive roles encode information about the origin of the object (the created-by relation). How
did it come into being; what brought it about?

Most words have alternative readings that are characterized by different qualia: the newspaper you
read (telic), the one you spill coffee on (constitutive), the one whose editorial opinions you disagree
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with (agentive). This distinction is referred to as logical polysemy (Pustejovsky & Boguraev, 1993).
Once a content word has been narrowed to the domain where it has a specific meaning (simple
disambiguation), the next step is to determine its qualia role, to disambiguate it logically.

The qualia role that applies in a particular instance cannot be determined independently of the
rest of the context. If the text was My flight just landed, it would be the constitutive role, since we
are talking about the airplane that the flight used and only physical things can land. If our flight
was rescheduled, it would be the agentive role. All of these alternatives are part of the air-travel
habitat – a frame that factors into different parts (incorporated habitats) according to which qualia
is involved. In this instance of flight,6 it is the telic role and it links to the portion of the habitat that
organizes knowledge about flights as conveying people from place to place.

3.2 Habitats, Actions, and Composition

Airports have control towers, runways, taxiways, gates, and terminals. These are all available in the
airport habitat. These are entities and relationships that the habitat knows about, but they are latent
rather than part of the situation’s minimal model. The principal activity at airports is air travel,
and, if we ignore its personal aspects (making reservations, getting to/from the airport, buying food,
shopping), the most salient aspect of air travel is the flights. Flights are also habitats. They have a
plane (the equipment), a crew, passengers, baggage, and food. They are run by particular airlines,
have a flight number, and travel from one airport to another.

In the telic reading of flight, the habitat includes a script that lays out the typical sequence of
events and activities that constitute air travel. Airplanes are containers and they can move. Like any
moving container, when they move (taxi, take off, fly, land), they convey their contents with them
from their starting point to their destination. There are enough of these ‘passenger-transporters’ in
the world that they form a useful composite class: cars, buses, trains, bicycle-pulled carts, trucks,
and others. This ensures that their common core is shared, particularly, for our purposes, the words
that accrue to this level, such as passenger.

The interpretation of flight is as a process. There is a state of affairs that holds before this process
starts and a different one after it ends. The principal difference between these two is in the location
of the airplane and its contents: the passengers, their baggage, the crew. Before the flight leaves
they are at the origin airport, afterwards they are at the destination airport. Any habitat like flight
that involves scheduled process comes with the default assumption that once the process has started
it will continue until it ends.

To represent the content of the first part of this text, C3 instantiates a flight habitat with values
for the variables that we know. This adds to the situation a collection of an indefinite number of
individual flights, where each of these otherwise unidentified flights originates in San Juan and
terminates in an airport in the Leeward Islands. Each of these flights has a carrier and a flight
number, a crew and a passenger manifest, but these are latent properties whose values are unknown,
just as we do not know the actual number of flights in the collection.

Compositionality Cancel is an operator over processes: it modifies the situation rather than sim-
ply adding to it. Its syntactic configuration (as main verb) establishes that it applies to the value of

6. Recall that the context is “Most flights from the Luis Munoz Marin Airport in San Juan to the Leeward Islands were
canceled Monday . . . ”
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the functional variable syntactic-subject, i.e., the flights. Since the only qualia of flight that involves
a process is its telic function of transporting its passengers from one place to another, that aspect of
the flight habitat becomes central to the situation.

Applying the operator cancel to the flights cancels this process. To cancel a flight means that
it does not start (the flight does not take off). This modifies the situation to reflect the fact that the
conditions that held before the process would have started still obtain: the passengers who would
have been on the flights are still at the San Juan airport, as are the crews and the planes.

Situation-driven binding. In the last portion of the canceled flights example, we have a result
clause, “leaving about 550 people stranded at the airport”. Given its form, the syntactic relation of
this adjunct to its main clause tells us that this state of affairs (the stranding of the people) happened
because of the event in the main clause (the cancelation of most of the flights). Being stranded is a
habitat in itself, associated with air travel but not a part of it in the same way as, say, losing one’s
luggage. The meaning of stranded is that there was an intention to move that has been blocked: the
path of the passengers’ expected futures has been interrupted. Note that the airport employees are
not stranded, because they have a different role in the air-travel habitat, i.e., they work at the airport.

