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Abstract
In this paper we present a computational approach to key aspects of understanding social interac-
tions. First, we specify a class of problems – understanding fables – that require inference about
agents’ mental states from their behavior. After this, we review earlier work on UMBRA, an ab-
ductive system for single-agent plan understanding, and describe extensions that let it deal with
multi-agent scenarios, including ones that involve accidental errors and intentional deceptions.
These augmentations include distinguishing domain-level knowledge from more general content
about social interactions and applying this knowledge at nested levels of belief. We also report
the results of experimental studies on a set of fable-based scenarios that demonstrate the benefits
of these extensions. In closing, we discuss how our approach to social cognition is informed by
earlier research in the area.

“Oh, what a tangled web we weave / When first we practise to deceive!”
– Sir Walter Scott (Marmion, 1808)

1. Introduction

Understanding the nuances of social interactions is a sufficiently routine task that people usually do
it without conscious effort. In social settings, we continuously generate hypotheses about others’
beliefs and goals when performing social actions, as well as evaluating whether reality matches their
beliefs or satisfies their goals. In some cases, explaining social behavior requires the ability to infer
others’ ignorance of the true situation and even their intent to deceive third parties. Moreover, it can
involve thinking about how agents reason about others and how they reflect upon their own social
interactions. All of these facets of social cognition rely on constructing models of others’ mental
states, a topic that has received less attention than it deserves in the AI literature.

Such abilities are a distinctive characteristic of human intelligence, and the aim of our research
is to develop a computational account of the representations and processes that underpin them. Such
a theory should specify both the stable long-term knowledge and the dynamic short-term elements
that support social understanding, and it should also state the mechanisms that apply this knowledge
to explain behavior in terms of agents’ inferred mental states. Our account should generalize beyond
specific physical domains and support reasoning about situations that involve errors and deception.
In this paper, we address each of these issues.
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Before proceeding further, we should discuss briefly some research paradigms that touch on
related topics but that differ from our own in important ways. These include:
• Activity recognition (e.g., Aggarwal & Ryoo, 2011), an area of AI that deals with classifying

an agent’s observed behavior into some known category; this differs from our focus because it
does not deal with the mental states underlying behavior.

• Plan recognition (e.g., Goldman, Geib, & Miller, 1999; Baker & Tenenbaum, 2014), another AI
subfield that is concerned with inferring the goal or goals that produce observed behavior. This
comes closer to our emphasis but typically deals with single agents and focuses on domain-level
knowledge; it does not necessarily involve representations involving mental states.

• Behavior explanation (e.g., Malle, 1999), a movement in social psychology that studies infer-
ences about the causes, reasons, and intentions behind human actions. It includes attribution
theory – the study of people’s ordinary explanations of behavior. The aims of behavior expla-
nation are close to our own, but the paradigm has not yet produced computational models.

• Collaborative planning (e.g., Rao, Georgeff, & Sonenberg, 1992; Bond, 2002), an area of AI
that deals with cooperative activity – specifically, forming joint plans among multiple agents
on the basis of shared goals or mutual intentions. Work in this tradition often encodes other
agents’ beliefs and goals and the dependencies between them (e.g., Castelfranchi, 1998; Pearce
et al., in press), but focuses on generation rather than understanding.

• Story understanding (e.g., Schank & Abelson, 1977; Wilensky, 1978; Mueller, 2002), a subfield
of natural language processing that aims to interpret, summarize, and answer questions about
stories, some of which deal with interacting agents. This work may be knowledge-driven and
often deals with inference of agents’ beliefs and goals, but typically in the context of written
stories; we abstract away from the source of information about agent behavior, which need not
come from natural language.

Although none of these research areas has precisely the same focus as our own, there are enough
common elements that we will incorporate a number of their ideas and assumptions.

In the sections that follow, we report a computational account of social understanding that builds
on insights from these prior efforts. Readers who are familiar with this earlier work will perceive that
the elements in this account are not novel, but also that, when taken together, they make an important
contribution by providing a coherent system-level approach to modeling social understanding. We
begin this paper by presenting a suitable class of problems to drive our work. After that, we review
UMBRA, an earlier abductive system for single-agent plan understanding that forms the basis of our
response. Next, we describe the representational and processing extensions we have made so that
UMBRA may support social cognition. We use experimental studies to evaluate these extensions,
demonstrating their efficacy and importance to our approach. In closing, we discuss specific pieces
of related work in more detail, along with our plans for future research.

2. Social Understanding of Fables

Research in cognitive systems always benefits from focusing on some class of problems that sug-
gests important directions to explore and challenges to overcome. We have chosen to focus on
Aesop-like fables to drive our research on social understanding. These typically involve multiple
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Table 1. The eight fables comprising our set of test scenarios.

