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Asil Kaan Bozcuoğlu ASIL@CS.UNI-BREMEN.DE

Michael Beetz BEETZ@CS.UNI-BREMEN.DE

Institute for Artificial Intelligence, Universität Bremen, 28359 Bremen, Germany

Abstract
Agents that learn from experience can profit immensely from memorizing what they have done,
why, how, and what happened. For autonomous robots performing complex manipulation tasks,
these memories include low level data, such as perceptual snapshots of relevant scenes that influ-
enced decision making, detailed complex motions the robot performed, and effects of these mo-
tions. They also include high level representations of the intended actions and the belief-dependent
descisions that led to the chosen course of action. In this paper, we present CRAMm, a memory
management system that records very comprehensive and informative memories without slowing
down the operation of the robot. CRAMm offers a query interface that lets the robot retrieve the
kinds of information stated above. This is done using a first-order logical language that provides
predicates concerning the beliefs and intentions of the robot, its physical state, perceptual informa-
tion, and action effects, as well as their relations at different levels of abstraction.

1. Introduction
Consider a robot that is supposed to prepare meals, set the table, clean up, load and unload the
dishwasher, and so on. Such activities are commonly called “everyday activities”. Anderson (1995)
defines an everyday activity as “a) a complex task that is both common and mundane to the agent
performing it; b) one about which an agent has a great deal of knowledge, which comes as a result
of the activity being common, and is the primary contributor to its mundane nature; and c) one at
which adequate or satisficing performance rather than expert or optimal performance is required.”
In this article, we investigate how robotic agents can be equipped with memories of previous activity
episodes in order to build up the “great deal of knowledge” for competently performing everyday
activities and to learn from their experience.

We present CRAMm, a software infrastructure which equips robotic agents with a comprehen-
sive memory of their experiences that allows a-posteriori reasoning, diagnosis and reconstruction of
the believed world states at different points in time. The system is an extension of CRAM (Cognitive
Robot Abstract Machine), a framework for the implementation of cognition-enabled robot control
systems (Beetz, Mösenlechner, & Tenorth, 2010). In the context of CRAMm, we consider memo-
ries to be the information gained from past experience, i.e., from everyday manipulation episodes,
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that robotic agents can access and use to improve their future activities (Wood, Baxter, & Belpaeme,
2012). As such, the information content of the memories can be measured in terms of the queries
that can be answered based on the information contained in the memory.

CRAMm enables the robot to answer queries such as: Which fetch tasks failed because the
object could not be found? Which kinds of failures could the “place” subplan not recover from?
Which items in the refrigerator often stand at the same position? Did the robot block its view of the
pot with its own arm when it put down the mug? These questions require the robot to memorize
its poses, the images it has taken, its beliefs and intentions, information about objects in the world
when executing its plan, and the relations among these pieces of information. A robot capable of
answering these questions is a robot that knows what it has done, how, and why, as well as the results
of its activities (Brachman, 2002). The ability to answer such queries can aid robots in making better
execution-time decisions and revising plans to improve their expected performance.

In cognitive psychology, memories are categorized into short-term (STM) and long-term mem-
ory (LTM), where the STM is a small-capacity store that provides the context for accomplishing the
current task. The LTM is a high-volume memory that provides comprehensive information for all
kinds of tasks. Wood et al. (2012) further categorize artificial memory types along other dimen-
sions, such as procedural versus declarative memories, where the declarative memory is often con-
sidered as consciously accessible, and the procedural memory contains compiled or subconscious
information. Episodic memories store experienced event information that is temporally and spa-
tially organized and combined with context information. In this paper, we focus on declarative,
episodic, long-term memories for robot manipulation episodes.

Functionally, memorization can be divided into three distinct processes: encoding, storage, and
retrieval. The encoding is concerned with observing the state of plan execution and the data streams
that are sent between the different components, and mapping this data into memory structures that
allow answering of queries. The storage is concerned with accumulating the encoded data in a
long-term memory while not degrading overall system performance. Retrieval is concerned with
answering queries using the data stored in the memory.

The contributions of this paper are (1) expressive memory representations that combine sym-
bolic plan events with subsymbolic sensor data, (2) methods for temporal, spatial, diagnostic and
causal reasoning that operate on the symbolic and subsymbolic memory structures, and (3) efficient
and scalable logging mechanisms that build up these structures during task execution without neg-
atively affecting the robot’s performance. We evaluate the system using log data collected on three
different tasks (object perception, picking and placing an object, and continuous arm movements)
that pose different challenges to the sensor and plan logs. To measure the information contained in
the memories, we present a set of queries that cover a range of inference capabilities.

2. Cognition Enabled Robot Control and the CRAM System
Before introducing CRAMm, we should briefly review CRAM and our robot control systems, along
with the consequences and opportunities of artificial memory design. The Plan Language CPL
(Beetz, Mösenlechner, & Tenorth, 2010; Beetz, 2000) is a concurrent reactive programming lan-
guage that provides all the comfort of typical high level programming languages, including a rich
set of control structures that help to make the program robust and flexible as well as modular and
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transparent. The control program takes control decisions based on (possibly complex) inference
processes. To this end, control decisions are often formulated as logical queries that evaluate to true
or false or that compute values for parameterizing actions. To execute a task on the robot, the plans
activate, parameterize, and deactivate modules of the robot’s distributed control system that provide
different kinds of functionality such as object perception, robot navigation and localization, etc.

An important aspect of the language are descriptions of entities such as objects, motion, grasps,
or poses, that are called designators and that are first-class elements of the language. In the begin-
ning of plan execution, these descriptions are often vague, such as “the cup on the table”, leaving
out situational context or detailed properties of what exactly is described. Plans are parameterized
using such vague information and the system refines it when necessary. This way, plans can have
qualitative parameters that allow much flexibility in how the task is executed, and that are only quan-
tified when the information they provide is really necessary for execution. Designators are refined
whenever more information becomes available, as when an object has been perceived. Since this
information is not necessarily correct nor complete, designators can be revised with newer, more
correct information as the result of reasoning processes or failures. When a designator is extended
with further information, a new designator is created, holding the new, possibly more specific, de-
scription. Those two stages of description are then equated, i.e., linked, to track the change of
parameterization over time. The robot’s current belief about the world is described in terms of such
designators. Especially the poses of objects in the environment and the robot’s own position are
described in this way.