Inferences should be guided by what is salient in what is perceived – the text that C3 is inter-
preting and the situation model created for it. The cancelation brings into focus within the situation
those elements that were most affected by it: the passengers, the air crews, and any other individuals
whose intended future path of events was shifted. This salience makes it simple to interpret the two
definite references in the result clause. Given the context provided by this situation, we can bind the
referent of the airport to San Juan’s Luis Munoz Marin airport because the flight habitat has already
created properties for two airports (origin and destination). The origin airport is the more salient of
the two because it is the one impacted by the cancelation. Similarly, the 550 people are resolved to
be the only people who are made salient by the cancelation: the passengers and crew who would
have been on the flights that did not take off – did not follow their intended, default future path.

This section has illustrated our claim that language understanding is governed by knowledge-
rich, predictive models of the ongoing situation We have shown how this makes it simple to draw
complex inferences in C3. We first recognize and instantiate the appropriate situation type (“activ-
ity at an airport”). That large habitat is focused on a particular qualia as the text is incrementally
interpreted (“most flights”), and specialized through composition as C3 continues reading and in-
troducing packets into the situation (“canceled”). This provides the context in which the identity of
the “550 people” is immediately established, because they have the situation’s role of passengers,
made salient by the cancelation of their flights. In the next section we will walk through this process
in detail on a smaller, fully implemented example.

4. A Detailed Example: ISR

We have access to a set of logs of actual text-chat collected from an Intelligence, Surveillance, and
Reconnaissance (ISR) team during the Empire Challenge 2010 military exercise. These are from a
team that was composed of three camera operators, an analyst, and a coordinator, all communicating
over Internet Relay Chat, reporting on the movements and activities of other players in this live
Army exercise in a simulated set of Afghani villages. This excerpt illustrates the sort of gap that we
are focusing on. Camera operator Heavy2 is reporting on an event involving a car ‘of interest’ in the
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Table 1. Team chat excerpt from Empire Challenge 2010.

Line Time Message
72 [19:51] <Heavy2> black ford suv has entered wakil
73 [19:52] <Heavy2> two people are dismounting

Wakil village that he is observing. It is obvious to us where the people came from. In this section
we lay out how we make it equally obvious to the C3 System.

4.1 The Initial Situation

Line 72 of the chat transcript, entered at 19:51 pm, is the first time that observer Heavy2 has typed
anything for several minutes. This speaker shift has cleared the situation of any active habitats or
facts, and moved their content to a passive store from which they can be reactivated when mentioned
again. In this case, the “black Ford SUV” was already identified and designated as a ‘vehicle of
interest’ earlier at 18:27, and at 18:50 there was the report “three guys have gotten in to black ford
suv at wakil.” Not only is there a known individual to add to the situation (rather than building a
new individual), but something is already known about it:7

SUV-1: container.contents = collection(count > 3, type = person).

The discourse history established that the SUV is value of the given indexical variable. The value
of the new variable is the fact that it has entered the village. This reintroduces the already-known
village into the situation model, along with the fact of the event, but nothing else. The present
location of the SUV is known (it is part of the minimal model), but nothing is known about its
previous location except that it had one: “where the SUV was before it entered Wakil.”

From the text there is nothing else known about the SUV, not even whether it has stopped
moving. But in the actual world of the observer, all of this is an established part of reality: It
approached along a particular road at a particular angle to the viewer; the sun was shining, creating
a shadow of a particular size; buildings in Wakil are made of concrete and painted some color. All
of this is true, but only what is actually given in the text is present in the situation. The rest is latent.

4.2 Expectations

In C3, texts are parsed incrementally word by word so as to get the greatest amount of leverage from
the situation. From line 73, reported a minute after the report about the SUV, C3 reads the word
two. As a nominal premodifier, this deploys a peg and its packet establishes that there is a collection
of size two, but that is all that is known at that moment. The rest of the text could refer to two of the
windows on the SUV being opened, or two of its doors:

Peg(x): collection(count = 2, type = x)

Upon reading people, the head of the NP, the peg is replaced by an individual representing a collec-
tion of two people, but again we know nothing more. There is an expectation, however. The people
must have been somewhere before this, even if we do not yet know where. Since some things, like

7. The expressions used in this section are purely notional for purposes of illustration. In C3’s implementation their
equivalents are configurations of typed objects linked by pointers and organized by indexical-variables bound by the
situation object. We cannot describe their actual elements and organization in the space available.
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the locations of the objects of discourse, are essential to understanding (physical objects do not just
appear in a puff of smoke). This information gap leads to an expectation that we will either be told
the location or should assume one given the available evidence:

people-2: type = collection-2, physical-object.location = ?).