Fable Description

THE HUNGRY CROW A crow solves a simple problem: feeling hungry, she travels to a
barn and acquires grain by opening a jar.

THE SPYING SNAKE A snake watches and understands what the crow is doing as she
assuages her hunger by travelling to a barn and opening a jar to
acquire grain.

THE PROUD LION A lion is zealously proud of his mane and willing to attack anyone
who dares to attempt such finery. The lion, passing by a river, sees
his reflection. He jumps in the river to attack the ‘other lion’.

THE SHEEP AND WORMS A sheep watches a crow eating worms. He mistakenly infers that the
worms are good to eat, and follows suit, becoming sick as a result.

THE FOX AND THE CROW A hungry crow in possession of some sour, inedible grapes trades
them to an unwitting fox in return for some delicious grain.

THE LURKING EEL A fox, finding an eel in a pond (and overestimating his swimming
skill), decides to seize it and eat it. The eel drowns the fox instead.

THE TRAPPED CROW A fox has trapped a crow in a jar. The crow pretends to have died of
suffocation in order to trick the fox into letting it escape.

THE LION AND THE SHEEP A lion is too old to hunt animals. The lion announces he is sick. The
sheep, believing he is harmless, follows social convention and visits
the lion’s caves to pay his respects. The lion kills and devours him.

agents who interact in nontrivial ways, yet the tales themselves are succinct and omit irrelevant
domain details. This makes them well-suited to demonstrating social cognition, which is largely
orthogonal to reasoning about the physical world. Moreover, as Meehan (1977) notes in his early
work on story generation, such fables involve “simple stories whose points, or morals, are [. . . ]
concerned with general lessons, notions from a higher domain.” This suggests they will be a useful
vehicle for studying cognitive abilities that generalize beyond narrow domains, although we will
not focus on the task of drawing moral lessons here.

Rather than taking fables directly from Aesop, we have designed a suite of vignettes in the same
style, in some cases amalgamating or re-telling existing fables. Thus, they use animals as characters
in settings that (a) are brief, (b) focus on goal-directed behavior, (c) often center on high-level social
interactions that include communication, and (d) involve agents who reason about others’ mental
states. Each fable describes the participating agents’ actions, perceptions, and choices. The main
difference from standard fables, other than our indifference to their morals, is that the fable is not
narrated to an audience in the manner of a story; rather, elements of the tale are given as beliefs of
the system, which implicitly watches events unfold.

89



B. MEADOWS, P. LANGLEY, AND M. EMERY

Table 1 presents these fables, ordered by the complexity of reasoning they require for under-
standing. For instance, the first story amounts to basic plan understanding, albeit expressed in terms
of the things the system comes to believe. The second involves social interaction only through ob-
servation. We include these two fables to establish that our system can reason about agents’ nested
models of other agents, sometimes called ‘mind reading’. These two scenarios follow the same ba-
sic plan but have different levels of embedding in their explanatory structure. For example, in The
Hungry Crow, the observer infers that the crow believes the jar is not locked; in The Spying Snake,
the observer comes to believe that the snake believes that the crow believes the jar is not locked.

The remaining fables in the table are more complex. In both The Proud Lion and The Sheep
and Worms, the observer must infer the protagonist’s mistaken beliefs and why they arise, while
also drawing accurate conclusions about the true events. In The Fox and the Crow, the observer
sees the crow recognize the fox’s false beliefs – incorrect assumptions about trustworthiness and
the edibility of food – and capitalize on them for her own ends; something similar happens in The
Lurking Eel. In The Trapped Crow and The Lion and the Sheep, the observer sees the antagonist go
further, intentionally deceiving another agent in order to enact some plan.

We maintain that understanding these vignettes requires a number of capabilities that are central
to social cognition. These include encoding and reasoning about agents’ models of other agents’
mental states, as well as more sophisticated abilities related to representing false beliefs, taking
advantages of those beliefs (opportunism), and encouraging such errors for one’s own ends (decep-
tion). We now turn to a computational framework that supports reasoning about social interactions
of this form.

3. A Review of UMBRA

One of our central theoretical claims is that social understanding involves the construction of ex-
planations through a process of abductive inference. The type of ‘everyday reasoning’ that such
abduction provides is appropriate to understanding tasks in real-world domains, where an agent
is unlikely to ever have access to complete information. In previous work (Meadows, Langley, &
Emery, 2013), we have reported UMBRA, a system that approaches single-agent plan understanding
from this perspective. However, before we describe the extensions required to handle the more so-
phisticated task of social understanding in the context of abductive inference, we review UMBRA’s
representations and mechanisms.