The execution of a plan generates a tree of tasks, which are interpretation records of subplans
very similar to stack frames in program execution. When robot agents are assigned goals to achieve
during plan execution, they must perform one or more tasks in order to do so. An arc from task t
to task tsub roughly denotes that t called tsub as a subplan. The data structures of the tasks include
the local variables and their time-stamped value changes; McDermott (1993) provides a detailed
description of this mechanism. Using these data structures, we can define what the robot “believes”.
For example, we can specify as logical rules that the robot intends to pick up a blue object if the
plan parameter for the object acted on has an object description as its value where the color attribute
has the value “blue”.

3. An Overview of CRAMm

This plan language imposes requirements on the memory apparatus to be provided by CRAMm.
This must remember the relationship between plans and their subplans, be able to reconstruct how a
particular entity description looked like at a given state of plan execution, and be able to reconstruct
why the robot made a particular decision during plan execution. To enable such functionality, robots
using CRAMm record

1. their symbolic beliefs and intentions, the intended course of action (i.e., the task tree of the
plan execution);

2. events and data from the perception system, and lower-level information like their position in
the environment and their poses;
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Figure 1: The system architecture for recording live robot data includes logging mechanisms for continuous
sensor measures into a MongoDB database and symbolic plan events into a KNOWROB knowledge base. A
virtual knowledge base interface integrates continuous data with the symbolic knowledge base. A specialized
query interface reasons on the stored information.

3. the relations between them, including the temporal synchronization using global time stamps,
how sensor data and changes in data structures cause changes in the beliefs and intentions of
the robot, and how the interpretation of plans causes changes in the world.

This information, coming from different sources, is combined to a timeline of events in the robot’s
knowledge base that allows ontological, teleological, causal and temporal reasoning. Figure 1 de-
picts the main components of the system which will be explained in more detail in the following
sections. During task execution, the robot records comprehensive action logs. Symbolic plan events
are directly asserted to the knowledge base (Section 5.1), including the task tree of the robot’s con-
trol program, described as instances of the respective action classes, information about start and
end times, references to manipulated objects, and success and failure states. Continuous measures
like sensor data or the frequently updated robot pose are stored in an efficient and scalable database
that supports high-volume and high-frequency data recording without slowing down the robot (Sec-
tion 5.2). Both data sources are described using the same representation language as explained in
Section 4. The sensor data is integrated as a “virtual knowledge base” that provides an abstract
query interface similar to the rest of the knowledge base. The representation forms the basis for
sophisticated inference methods that can help the robot to take control decisions or diagnose plan
failures, as described in Section 6.

The CRAMm system builds upon the functionality of existing components like the CRAM
executive, the KNOWROB knowledge base, the robot self model in the SRDL language (Kunze,
Roehm, & Beetz, 2011a), and a tool for logging sensor data into a database. In this work, we have
integrated these components and have added new modules for logging high level plan events and
designators from the CRAM executive, for accessing the logged sensor data from the KNOWROB

knowledge base, for computing spatial transformations based on the logged data, and for reasoning
about the combination of all this information.
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4. Formal Representation of Experiences
The representation of logged actions builds upon the action ontology of the KNOWROB robot knowl-
edge processing system (Tenorth & Beetz, 2013) which provides structures to represent tasks as
well as their spatial and temporal context, including events, objects, environment maps, and robot
components. KNOWROB is implemented in PROLOG and represents knowledge using the Web On-
tology Language OWL (W3C, 2009). As mentioned earlier, our memory consists of a knowledge
base of logged plan events (stored in terms of OWL statements in the KNOWROB knowledge base)
and a large-volume database with continuously-valued sensor data. To integrate them in a coherent
representation that the robot can reason about, we use a special feature of the KNOWROB system
that allows the definition of “virtual knowledge bases” on top of sub-symbolic data. Conceptually
and from a query point of view, they appear like any other information stored in the knowledge
base. However, instead of storing the information in preprocessed symbolic form, it is extracted on
demand at query time from the stored data. This has several advantages: The same data can be used
to compute different relations that do not have to be selected at recording time, the extracted sym-
bols are inherently grounded, and the large-volume data can be recorded and stored using optimized
databases, processing only what is needed to answer a query.

The KNOWROB ontology provides a conceptualization of the robotics domain, as well as for-
malized background knowledge about the relation between actions, agents, and goals. For example,
the “action” branch of the ontology contains about 130 action classes that form the building blocks
for describing robot tasks. In addition to existing classes in the ontology that focus on the robot’s
behavior in the outer world, we have added classes for describing control structures during task
execution in order to be able to also reason about these aspects. The memory consists of assertions
about occurrences of actions, represented as instances of these action classes, and assertions about
the task context. The transitive subAction predicate links actions in the task hierarchy; references
to objects and locations can be described using properties from KNOWROB such as objectActedOn,
fromLocation, and toLocation. Due to the class–instance relationship between the robot’s plans and
its logged experiences, it is very easy to retrieve examples of previous executions of an action from
the memory.

Actions are represented as special kinds of events initiated by agents to achieve a desired effect.
This makes it possible to describe these endogenous events using the same structures as exogenous
events like sensor readings or utterances of a dialog partner. Figure 2 visualizes the representation
of actions and external events using a pick-up task as example. The overall task PickingUpAnObject
had the goal to bring object Cup93 into the robot’s gripper. This task started at time point T1 and
ended at time point T12. Intermediate subtasks for perceiving, reaching, grasping, and lifting the
object are described as subAction within the task tree and are therefore directly associated with the
overall goal. Each event is characterized by its startTime and, if its duration is finite, its endTime.
The KNOWROB system provides methods for reasoning about the timelines using Allen’s interval
algebra (Allen, 1983). Events that are produced by other components of the robot’s distributed con-
trol system are usually not synchronized (e.g., the exogenous events in the lower part of Figure 2),
but can be associated with the logged actions using temporal reasoning on the time stamps.
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Figure 2: Example timeline of events for a pick-up, task including its subtasks and a few external, instanta-
neous events. Temporal relations can be computed based on the start and end times of the actions.