4.3 Composition

C3 then reads the verb group of line 73, “are dismounting.” It adds the packet for dismount to the
situation and notes that this is an ongoing action:

dismount = transition.inprogress
movement.from = high
movement.to = low(ground)
movement.actor = v:subject

From the syntactic construction, it knows that the collection of people supplies the obligatory argu-
ment to dismount: who is doing the action.

Dismount is a movement. Every instance of a movement comes with predicates for where its
participants (the two people who are moving) were before the action and where they are after it.
None of these values have been given explicitly, although a firm default for dismount is that the final
location is the ground. (One dismounts from a horse or a piece of gymnastics equipment.)

To establish the value of their prior location (where they dismounted from), C3 uses what
amounts to anaphoric reasoning: namely, what are the known locations given the present situa-
tion? This gives us the village and the SUV, but the SUV should be preferred because the thing
one dismounts from must be close by (compare “two people are walking up to it”) and the SUV is
salient because it is the value of the discourse theme indexical because it is a ‘vehicle of interest’:

during.before(dismount-1):
people-2.physical-object.location = SUV-1
dismount-1.movement.from = SUV-1

This binding has significant side effects. Dismounting from the SUV presupposes that it is stopped,
so C3 coerces the motion of the SUV in line 72 to a “stopped state.” (Compare secret service agents
dismounting from the presidential limo during a motorcade.) If two people have left the SUV, qua
container, then the number of people known to be in the vehicle (at least four) is reduced by two.

What has happened is that the introduction of the dismount to the situation initiated a limited
inference process to identify the location the people dismounted from. Integrating the dismount with
the established enter or the SUV provides a “people-containing” location to the inferential search
(“inside the SUV”). If there had not already been such a location in the current situation, the search
would not go any further, and just posit that the location exists and wait for more information to
come in, just as with our initial example of the Iraqi girl.

This example has illustrated our claim that language understanding is an incremental process
where every level of analysis is carried out simultaneously. We have shown how partial interpre-
tations impose constraints on how they can be completed. We have demonstrated the immediate
effect of the implicatures conveyed by lexical packets (e.g. every physical object has a location) in
creating expectations as they are incorporated into the situation, and leading to constrained searches
of the content of the situation organized by automatically-maintained indexical variables.
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5. Related Work

We believe we have adopted a genuinely new perspective on deep natural language understanding.
Others have worked on the same problems of course. Here we look at alternative approaches to gap
inference, the use of frames, and parsing.

Gaps. To the best of our knowledge, the first person to describe “gap filling” was Clark (1975),
who called this inferential process bridging. He described it as “the construction of implicatures”
in order to “bridge the gap from what [the listener] knows to what is intended” (p. 170). In a logical
framework, the process of adding implicatures in order to make sense of a text is usually treated as
a form of abduction. This sort of defeasible reasoning has been studied at length by Hobbs (1993),
who views language understanding as finding the least-cost proof of the text’s logical form. Asher
and Lascarides (1998) take a similar abductive approach to bridging inferences. They differ from
Hobbs in using discourse cues and rhetorical relations to trigger their search for suitable implica-
tures, and by running their search inside a representation of the text in their version of Discourse
Representation Theory.

We can also be said to be using abduction in that we add implicatures to our minimal model
of the situation to bridge the gaps in the text (“the men had been in the SUV”). However we do
not follow Hobbs and formulate this as search over propositions and axioms by a theorem prover.
Instead, our approach is similar to Asher and Lascarides’ use of DRT to constrain where to look for
implicatures. We use the structure of our situation model to provide similar constraint. Moreover,
we take the psycholinguistic evidence seriously and use an architecture that anticipates inferences
as latent variables that are deployed when a gap in the text triggers them.

Frames. In the 1970s, there was work on frame-based language understanding, but it either formu-
lated the problem in ways that could not be extended, such as the anticipated questions approach of
Charniak (1975), or made theoretical assumptions that have since been rejected as psychologically
unrealistic and unnecessary: separating syntactic, semantic and pragmatic analysis into cascaded
independent modules.