3.1 Representation in UMBRA

Like many cognitive architectures (Langley, Laird, & Rogers, 2009), UMBRA divides content into
a working memory and a long-term memory. Working memory stores both information arriving
from the environment, such as statements about some agent’s behavior, and inferences drawn from
this external input. This short-term store contains two types of element – beliefs and goals – stated
as logical literals. For example, belief(lion, prey(sheep)) represents the lion’s belief that the sheep
is a prey animal and goal(lion, eat(lion, sheep)) encodes the lion’s goal to eat the sheep. Together,
these types of elements are sufficient for the task of single-agent plan understanding.
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In contrast, long-term memory contains conceptual knowledge and skills that encode general-
ized knowledge about situations and activities, similar to those found in hierarchical task networks
(Nau et al., 2001). Each conceptual rule associates a predicate in the head with a relational situation
described in the body. Each skill or method associates a predicate in the head with a set of precon-
ditions, a set of invariants, a set of postconditions, and a set of subtasks. Higher-level predicates
are defined in terms of lower-level ones, imposing a hierarchical organization on long-term mem-
ory. The same predicate can appear in the head of different conceptual or skill rules, supporting
disjunctive and recursive definitions.

For example, one decomposition of the hunt(Actor, Prey, Loc) skill involves a pattern of invari-
ants agent(Actor) and not(dead(Actor)), subtasks chase_to(Actor, Prey, Loc) and kill(Actor, Prey,
Loc), and postconditions dead(Prey) and at_location(Prey, Loc). The subtasks chase_to(Actor, Prey,
Loc) and kill(Actor, Prey, Loc) have their own decompositions in terms of preconditions, invariants,
postconditions, and actions.

We can build on these concepts to represent another key structure: the explanation. An expla-
nation is a set of linked rule instances, and resides in a partition of working memory. Because of
the hierarchical structure of knowledge in long-term memory, the explanations the system generates
can be represented as directed graphs whose leaves are concept literals, applied operators, and con-
straints. Their roots and nonterminal nodes are rule heads, where nonterminals appear as subtasks in
other rule instances and roots do not. Each component rule instance in an explanation is annotated
with provenance information on whether its conditions were assumed, inferred, or retrieved from
memory, similarly to the way working memory elements store information about whether they were
introduced via assumption, inference, or external input.

In the fable domain we have constructed, explanations may draw from 73 hierarchical rules,
with a mean of 13.9 conditions each. This set of rules involves 115 unique domain-level and meta-
level predicates in total; the mean arity of a predicate is 4.7. Particular domain predicates occur as
rule conditions with frequencies that range from 0.1 percent to 7.7 percent.

3.2 Processing in UMBRA

UMBRA constructs explanations in an effort to understand its observations. The system’s theoreti-
cal foundations include three primary tenets:
• Explanation generation operates incrementally as new input observations arrive, with later in-

ferences building on earlier ones;
• Reasoning is abductive in character rather than deductive, in that many inference steps use rules

to introduce plausible assumptions rather than drawing strict derivations; and
• Inference is data driven, usually involving ‘bottom-up’ chaining from observations and heads

of rules, rather than ‘top-down’ chaining from queries.
The system operates over a series of input cycles in which it receives external information that it
attempts to explain. Every input cycle comprises zero or more inference cycles, each of which
involves a single rule application that adds elements to working memory. Inference cycles corre-
spond roughly to recognize-act cycles in a production system architecture (Laird, 2012), except
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that UMBRA rule applications only add elements to working memory, so that its construction of
explanations is monotonic. Within a single inference cycle, the system:
• Identifies each rule R that has a condition or head C unifiable with some element E currently

in working memory;
• Generates, for each candidate rule-element pair R–E, a partially instantiated head H that is

based on the unification of C with element E;
• Produces candidate rule instances for each partially instantiated rule head H , in each case

minimizing the number of assumptions made to complete the body of rule R;
• Ranks these candidate rule instances by an evaluation function that combines arithmetically the

average recency R of matched elements, the total number T of assumptions, and the fraction U
of observations and inferred heads in the resulting explanation not explained by other rules.

• Either extends the explanation by adding inferences from the lowest-cost candidate to memory,
or, if the cycle has exceeded the allowed number of assumptions, ends the current input cycle.