5. Encoding and Storage of Memory Contents
We distinguish between symbolic plan events and continuous-valued sensor signals, which are
logged using different mechanisms. Section 6 explains how information from both kinds of storage
structures can be retrieved and combined in queries.

5.1 Logging Plan Events

As a modern robot plan language, the CPL supports splitting complex goals into subgoals and plan
primitives. CRAM provides mechanisms for defining goals, implementing the reasoning processes
necessary for their parameterization, and ultimately performing these parameterized tasks. High
level goals correspond to the intentions of the current plan execution while the subactions executed
to achieve these goal reflect the progress and the dynamically inferred parameterization of the task
at hand. This approach allows the distinction between different contexts in which each component
is executed, for example which goals are currently active at different levels of the hierarchy.

CRAMm records the task tree including the task parameterizations, failures that arose during
execution, the start and end times, success states of single subgoals, and the reported progress
feedback from intermediate tasks. In addition, it stores when a designator is created (e.g., an object’s
occurrence in the world is first mentioned) and when its information is updated, resulting in a change
of belief about the world. This information is stored in the OWL representation language in the
knowledge base.

Figure 3 shows a simplified example of a perceive and pick action, depicting several hierar-
chically connected tasks. The original task tree comprises roughly 250 actions and events, and 34
designators at 44 different time points, which we have pruned to improve readability. The top-level
task to achieve the object-in-hand goal is decomposed into a task for perceiving the object
and another one for actually grasping it. Task parameters are described by designators, as well as
the perception results. The white box in the upper left visualizes the contents of the designator de-
scribing the detection of an object of type CONTAINER. This symbolic log is linked to sensor data
recorded during the task, for example camera images, which are stored at important times during
the task execution, or the robot’s pose.
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Figure 3: Simplified plan event log for an object-in-hand goal achievement. A perception algorithm is
employed to find the correct pose for the object in question, the robot agent navigates towards that pose, and
grasps the object.

5.2 Logging Sensor and Robot Pose Data

The abstract information from the plan logs is complemented with recorded data from sensors,
information about the robot’s position in the environment, its pose, etc., in order to be able to
reconstruct the world from the viewpoint of the robot as accurately as possible at a later point in
time. This can lead to quite a significant amount of data that needs to be recorded without slowing
down the task execution.

Our robots are running the ROS communication middle ware (Quigley et al., 2009) in which
sensor data and robot pose information are broadcast on so-called “topics” – an asynchronous com-
munication channel that other components (such as the logger) can listen to. This gives the logger
access to virtually all pieces of information that are sent around in the robot’s system. For recording
this information, we use a modified version of the mongodb_log software (Niemueller, Lakemeyer,
& Srinivasa, 2012) that stores the data in a MongoDB database. While this “NoSQL” database does
not support sophisticated SQL queries, it is a fast and scalable storage solution that allows recording
robot data with little overhead.

The extensions developed for this logging software include an interface for logging designator
communication between different components, as well as methods for limiting the amount of data
that is recorded. The former enables exact reconstruction of the high level communication between
the plan execution system and for example the perception system (requests, results), storing the
designators as nested key-value lists in the MongoDB database. The second kind of extensions is
necessary to keep the log databases in a manageable size and consist of different methods. First,
sensor data like images are only stored for particular points in time, such as the beginning and end
of a grasping action. Point clouds are stored as depth images, which contain the same information
but consume much less memory. In addition, the tf transformations, which represent positions of
objects in the world and especially the position and orientation of every joint of the robot, are only
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Table 1: Predicates for reasoning about the memorized experiences.

Meta-Predicates (belief state or ground truth) Reasoning about occasions
holds(occ, Ti) Occasions in the real world loc(obj, Loc) Location of an object
belief_at(event, Ti) Occasions in the belief state object_visible(Obj) Object is visible to the robot
occurs(event, Ti) Events in the belief state object_placed_at(Obj, loc) Object was placed at location

Reasoning about the logged task tree Reasoning about logged poses and designators
task(Task) Tasks on interpretation stack desig_type(Desig, Type) Type of designator
task_goal(Task,Goal) Goal of task desig_prop(Desig, Prop, V al) Property values of designator
task_start(task, T ) Start time of task obj_pose_by_desig(Obj, Pose) Object pose from perceived

designator
task_end(Task, T ) End time of task lookup_transform(Fs, Ft, T, T r) Logged transform Tr from Fs

task_status(Task, Status) Status of task (not started, to Ft at time T

ongoing or finalized) transform_pose(Pi, Fs, Ft, T, Po) Transform Pi from frame Fs

subtask(Task, Subtask) Task is a parent of Subtask to frame Ft at time T

subtask+(Task, Subtask) Task is an ancestor of Subtask visible_in_cam(Obj, Cam, T ) At time T, Obj was in the field
of view of Cam

returned_value(Task,Result) Result of task (success or fail) blocked_by_in_cam(O,B,C, T ) At time T, B was blocking the
view of C on O

failure_task(Error, Class) Failure of task robot_pose_at_time(R,Fr, T, P ) At time T, robot R had pose P
in coordinate frame Fr

failure_class(Error, Class) Class of failures Visualization
failure_attrib(Err,Name, V al) Attribute of failure add_object(Obj) Visualizes an object in 3D

Reasoning about events add_object_with_children(Obj) Also visualizes all parts of Obj

loc_change(Obj) Object changed its location highlight_object(Obj) Highlight an object in the scene
object_perceived(Obj) Object has been perceived add_trajectory(Link, St, End) Show trajectory of Link be-

tween times St and End

add_diagram(Type, [DataRanges]) Add data ranges to a diagram

logged when the data has changed. These transformations are updated very frequently (at around
30-40 Hz), which is needed for motion control, but not necessarily to reconstruct the approximate
motions from the log files. We therefore introduce a threshold and only store transformations which
have changed more than this value with respect to the previously logged version. This reduces the
resulting tf file size from around 200 MB to around 30 MB for a regular pick and place task since
only actual movement data is recorded. The thresholds have been chosen as 0.005m Euclidean
and 0.005rad angular distance. In addition, we log each transformation at least once a second to
facilitate the retrieval of the last transformation before a given time point from the database.