During the 1980s and into the 1990s, frames devolved into just a way to talk about a database
record of related fields that served as a template for the output of topic-specific information extrac-
tion systems. Over time, the semantics of these structures was clarified and the result is today’s
description logics and the Web Ontology Language OWL (Horrocks, 2005). The original concep-
tion of frames as a way to manage perspectives and provide defaults was lost.

The Berkeley FrameNet Project is a curated effort to define the meaning of concepts (Baker, Fill-
more, & Lowe, 1998).8 It uses frames as hierarchically organized containers of relationships, usu-
ally stated in terms of the standard Filmore case relations (agent, patient, manner, etc.). FrameNet
is a lexicalized ontology that we can draw on in our research, but it is not suitable as a source for
schemas to organize a situation.

Parsing. Virtually all approaches to parsing today rely on training or extending a probabalistic
model and searching for the most likely analysis given the features and corpus their models were
developed on. There is a body of recent work on what that community calls “semantic parsing”

8. The FrameNet Project’s use of the term “frame” derives from the linguistic notion of a “case frame.”
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(Kwiatkowski et al., 2011). However, they construe this as a problem of recovering a sentence’s
logical form given matched pairs of short texts and logical expressions as a training set. This is
quite different from our research on understanding a text in depth in order to apply implicatures,
establish predictive affordances, and instantiate a model of the larger situation a sentence is part of.

There are three other efforts that are engaged in the same kind of high-precision, in-depth,
linguistically principled language understanding work as we are. We all share a preference for
rule-driven, largely deterministic analysis based on a lexicalized conventional grammar. We all
see the problem as identifying the content of a text for some other program to use for reasoning.
Clark and Harrison (2009) use a version of GPSG and have facilities for recognizing entailments
and other pragmatic phenomena. Much of their recent work is aimed at adding to and querying
a massive knowledge store through a highly structured interface (Gunning et al., 2010). Allen’s
research group (2007) focuses on the problems that occur in task-oriented dialogue. His group uses
a grammar based on a combination of GPSG and HPSG that is mapped to a logical form that is
grounded in a large general ontology; task-specific representations are created by mapping from
that ontology. The LinGO group at Stanford and University of Washington (2010) has an extensive
semi-deterministic HPSG parser. The output of their expressions is a set of formulas represented in
minimal recursion semantics (Copestake et al., 2005) that are comparable to those used by Hobbs
(1993) for abductive reasoning.

6. Future Work

In this paper, we have presented a computational architecture for a novel way to encode and exploit
the knowledge and inferences that make up a word’s meaning. Utterance meaning, we argue, in-
volves the construction of “cognitive simulations” by the listener, of the situation being described.
On this view, lexical knowledge is composed of packets of frame-like structures, encoded as typing
specifications, event and participant structures, and qualia structure (Pustejovsky, 1995). In addi-
tion to this enriched array of lexical semantic information, we introduced the notion of habitats
(Pustejovsky, 2013a), a data structure that provides the conceptual underpinning for constructing
the simulations compositionally. This information is deployed by the processing mechanisms of
Sparser (McDonald, 1996), creating a dynamic interpretation of the event as it unfolds in the model.

Clearly, there is much to be fleshed out, and it is difficult to evaluate our proposal without more
elaborate and extensive modeling. One of the most promising and challenging aspects of this pro-
posal is the exploitation of habitats in constructing a simulation. But questions remain, including
the following: (i) how are habitats systematically constructed or related to the qualia structure asso-
ciated with objects and events? (ii) what are the specific mechanisms of habitat composition, giving
rise to minimal simulations that are cognitively plausible? We are currently exploring these issues
as they impact our design decisions for an efficient, robust, and incremental semantic interpreter.
We believe that the outline presented here suggests a specific way in which people integrate and
deploy their linguistic and general knowledge jointly to understand discourse.

We originally intended to extend this small model to all five days of the Empire Challenge chat
corpus. However, we discovered that the inferential gap illustrated by this example is unique; the
rest of the corpus can be understood with just a literal analysis. Consequently, we are shifting our
future work to our original choice of topic, the inference-rich domain of following route directions
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in hiking guides. This will let us develop vivid minimal simulation models and apply our extensive
background in spatial and temporal ontologies.

We welcome those who think that there is merit in our goal – to understand how people can use
their knowledge for language as quickly and effortlessly as they walk or breathe – to engage in an
extended conversation about how this is possible.
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