This sequence of operations incrementally extends the explanation to incorporate ever more obser-
vations and, where needed, default assumptions that connect them. The end result is a coherent,
connected, hierarchical account of the input in terms of available background knowledge.1

3.3 Recent Revisions to UMBRA

In previous work, we tested UMBRA on plan understanding tasks that involved inferring the beliefs
of single agents (Meadows, Langley, & Emery, 2013). Precision and recall scores from experiments
in a standard domain were similar to those of earlier systems that operated on the same tasks in
a top-down manner, which suggested that our approach to plan understanding had some promise.
These results encouraged us to apply our system to tasks that require social understanding, like
those described earlier. However, detailed analyses of earlier runs revealed a number of drawbacks
to its operation. These led us to revise UMBRA along several fronts that we believed would support
a more robust ability to generate plausible and complete social explanations.

The original UMBRA had long processing times and a high chance of firing rules that would
produce false positives. We addressed these issues by revising the system so that it only retrieves
rule instances for application if their head or one of their antecedents unifies with an element whose
predicate is not too prevalent in the knowledge base (comprising > 1.5% of all rule elements). In
runs on plan understanding tasks over the fable domain, this eliminates about 15% of predicates like
actor and at_location, which are very common and thus contain little information.

Once UMBRA has generated a set of candidate rule instances, it prunes that set by removing
each instance I that does not meet any of four criteria: (a) I is deductively valid; (b) I’s subtasks
include a nondefault element that does not appear in any other rule instance; (c) I’s antecedents
include two nondefault elements that do not appear in any other rule instance, and I’s subtasks were
not all assumed in the course of applying I; or (d) I’s subtasks include two nondefault elements that
do not appear together in any other rule instance in the explanation. An element is nondefault if it
was provided as input or inferred from a rule head. The restrictions imposed by these control rules
keep the system from producing overelaborate explanations that contain low-quality rule instances.

1. UMBRA’s design borrows ideas from a number of earlier systems, some of which we discuss in Section 6.
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UMBRA’s evaluation function lets it select the rule instance I to apply on each inference cycle,
but we found the criterion used by Bridewell & Langley (2011), ‘average recency of I’s matched
elements’, to be relatively ineffective. Thus, we have replaced it in the revised UMBRA with
the proportion, P , of I’s antecedents (plus its head) that it would need to assume. The specific
arithmetic function is P + T/15 + U , where T is the number of assumptions and U is the fraction
of structural elements not yet explained by other rule instances.

We tried several ad hoc variations on this function, each using the components P , T , and U , and
found very little resulting difference. With the augmented UMBRA’s final design, the influence of
the specific choice of evaluation function on the system’s outputs decreased substantially. UMBRA
tends to find and evaluate the same rule instances in later cycles, with the result that as long as
the function is generally able to distinguish between high- and low-quality rule instances, the high-
quality candidates will be inferred first. More often than not, inference of the low-quality instances
is then already precluded by a combination of the control rules just described, and contradiction and
ordering effects, rather than by their low score.

Informal studies suggested that these revisions to UMBRA improve its ability to construct co-
herent and plausible explanations, increasing the number of desirable assumptions it makes (thus
raising recall) without increasing the chances of undesirable ones (and reducing precision). They
appear to reduce UMBRA’s sensitivity to a key parameter, the number of default assumptions al-
lowed per rule application. We will not report these empirical results here, as they are unrelated to
the paper’s focus on social cognition, but the revised system appears to offer an effective approach
to generating explanations for the observed behavior of individual agents.

4. Extensions to UMBRA for Social Understanding

As noted above, our initial studies of UMBRA’s behavior on abductive understanding of single-
agent plans produced encouraging results, but scenarios that involve social explanations of inter-
acting agents, such as those in our fables, introduce new issues that required additional extensions.
In this section, we describe our modifications to UMBRA for the purpose of social understanding,
focusing first on representational changes and then turning to processing augmentations.

4.1 Representational Extensions

Before UMBRA can reason about social interactions, it must first be able to represent them. One
important aspect of such exchanges is that they occur over time. We were able to avoid explicit
temporal encodings in our earlier work because hierarchical plans for single agents are typically
constrained enough to suggest correct interpretations without them. Analyses suggest that temporal
relations are more important in social plans; for instance, the time at which one agent says something
to another can influence later behavior in important ways.

In response, we have extended our notation for beliefs and goals so that each specifies (1) the
agent A holding that belief or goal, (2) the content C of that belief or goal, and (3) the start and end
times for the structure. The start time denotes when agent A began to believe C or adopted goal
C; the end time encodes when A stopped believing C or abandoned it. Unknown times are denoted
by Skolem values. For example, belief(lion, prey(sheep), 06:00, s1) represents the lion having a
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belief that the sheep is a prey animal from time 06:00 to some unspecified time, while goal(lion,
healthy(lion), 12:00, 12:30) encodes the lion’s goal, held from 12:00 to 12:30, to be in good health.