6. Retrieval of Information from Stored Memory Data
The vaguely structured plan event logs recorded in the memory can hold substantial amounts of
information about the tasks and the events that happened during their execution. Taking a seemingly
simple pick and place task as example, questions such as “How long did the pick and place task
take?” and “How many tries did the agent need to find a suitable pose to stand at when grasping?”
become answerable.

These queries can be formulated using the predicates listed in Table 1. The first set of meta-
predicates is used to ask for information at a given time and to distinguish between the robot’s
uncertain belief and ground truth data about the state of the world. While all information in the
memory originates from sensor data, some is much more reliable than others. The proprioceptive
sensors measuring the robot’s joint angles and thus producing information about its pose, for exam-
ple, are very accurate and reliable and are thus considered as ground truth. Visual object recognition
and pose estimation, in contrast, is a comparatively brittle and unreliable source of information that
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Figure 4: Simplified illustration of the implementation of reasoning predicates that are evaluated based on
logged perception data. The set of these predicates spans a “virtual knowledge base” over the recorded
memory data.

only updates the robot’s belief about the world. The other predicates can be used as arguments
to the meta-predicates to reason about the logged task tree, recorded events, occasions (similar to
situations), designator values and robot poses over time.

The task tree is logged directly to the knowledge base, i.e., the respective predicates can be
implemented by normal PROLOG queries. In contrast, the predicates for reasoning about events,
occasions, designators and robot pose information are evaluated on the data logged in the MongoDB
database. To the user, they span a kind of “virtual knowledge base” that is computed on demand at
query time. Figure 4 depicts how the PROLOG predicate obj_pose_by_desig computes the pose of
an object at a given time based on detections of that object described as designators. The PROLOG

implementation reads the designator attached to the object at hand, and calls a Java method using
the Java Prolog Interface to read its pose information. This Java method translates the call into a
query to the database and returns the results to the PROLOG predicate.

7. Experiments
We have applied these techniques to a pick-and-place scenario, featuring a PR2 robot that transports
an object from one arbitrary position on a counter to another. The experimental setup involves a
cylindrical object being placed on a kitchen counter. The robotic agent is equipped with only the
information that the object is somewhere on this counter and that it should pick it up and transport
it to a random new position on the counter. The top-level plan structure

( l e t ∗ ( ( l o c−d e s i g ( a l o c a t i o n ’ ( ( on Cupboard ) ( name k i t c h e n _ i s l a n d ) ) ) ) )
( ob j−des ig ( an o b j e c t ’ ( ( t y p e c o n t a i n e r ) ( a t , l o c−d e s i g ) ) ) )

( a c h i e v e ’ ( l o c , ob j−des ig , l o c−d e s i g ) ) ) )

supplies information about the object itself, but leaves out situational data. The (achieve ’(loc

,obj-desig ,loc-desig)) call ultimately starts plan execution, ordering the robotic agent
to move the object obj-desig from its current location (on the counter) to the new location
loc-desig, also on the kitchen counter. The designator loc-desig used herein has a twofold
use. It generally describes all locations on the counter, without stating an explicit pose. It is applied
to the current object location, which is somewhere on the kitchen counter, making all explicit poses
on the counter valid search regions for this object. Also, it is used as the target location for putting
down the object, which in turn makes all (free) poses on the table valid putdown poses during object
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placement. At no point, the high level structure log-desig is replaced in the high level plan, but
rather resolved to actual 6D poses in the lower level modules.

Figure 5 shows images automatically taken during plan execution as part of the plan log. Three
situations are depicted – detecting, approaching, and grasping the object in question. Several more
situations were encountered in which the agent failed to perceive the object, and had to try out sev-
eral positions to stand at before being able to grasp or place the object. We elaborate on this scenario
using different queries we developed in order to gain knowledge from recorded experimental data.
The information acquired this way spans over all kinds of data the robot is recording: plan events,
motion and pose data, communication with other components, and images taken. The knowledge
resulting from inquiries, such as why certain tasks mostly fail or whether certain standing posi-
tions are bad for grasping nearby objects, are key information for enabling cognitive abilities like
reflection about how a task is performed.

The set of queries developed serve the purpose of extracting specific kinds of information from
the recorded experience data. Besides finding individual and average time requirements for executed
tasks, their success state and potential failure reasons can be acquired. Using the mechanisms
presented, statistics can be generated about which tasks fail with what probability due to which
reason. Also, a more data driven approach for failure interpretation is described, such as the agent
not looking at the object to detect, or blocking the view on the object by one of its own body parts.

7.1 Recorded Experimental Data

The experimental evaluation of the presented techniques covers the examination of three distinctly
different logging subjects. In a low level sense, we record the motion data of the robot. For this
purpose, we let it perform a mundane movement sequence over a long period of time that shows the
efficiency of low level data logging and storage. Another type of sensor event to record during many
experiments is the image stream from the robot’s cameras. To comprehend each respective situation
throughout an experimental trial and to be able to post-process imagery from such an experiment,
visual evidence from key moments (grasping, navigation, perception) is collected. In order to find
a feasible mechanism for this, we conducted a multitude of experiments for table top inspection
(i.e. finding all objects on a table) to validate that the data recording mechanism can handle such
data streams. The most complex type of data stream to collect is the actual task and parameter
description of any high level plan the robot is performing. In order to enable the proposed system
to reliably assemble this information, we ran several large pick and place experiments.

The resulting data that is recorded during the execution of a robot plan includes information
about performed high level tasks, low level motion, and images taken in key moments. Such key
moments are triggered before and after travelling to a new position, before and after grasping an

Figure 5: Camera images taken during execution of a pick and place task.

56



MEMORIES FOR EVERYDAY ROBOTIC MANIPULATION

 0

 100

 200

 300

 400

 500

 0  50  100  150  200  250  300  350

D
a
ta

b
a
se

 S
iz

e
 (

m
b
)

Time (sec)

Unthrottled
Throttled (0.005m, 0.005rad)
Throttled (0.025m, 0.025rad)
Throttled (0.100m, 0.100rad)

Figure 6: Stored transformation data over time. The different lines represent different throttling thresholds,
as shown in the Figure. The experiments were conducted over a timespan of 370s.

object, and when running perception attempts. The images taken during this consist of single JPG
encoded, compressed image files, which take up around 45kb per file. This keeps the amount of
drive space used for visual evidence during the plan logging in reasonable ranges. The symbolic
reasoning data recorded during a complete pick and place task as examined in this work, covering
symbolic high level reasoning data such as a task description, as well as object, action, and location
definitions, sums to about 200–250kb.

The most drive space intense part of the logged experiment data is actual low level motion in-
formation (tf link transformation data). Figure 6 shows the amount of data recorded for a reference
motion. During this motion, the robot moves one arm from one position to another 25 times with
different inverse kinematics solutions. This way, differences in inverse kinematic solutions can be
neglected and different filter settings for the tf throttling can be compared. The figure shows that
throttling greatly decreases the data to store, at the cost of accuracy. During the pick and place tasks,
a threshold of 0.005m and 0.005rad was used. These thresholds still allow for qualitative reason-
ing, as noise of perception systems and the robot base localization introduce similar uncertainties.
Therefore, the slightly lower accuracy can be regarded as negligible in favor of a smaller storage
size.

7.2 Queries on the Recorded Data

We assess the performance of the system by the range and diversity of queries it is able to answer
based on the memorized information. The following queries are exemplary for different kinds of
reasoning problems that occur when reasoning about logged execution data: Durations of tasks,
types and probabilities of failures to occur, spatial reasoning to compute relations between objects
and between objects and the robot’s pose at different points in time, as well as the use of these in-
ferences for diagnostic purposes. For being able to answer these queries, the system has to combine
information from the high level task tree, low level data like the robot’s pose over time, detected
objects, and background knowledge like the robot’s self model. While some of these queries will
directly be integrated into the robot’s decision making procedures, their main purpose is to retrieve
training data and annotations for learning statistical models of the robot’s plans and its performance
in different situations.
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7.2.1 How Long Does a Perception Task Take on Average?

The average duration of certain tasks can be important when analyzing time requirements of plans.
For example, the following query returns the average time needed for a perception action by count-
ing how many tasks with the goal OBJECT-IN-HAND ?OBJ have existed and how many seconds
each of these tasks took:

?− bagof ( Dur , ( t a s k _ g o a l ( Tsk , ’GOAL−PERCEIVE−OBJECT ’ ) ,
t a s k _ s t a r t ( Tsk , StT ) ,
t a s k _ e n d ( Tsk , EndT ) ,
Dur i s EndT − StT ) , Durs ) ,

s u m l i s t ( Durs , Sum ) ,
l e n g t h ( Durs , Num) ,
Avg i s Sum / Num.

Durs = [ 7 , 7 , 9 , 7 , 9 , 7 ] , Sum = 46 , Num = 6 , Avg = 7 . 6 6 6 7 .

Based on the logged experience data, a perception call takes about Avg = 7.7 seconds on average.

7.2.2 Which Tasks Failed Due to an Undetected Object?

The robot can investigate which tasks have failed due to ObjectNotFound failures using the query:
?− t a s k ( Task ) ,

f a i l u r e _ c l a s s ( E r r o r , k r : ’ Objec tNotFound ’ ) ,
f a i l u r e _ t a s k ( E r r o r , Task ) .

Task = l o g : ’node_E3dONaOC ’ ,
E r r o r = l o g : ’ node_E3dONaOC_fai lure_0 ’ .

which can be answered based on the recorded task tree. CRAMm can also return all images cap-
tured by the robot in the context of perception tasks that did not detect matching objects (return
value nil). These images serve programmers as diagnostic material or, in an autonomous learning
context, can be used by a robot to test alternative perception methods offline.

7.2.3 How Likely is it for a Task Class to Fail in Given Ways?

Using the logged memories, robots can compute success probabilities for their tasks. The probabil-
ity that a task fails due to a given reason can be computed by the number of failed tasks divided by
the total number of tasks of this kind. This probability can help to model the expected behavior of
the plans and to determine whether refinements are necessary. For example the query:

?− bagof ( Err , ( t a s k _ c l a s s ( Task , k r : ’ R e s o l v e A c t i o n D e s i g n a t o r ’ ) ,
f a i l u r e _ c l a s s ( Err , k r : ’ M a n i p u l a t i o n P o s e U n r e a c h a b l e ’ ) ,
f a i l u r e _ t a s k ( Err , Task ) ) , E r r o r s ) ,

l e n g t h ( E r r o r s , NumErr ) ,

bagof ( Task , t a s k _ c l a s s ( Task , k r : ’ R e s o l v e A c t i o n D e s i g n a t o r ’ ) , Tasks ) ,
l e n g t h ( Tasks , NumT) ,

P r o b a b i l i t y _ o f _ f a i l u r e i s NumErr /NumT .