In many social settings, we are concerned with the order in which things happen. This is easy to
express when we know the start and end times for events, but the possibility of ‘Skolemized’ times
suggests a need for more general ways to encode such relations. To this end, the new UMBRA incor-
porates constraints, a third type of meta-level predicate for mental states that lets it specify various
types of ordering, identity, and temporal relations on elements of other structures. For example,
constraint(lion, notequal(sheep, s1), 05:30, s2) encodes the lion’s constraint, adopted at 05:30, that
the sheep is not identical to some Skolem value s1, while constraint(fox, during(s3, s4, 08:00, s5),
05:35, 06:00) denotes the fox’s constraint, held between 05:35 and 06:00, that time period from
s3 to s4 occurred between 08:00 and s5. Constraints are first-class structures, at the same level as
beliefs and goals. Thus, they can appear both as elements in working memory and as components
of rules in long-term memory. Both conceptual knowledge and skills involve constraints, with the
former typically emphasizing inequalities and the latter focusing largely on temporal relations.

As noted earlier, a central requirement for understanding social interactions is encoding an
agent’s beliefs, goals and constraints about other agents’ mental states. To support this ability,
we have extended UMBRA’s notation to include embedded structures in which the content of one
agent’s beliefs and goals may be the beliefs and goals of other agents.2 For example, belief(crow,
goal(lion, eat(lion, sheep, s3, s4), s5, s6), s1, s2) denotes that the crow believes from time s1 to s2
that the lion has the goal eat(lion, sheep, s3, s4) from time s5 to s6. Nor is the system limited to
two-level structures; it can represent arbitrarily deep embeddings of beliefs and goals, although we
have not needed more than four levels in our work to date.

We should note that embedded mental states occur primarily in working memory, with most el-
ements of rules in long-term memory having a single level. This is because the rules deal primarily
with a single agent’s beliefs and goals about the environment, such as the expected effects of exe-
cuting a hierarchical skill under certain conditions. However, knowledge about social interactions
and judgements is an important exception. A primary purpose of such interactions is to alter others’
mental states in goal-directed ways, so rules that describe them must characterize not only how oth-
ers’ goals and beliefs change over time, but also how those changes relate to the actor’s goals and
beliefs. With this in mind, we have provided UMBRA with social knowledge that uses embedded
structures to encode such relations.

These skills and conceptual rules are typically domain independent, in that they can refer to
any content in an agent’s belief or goal, although a few that we created refer to predicates that
have intermediate levels of generality. These include rules about pretense (e.g., playing dead),
trusting other agents’ statements, transactions, determining whether another agent is a threat, and
being jealous of another’s property. Nevertheless, each of these rules describe social relations or
interactions, and they are considerably more general than those used in our earlier work on single-
agent plan understanding. Table 2 gives the heads of the 13 social rules that we provided to UMBRA
for reasoning about the fable scenarios.

2. Embedded logical literals are not the only plausible representation; we briefly discuss worlds and partitions in Sec-
tion 6. We believe that use of these alternative frameworks would not require changes to our core tenets, only to
mechanisms like those for automatic embedded rule generation for knowledge application.
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Table 2. Predicates of rules relevant to fables provided to UMBRA to support social inference.

announce_genuine
An agent believes some concept, announces it, and another agent adopts the belief as a result.

announce_wrong
An agent believes some concept, announces it, and another agent (who believes the original agent is
believing wrongly) does not adopt the belief as a result.

announce_false
An agent does not believe some concept, announces it, and another agent adopts the belief as a result.

interpret_as_real, interpret_as_real_agent, interpret_as_real_attributed
An agent interprets something it has perceived as a real entity (with agency or other attributes).

interpret_as_image, interpret_as_image_attributed
An agent interprets something it has perceived as a false image (perhaps with certain attributes).

become_jealous
An agent is proud of an attribute A and experiences envy due to its belief that another agent has A.

not_a_threat
An agent believes that another agent is not a threat due to some reason.

pretend_attribute
An agent deceives other actors at its location by pretending to have some attribute (e.g., playing dead).

suggest_trade_good_faith
An agent believes its possession is good and offers to trade it for something it believes to be good.

suggest_trade_bad_faith
An agent believes its possession is bad and offers to trade it for something it believes to be good.

4.2 Processing Extensions

Although these representational extensions provide UMBRA with the content necessary for so-
cial understanding, the system also required augmentations to its mechanisms to take advantage of
them. These changes revolved around processing information about times and constraints, as well
as reasoning over the embedded structures used to encode models of others’ mental states.

The most basic extension concerns time. In particular, when UMBRA makes inferences, it
provides the inferred beliefs with start times based on the current cycle, and generates constraints
stating that the start times for any embedded elements occur before their associated end times. The
system also adds constraints to working memory as default assumptions when they appear as condi-
tions in the instantiated rule and are not already present in memory. When those constraints include
unbound variables, the system inserts Skolem values to denote unknown times that satisfy the spec-
ified temporal relations. It does the same for other constraints involving equality or inequality.

UMBRA also takes constraints into account when making inferences. In particular, the system
eliminates from consideration any rule instance that would produce a default assumption inconsis-
tent with any temporal or other constraint already in working memory. For example, if the constraint
before(t1, t2) is present and a rule instance would add before(t2, t1), then it would reject this candi-
date and consider other alternatives instead. As a result, the system never produces an explanation
with such direct contradictions, although indirect ones can arise, as we discuss in Section 7. This
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ability also improves efficiency, as the system eliminates many inconsistent areas of the space of
possible explanations from its investigation.

The other major processing extension involves giving UMBRA the ability to reason over nested
expressions. Most domain rules refer to believed or desired relations in the external world, but the
content against which they match may be embedded within models of others’ mental states. For
instance, the system may have a rule that includes an antecedent can_eat(Agent, Substance) but
have in working memory belief(snake, belief(fox, can_eat(crow, grain), t1, t2), 09:50, t4). To align
non-embedded rules with such elements, the augmented UMBRA strips both rule antecedents and
working memory elements of their wrappers to expose their domain-level content. If the system
finds a potential match, it selects the appropriate level of nesting to unify antecedent with element,
then translates the entire rule to this level by wrapping its antecedents in the notation for mod-
els of mental states. Although in principle such embeddings can be arbitrarily deep, our current
implementation only adds up to three levels of nested mental states.

UMBRA did not require any changes in its abductive inference mechanisms to utilize the knowl-
edge about social interactions shown in Table 2, despite their more abstract character. During pro-
cessing, the system unifies the variables in these rules with the concrete structures that arrive as
input and that result from domain-level inference, incorporating them into the explanation that it
constructs incrementally. Instances of these rules provide connective tissue that make social ex-
planations more coherent, and thus aid the overall abduction process. The fact that no changes
to the process were needed does not reduce the importance of abduction to our account of social
understanding – it only shows the generality of the existing mechanism.

4.3 Central Features

We can summarize these representational and processing extensions in terms of three capabilities
that appear to be central to the task of social understanding:

1. Inference over domain-independent social knowledge based in large part on mental structures;
2. Mental states with intrinsic temporal qualities, including constraints on the latter; and
3. Reasoning over different levels of embedding using the same knowledge elements.

We believe these interrelated abilities are necessary for mental state ascription through ‘everyday’
reasoning processes such as abduction. A system that lacks the first would not link agents’ mental
states to their behavior. Reasoning without the second could not explain nuances such as the dif-
ference between an agent having a belief after or until they were informed of something. The third
enables arbitrary application depth without requiring a new rule for each level of mental embedding.

Although these features are not innovative in themselves, and at least one earlier abductive sys-
tem, AbRA (Bridewell & Langley, 2011), incorporates very similar ideas, we believe the way we
have combined and applied them is novel. We do not claim that they are the only important capa-
bilities required for social understanding, nor that ours is the only reasonable approach to all tasks
of this nature. For example, Polyscheme (Cassimatis, 2006), in its search through possible worlds
during default reasoning for mental state ascription, utilizes the first two ideas, while obviating the
need for the third by using multiple ‘worlds’ and operations that support reasoning across them.
Nevertheless, we believe that, in combining these three abilities in our implementation, we have
developed a powerful and sophisticated framework. However, we must still show this is the case.
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5. Empirical Evaluation

We have described some extensions to UMBRA that were motivated by the task of social plan
understanding, but whether they work as intended remains an empirical question. In this section,
we present a number of claims about UMBRA’s explanatory power, the dependent variables we
have used to measure the system’s behavior, and some experiments designed to test those claims.

5.1 Claims and Methodology

We are interested in UMBRA’s ability to weave an explanation of observed or reported social in-
teractions. This should include not only simple interchanges, but ones that require the participating
agents to reason about others’ mental states, including situations that involve ignorance (e.g., mis-
taken beliefs and faulty reasoning) and behaviors that capitalize upon that (e.g., opportunism and
deception). We are thus chiefly concerned with UMBRA’s capacity for reconstructing an accurate
and complete account of events based on the partial information provided to it.