NumErr = 2 , NumT = 36 , P r o b a b i l i t y _ o f _ f a i l u r e = 0 . 0 5 5 6 .
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Figure 7: Left: Distribution of common failure types that occurred during task execution. Right: Pose of the
robot during a grasping action that has been reconstructed from the recorded log files. The yellow arrows
show the trajectory for reaching towards the object, the components highlighted in red denote the robot part
used for this action, those in blue are the robot’s cameras as read from the SRDL robot model.

computes the percentage of ResolveActionDesignator tasks that failed due to an unreachable ma-
nipulation pose. Dividing the number of failed tasks (two) by the overall number of tasks of this
kind (36), this leads to a probability of Probability_of_failure = 0.0556.

7.2.4 What are the Probabilities of Common Failure Types?

By considering log files of several activities, we can compute statistics of common error types that
occur during task execution. Consider a query that reads all possible failure classes (which are
subclasses of CRAMFailure and computes how many of these occurred:

?− f i n d a l l ( Type−Num, ( o w l _ s u b c l a s s _ o f ( Type , ’ CRAMFailure ’ ) ,
f i n d a l l ( F , f a i l u r e _ c l a s s ( F , Type ) , Fs ) ,
l e n g t h ( Fs , Num ) ) , D i s t r i b ) ,

p a i r s _ k e y s _ v a l u e s ( D i s t r i b , Types , Nums ) ,
add_diagram ( ’ F a i l u r e d i s t r i b u t i o n ’ , ’ p i e c h a r t ’ , [ [ Types , Nums ] ] ) .

The result of this query is depicted in Figure 7 (left). As can be seen, the ManipulationPoseUnreach-
able failure dominates, which in turn means that improving the motion planning and navigation
modules promises the biggest impact on the overall performance.

7.2.5 What was the Pose and the Gripper Trajectory for Grasping an Object?

By combining the symbolic plan logs with the logged geometric information, it is possible to re-
construct the three-dimensional environment including the environment map, the robot pose and
trajectories of motions during the task. The following query reads this information and displays the
results as in Figure 7 (right):

?− t a s k _ g o a l ( T , ’GRASP ’ ) ,
t a s k _ s t a r t ( T , S t ) ,
t a s k _ e n d ( T , End ) ,

r o b o t _ p o s e _ a t _ t i m e ( ’PR2 ’ , ’ / map ’ , St , Pose ) ,
a d d _ o b j e c t _ w i t h _ c h i l d r e n ( ’PR2 ’ ) ,

a r m _ u s e d _ f o r _ m a n i p u l a t i o n ( T , Link ) ,
h i g h l i g h t _ o b j e c t ( Link ) ,
a d d _ t r a j e c t o r y ( Link , St , End ) .
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Figure 8: Left: Outside view of the scene with robot camera coordinate frame. Right: In camera-local
coordinates, the computation of the bearing towards the objects can be decomposed into two two-dimensional
problems.

By visually reconstructing a situation, humans can often analyze problems quickly and estimate
why the tasks performed as they did. In the following queries, we will show how the logged 3D
geometrical information can also be used for computations.

7.2.6 Which Objects Were on the Countertop at a Given Time?

Remembering which objects were at a certain location in the past can save robots from carrying out
additional perception tasks. An example is a query about what objects the robot believed to be on
the table before it tried to grasp an object:

?− t a s k _ g o a l ( T , a c h i e v e ( ’ (OBJECT−IN−HAND ?OBJ ) ’ ) ) ,
t a s k _ s t a r t ( T , S ) ,
b e l i e f _ a t ( l o c (O, L ) , S ) ,
o n _ P h y s i c a l (O, k r : ’ CounterTop208 ’ ) .

T = l o g : ’ CRAMAchieve_4aOJNJBZ ’ , L = kr : ’ RotationMatrix3D_vUXiHMJy ’ ,
O = l o g : ’ V i s u a l P e r c e p t i o n _ W b r S G 1 1 j _ o b j e c t _ 0 ’ , S = 1378119171 .

The result of such a query is obtained from which objects were in the belief state at that time
instance. Moreover, the last predicate checks whether this object is on top of the counter by checking
the location of the island with the semantic map of the environment. This query integrates the
recorded designators (perception results), the symbolic task tree, and prior knowledge from the
robot’s environment model.

7.2.7 Did the Camera Face the Object to be Detected?

If an object cannot be detected, it may be that the robot did not look at the right location. If a
subsequent detection succeeds, we can analyze if this was the problem by computing whether the
position of the object was in the robot camera’s field of view before. To compute what the camera
was looking at during some point in time, we need to know where the camera is positioned and how
large its field of view is.

The former information can be obtained from the recorded robot pose data. In the context of the
ROS robot software system, the tf library facilitates the management of 3D coordinates by offering
methods for transforming any pose into any coordinate frame at a given time. While the original
tf only keeps data from the past ten seconds, we have extended the system to operate on the full
memory of poses such that it allows arbitrary transformations between all coordinate frames at all
times for which data is available. The latter information can be obtained from the robot model in
the Semantic Robot Description Language (Kunze, Roehm, & Beetz, 2011b), which describes the
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geometry of robot parts, their kinematic structure and, for special components like sensors, semantic
properties like their resolution or field of view of a camera.

Being able to transform poses into other coordinate frames at arbitrary times makes the prob-
lem of computing the camera’s view very simple. Using the logged pose data, we can transform
the object pose, which is stored with respect to the robot’s environment map, into the local camera
coordinates (Figure 8). Instead of having to solve a three-dimensional problem, we can now decom-
pose the problem into the computation of the bearing towards the object in horizontal and vertical
direction and compare the angle to the camera’s field of view:

φ = atan(
yobj
xobj

) < HFOV , ψ = atan(
zobj
xobj

) < V FOV .

This computation is implemented in the obj_visible_in_camera predicate that can be used to ask
whether an object was visible for some specific camera at a given time (e.g., the beginning of a
perception action), or in which cameras it has been visible.

?− t a s k _ s t a r t ( l o g : ’ CRAMPerceive_uocvmivw ’ , _S t ) ,
o b j _ v i s i b l e _ i n _ c a m e r a ( l o g : ’ V i s u a l P e r c e p t i o n _ Z 9 f X h E a e _ o b j e c t _ 0 ’ ,

p r2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k , _S t ) .
t rue .