We can transform these ideas into three empirical claims or hypotheses about the extended
system’s ability to understand social behavior:
• The extended UMBRA can generate appropriate explanations and inferences, for the fables

described earlier, from partial information;
• UMBRA’s ability to apply its knowledge at different levels of embedding is critical to this

functionality; and
• High-level knowledge about social interactions is also essential to UMBRA’s ability to generate

reasonable social explanations.
The first hypothesis relates to the extended system’s basic capability for social understanding,
whereas the others concern the benefits of two extensions we introduced for this purpose. To test
these claims, we designed and ran a number of experiments. In each case, we ran UMBRA on each
of the eight scenarios, presenting it incrementally with a succession of observed events.3

The inputs on each run comprise those elements of a fable, stated in logical form, that are
available to the observing agent, along with background facts about the domain. Elided elements
are those unobserved actions and unknown concepts that are not explicitly available in the story. For
example, in the fable of The Spying Snake, the snake watching the crow does not know that there is
grain in the jar (or that the crow believes there is grain in the jar, etc). Thus, the input includes no
constraints or goals, and only some of the beliefs at appropriate levels of embedding. The number of
elements elided from the input trace varies across scenarios; in total, we provided about 37 percent
of the desired explanations to the system, forcing it to infer the rest. Table 3 presents some of the
inputs provided for The Fox and the Crow fable, along with a sample of the inferences that we
wanted UMBRA to make in response.

3. Initial studies suggested that running the system in ‘batch mode’ by providing the inputs up front only improved
the quality of the explanations produced a little, which is consistent with our earlier results on single-agent plan
understanding. Thus, we limited our formal experiments to incremental processing, which seems closer to the ways
humans operate in real settings.
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Table 3. A selection of inputs and desired outputs for a small part of the scenario The Fox And The Crow.
The outputs shown are those used in rules for offering a trade in bad faith and for trading food (as applied by
the crow). Constraint elements are not shown. Skolem values are given in the form sx.

Elements given:

belief(observer, belief(crow, exists(grain1, 08:00, 24:00), 08:01, _), 08:01, _)
belief(observer, belief(crow, has(crow, grapes1, 08:00, s1), 08:01, _), 08:01, _)
belief(observer, belief(crow, exists(grapes1, 08:00, 24:00), 08:01, _), 08:01, _)
belief(observer, belief(crow, not(dead(crow, 08:00, 24:00)), 08:01, _), 08:01, _)
belief(observer, belief(crow, okay(grain1, _, _), 09:00, _), 09:00, _)
belief(observer, belief(crow, has(fox, grain1, _, s1), _, _), 09:03, _)
belief(observer, belief(crow, not(okay(grapes1, 08:00, 24:00)), 08:00, _), 09:03, _)
belief(observer, belief(crow, suggest_trade(crow, grapes1, fox, grain1, 09:01, 09:03), 09:04, _), 09:04, _)
belief(observer, belief(crow, has(crow, grain1, 09:05, _), 09:05, _), 09:05, _)
belief(observer, belief(crow, actually_trade(crow, grapes1, fox, grain1, 09:03, 09:05), 09:05, _), 09:05, _)
belief(observer, belief(crow, has(fox, grapes1, 09:05, s2), 09:05, _), 09:05, _)
belief(observer, belief(crow, not(has(fox, grain1, 09:05, _)), 09:05, _), 09:05, _)
belief(observer, belief(crow, not(has(crow, grapes1, 09:05, _)), 09:05, _), 09:05, _)

Desired inferences:

belief(observer, belief(crow, agent(fox), 08:01, _), 08:01, _)
belief(observer, belief(crow, agent(crow), 08:01, _), 08:01, _)
belief(observer, belief(crow, has_attribute(crow, is_scoundrel), 08:01, _), 08:01, _)
belief(observer, belief(crow, can_eat(crow, grain1), 09:00, _), 09:00, _)
belief(observer, belief(crow, belief(fox, okay(grapes1, _, s2), 09:00, _), 09:00, _), 09:00, _)
belief(observer, belief(crow, belief(fox, can_eat(fox, grapes1), 09:00, _), 09:00, _), 09:00, _)
belief(observer, belief(crow, goal(fox, trade(crow, grapes1, fox, grain1, _, _), 09:03, _), 09:04, _), 09:04, _)
belief(observer, belief(crow, suggest_trade_bad_faith(crow, grapes1, fox, grain1, 09:01, 09:03), 09:04, _), 09:04, _)
belief(observer, belief(crow, trade(crow, grapes1, fox, grain1, 09:01, 09:05), 09:05, _), 09:05, _)

5.2 Dependent Measures

We cannot evaluate UMBRA’s abilities without some measure of its behavior. In each test, the
system has access to the full corpus of fable knowledge (73 rules). This implies that for any given
scenario, a large number of rules are available that should not appear in a reasonable explanation.
Most of these – including several rules that are not relevant to any of the scenarios we test – will
have at least one predicate in common with the input observations, and thus could potentially be
(mis-)applied. We are interested in evaluating UMBRA’s capacity to select and apply valid rules,
including their decompositions, levels of mental embedding, and instantiations.