?− t a s k _ s t a r t ( l o g : ’ CRAMPerceive_uocvmivw ’ , _S t ) ,
o w l _ i n d i v i d u a l _ o f (Cam , s rd l2comp : ’ Camera ’ ) ,
o b j _ v i s i b l e _ i n _ c a m e r a ( l o g : ’ V i s u a l P e r c e p t i o n _ Z 9 f X h E a e _ o b j e c t _ 0 ’ ,

Cam , _St ) .
Cam = pr2 : p r 2 _ h i g h _ d e f _ f r a m e ; Cam = pr2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ i r _ l i n k ;
Cam = pr2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k ; [ . . . ]

The first query computes if the object was in the field of view of the PR2’s head-mounted Kinect
camera, the second one backtracks over all cameras in the robot model and, for each of them,
computes whether the object has been visible in this camera.

7.2.8 Was the View of an Object Blocked by a Robot Part?

A common problem in object manipulation tasks is that the robot cannot see an object because one
of its arms is blocking the view. This problem could be avoided by retracting both arms out of the
scene, but this is very inefficient. To analyze if a perception failed because a robot part was in the
view, we can again use the logged pose and object position data, but instead of computing whether
the bearing towards the object is smaller than the camera’s field of view, we compute whether the
bearings to the object and some robot part are close enough together. This exploits the hierarchical
nature of the model by backtracking over all sub_components of the robot’s arm and checking each
of them to determine if they block the view.

?− t a s k _ s t a r t ( l o g : ’ CRAMPerceive_uocvmivw ’ , _S t ) ,
sub_component ( p r2 : p r 2 _ r i g h t _ a r m , P a r t ) ,
o b j _ b l o c k e d _ b y _ i n _ c a m e r a ( l o g : ’ V i s u a l P e r c e p t i o n _ Z 9 f X h E a e _ o b j e c t _ 0 ’ ,

P a r t ,
p r2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k , _S t ) .

P a r t = pr2 : p r 2 _ r _ w r i s t _ r o l l _ l i n k ; P a r t = pr2 : p r 2 _ r _ g r i p p e r _ p a l m _ l i n k ;
P a r t = pr2 : p r 2 _ r _ f o r e a r m _ c a m _ o p t i c a l _ f r a m e ; [ . . . ]
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This query is an approximation of the object’s visibility since it neither takes the volume of the
robot’s arm nor the object into account. We are working on methods for geometrically reconstruct-
ing the recorded scenes so that we can apply more sophisticated techniques like off-screen rendering
of the scene (Mösenlechner & Beetz, 2013).

These queries demonstrate which kinds of information can be acquired from logged episodic
memories. Failures during object perception tasks may be explained by robot parts blocking the
view. Objects may be found more easily when past experiences about common places to find this
kind of object are taken into account. Common problems during execution of specific plans can
be anticipated, and potentially avoided altogether, such as not trying to enter a certain region of a
known room as it is difficult to navigate and causes plan performance to drop. By recording this
information in the episodic memories and making it available to the control system by the described
queries, this experience knowledge can be used for writing robot plans that improve over time.

8. Related Work
Episodic memories similar to the ones recorded by CRAMm have been investigated in the area of
cognitive architectures, though often with a focus on modeling human cognitive processes rather
than implementing a scalable architecture for robots systems. One of the earlier cognitive architec-
ture that mimics humans’ working memory is Soar (Laird, Newell, & Rosenbloom, 1987). Soar’s
working memory contains procedural, declarative and episodic knowledge. Namely, it contextu-
alizes a context stack, which specifies active goals, problem spaces, states and operators of the
embodied agent, objects, which are denoted with attributes called values, and preferences, which
give the procedural search-control knowledge.

ACT-R (Anderson et al., 2004) is another cognitive framework that is built upon a memory
concept. In contrast to Soar, it has two different memories for declarative and procedural knowledge,
which contain facts and things, respectively. It was adapted for different cognitive applications such
as choosing among the competing associations of a concept (Anderson & Reder, 1999), list memory
paradigm (Anderson et al., 1998), and creating a memory based on the theory of serial memory in
psychology (Anderson & Matessa, 1997).

ICARUS (Langley, Choi, & Rogers, 2009), an integrated cognitive architecture for physical
agents, has two different memory hierarchies. On the one hand, the conceptual memory contains
knowledge about general features of things and their relationships. On the other hand, the skill
memory stores knowledge about how to accomplish goals. Each of these hierarchies has a long-
term memory and a short-term memory.

In the context of robotics, a memory system needs to consider the properties of physical robotic
agents, scalability issues due to storage constraints, and processing speeds of the memorized data.
Prior work in this field was done by Beetz (2000) using a simulated robot in a simpler environment
performing navigational tasks. Our work contributes by extending the domain of application to
mobile manipulation, which covers much more complex manipulative and perceptive tasks, and by
applying the principles to an actual, real robot.

The mechanisms shown are deeply anchored in the robot’s control system and can handle
high volume, low level data without disturbing the plan execution. For such low level logging,
Niemueller et al. (2012) have presented a comprehensive, dynamic logging system for low level
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sensor signals into a MongoDB database. We build upon this work, having extended it with meth-
ods for logging plan events and designators, and have integrated it with our knowledge processing
system to allow semantic reasoning about the data. To keep the amount of logged data to a man-
ageable size, we implemented techniques for throttling high-frequency data like the stream of robot
pose information before recording.

Hilbert and Redmiles (2000) describe the benefits of event logging and event stream trans-
formation into streams of interest by selecting, abstracting, and storing them according to current
requirements. They make use of this technique to summarize sequences of actions into tasks and to
characterize sequences based on probability matrices.

As Coad (1992) points out, such an “Event Logging Pattern” consists of a “device” triggering
an event remembering message which adds a certain sensor event to a database of events with
historical values when surpassing a given threshold value. In our case, these messages might be
generated when a plan event starts and when it ends, putting everything in between into its context.
Our assumption is that a certain context is active as long as it is not revoked by an active trigger
or by the absense of a previously active trigger signal. In the case of plan logging, a task context
is started at the beginning of its subroutine and ends when the subroutine is left again. Subtasks of
this task may show the same behavior, making them hierarchical children.

On the basis of such high level information, Brachman (2002) describes the necessity of systems
that can reflect on their current task and their own performance. Benefits gained from more reflective
systems would be the ability to take a step back from the current situation and getting out of a mental
box, but also to be able to explain why a certain task is being performed in the way it is done. Our
proposed approach aims at gaining this kind of knowledge from observing the (internal) state of
the agent and the surrounding environment, and thus is able to reconstruct any situation during the
performance, as well as build up a causal connection between events and their consequences.

With such knowledge at hand, Kaelbling and Lozano-Pérez (2013) elaborated on having a com-
plete belief state available for replanning and reasoning purposes. They intend to harness this infor-
mation as basis for dynamic decision making. Also taking a robot’s possible courses of actions into
account, their system plans ahead based on the current situation in order to get an impression about
the nature of future situations. The process they perform in a live scenario relies on quick processing
times and on inexpensive computation mechanisms to not slow down the ongoing task. We build
upon this principle by making a complete belief state available ex post. This enables our approach
to use more computationally expensive algorithms on memorized episodes and generate more in-
sights about the respective situation, performing a-posteriori reasoning about the characteristics of
the robot behavior.

9. Discussion and Conclusions
In this paper, we presented a comprehensive memory system for cognitive agents acting in the real
world. Within this context, we made efforts to clearly distinguish between the agent’s current belief
about the state of the world and the actual state, as well as the robot’s intentions that led to this
state. When performing an action, the agent expects a certain outcome – this makes up its believed
world state. Sensor readings, such as camera images, may provide information that contradicts its
beliefs, and can yield knowledge about how well a task was performed and even what went wrong
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when comparing the expected and the actual outcomes. Taking the intentions of the current task
into account, the agent can answer questions about why it performed a certain task in a certain way,
and it can store information about possible failures and common pitfalls during this type of action,
making improvement of future executions of the same or similar tasks feasible.

The memory of the robotic agent is filled from two streams of events. The first, being of low
volume, consists of the symbolic hierarchical task structure of executed plans. This data also in-
cludes qualitative parameterizations of tasks described by designators, allowing for logical reason-
ing. These designators can be extended over time and made more precise when new information
becomes available or old information gets retracted or replaced. The second stream holds quantita-
tive data from the robot’s sensors, including camera images and the robot pose. Both streams are
synchronized using time stamps of the start and end times of plan events. This approach allows to
reason about what information was gained through which measures. Perception tasks that have lim-
ited a priori information about the objects they are looking for yield their requesting and resulting
designators. Comparing both may conclude that an object on a table is at a specific 3D coordinate,
changing vague information into more specific details.

The proposed representation forms the basis for the definition of higher-level concepts like
which action causes which effects and what the current beliefs are. For example, taking an arm
movement of the robot into account, this action might be signaled by a plan event VoluntaryBody-
Movement as it is part of a grasping action. On the basis of this high level concept, low level data
about the robot’s pose and the actual reaching motion of the arm can now be connected and reasoned
about. Assuming all movements to be connected to the current plan event is sufficient here as the
plan triggering the motion takes exclusive control over the arm through a semaphore mechanism.
Based on the agent’s belief, information about real-world entities is available to internal reasoning
processes through the designator representation as well. Taking two designators denoting objects in
the real world, their positions might be concluded to be near each other as the designators indicate
physical proximity – on a quantitative level, e.g., being near to each other, or on a qualitative level,
residing on the same supporting surface.

We presented a comprehensive robot memory system, featuring an extensive encoding scheme
for symbolic and subsymbolic experience data collected from real-world robot plan executions. An
integrated storage approach for both kinds of data was introduced and logical queries for informa-
tion retrieval from this memory were developed to make use of the resulting knowledge possible
for plan improvement mechanisms. The presented queries up to now picture the conceptual setup
of the system, forming the base for more elaborate reasoning mechanisms and query types. Taking
more information into account and running exhaustive analysis algorithms on the collected experi-
ence data offers much potential when it comes to a-posteriori reasoning and analysis, especially in
terms of life long learning concepts. Collecting large amounts of data over many trials can form
the basis for substantial improvements during planning and plan execution. Possible results of such
learning processes include regions that reflect the utility of robot and object poses for certain tasks,
and appropriate failure handling for failed tasks under a specific situational context. Experiences
collected by robotic agents in different situations can not only hold information about single task
types currently performed, but open up possibilities to reason about general knowledge that applies
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to many situations and tasks. We are developing an open source software framework1 around the
presented techniques that implement plan logging capabilities. For sensor data storage, we rely
on the mongodb_log ROS package, which is available as open source, and the reasoning capabili-
ties shown in our example queries for knowledge acquisition are implemented into the KNOWROB

knowledge base system, which is being developed as open source as well.
Based on the presented results, we are working on a number of extensions of, and applications

for, the plan logging system. The developed system acts as a framework for supplying robot plan
designers with a memory collection and interpretation mechanism to enhance robot behavior. In its
current state, there is no comprehensive feedback mechanism to transparently incorporate collected
data. We are expanding its capabilities and develop specialized plan structures that transparently
base plan decisions on former experience data. To make the collected memories more accessible
for humans, we are developing a web interface based on the Robot Web Tools library (Alexander
et al., 2012) that provides visualization tools for 3D scenes and for statistical data for past and
live episodic memories. To enhance plan performance through log data analysis, we also work
on abstracting from plan control flow paths to generate finite automata from executed plans, and
therefore allow anticipation of live plan performance based on earlier episodes. In the long term, we
want to incorporate more data not only from the CRAM plan system, which currently is the only
symbolic high-level data source, but also control decision details from external components such as
the perception system and the knowledge base, and extend the developed query library accordingly.
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