The most natural dependent variables are precision and recall, which are widely used in research
on natural language, especially information retrieval and question answering. Briefly, the system
should neither omit plausible conclusions nor draw inappropriate ones. For each fable, we enumer-
ated a set of ground literals that we believed should be inferred given the observations. For each run
of UMBRA on that fable, we counted the number of inferred elements that appeared in this target
set (true positives or TP), the number of inferences that were not in the target set (false positives or
FP), and the number in the target set that the system failed to produce (false negatives or FN). We
then combined these to calculate precision (TP/(TP + FP )) and recall (TP/(TP + FN)).
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Our metrics are similar to, but differ in detail from, metrics used in other recent efforts on ab-
ductive inference. As in Bridewell and Langley’s (2011) work on plan understanding, we measure
precision and recall over all elements in the explanation. This contrasts with the scheme that Ragha-
van and Mooney (2010) report, which focuses only on the top-most literal in a hierarchical plan. We
maintain that measuring precision and recall over all literals not provided as input is more appropri-
ate for tasks that involve plan understanding. These should include literals that describe states, not
only those that refer to activities, as typically done in the plan recognition literature.

Our measures are more stringent that those of Raghavan and Mooney (2010), in that we regard
any inferred literal with some incorrect content as entirely wrong, rather receiving partial credit
based on its predicate and some arguments. We also diverge from Bridewell and Langley (2011) in
that we automatically count literals with Skolems as incorrect unless the observations provide no
way to make them constants, in which case they are acceptable provided their use is consistent with
the target literals. We additionally count unobserved temporal constraints in our measures, since
these constitute key parts of explanations.4

5.3 Basic Explanatory Ability

Our first claim was that UMBRA can generate appropriate explanations from partial information
about scenarios that involve social interaction, including ones that involve misunderstanding and
deception. Our main approach to testing this did not involve a controlled experiment, but instead was
an instance of demonstrating new functionality, which Langley (2012) has argued is an important
form of evaluation in cognitive systems research. To our knowledge, no previous work on plan
understanding has demonstrated this capability, making progress here an important achievement.

Figure 1 (a) shows the precision and recall scores for the extended UMBRA on each of our
eight fable-like vignettes. The number of target inferences ranged from 34 to 141 per scenario,
with a mean of 73.3, and involved between zero and four levels of embedding. The graph reveals
that the system generally has high precision, meaning it generates few undesired inferences, as
well as high recall, meaning that it produces most of the desired inferences. In general, UMBRA’s
reasoning mechanism generates few false positives and few false negatives. Moreover, additional
runs suggested that altering the maximum number of assumptions allowed per rule, the main system
parameter, had little effect on these scores – slightly increasing false positives but also increasing
true positives, as reflected in the higher recall and lower precision scores in Figure 1 (b). Varying
this parameter did affect UMBRA’s inference time, with higher settings (the maximum being six)
slowing the system’s behavior substantially, suggesting an important area for future research.

UMBRA had difficulty with a few of the scenarios. For instance, one of the rightmost points
in Figure 1 (a) corresponds to an instance of perfect precision but imperfect recall, in that the
system omitted some target inferences. In this vignette, The Fox and the Crow, the system infers

4. There were a few cases in which UMBRA made inferences that were orthogonal to the target explanation but that still
seemed valid. For instance, the observer believed the eel was wet in a scenario that involved the eel living in a pond.
These ‘non-canonical’ inferences were excluded rather than being counted as true or false positives. The fact that our
ground truth measure was defined by the system developers may draw claims of bias; however, there is a dearth of
other options, and this approach has been prevalent in earlier work of this type. A possible alternative would be to
have results evaluated by a panel of judges.
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Figure 1. Precision and recall scores on each of the eight fable scenarios discussed in the text for (a) runs
of the extended UMBRA with partial information and (b) the same runs with the number of assumptions
allowed per rule increased from four to six.

the observer’s beliefs, the observer’s beliefs about the crow’s beliefs, the observer’s beliefs about
the fox’s beliefs, and the observer’s beliefs about the crow’s beliefs about the fox’s beliefs. Several
elements of the exchange were missed at this last, deepest level – for example, the belief that the
crow believes that the fox believes that the crow suggested a trade in good faith. This is likely
because there is typically less information available at deeper embeddings.

Conversely, the leftmost points correspond to instances of perfect recall but imperfect precision.
For example, in The Hungry Crow, the system initially explained the crow’s journey to the barn
where it knew the jar of grain was kept in terms of the crow ‘visiting’ the jar. This part of the
explanation was competing with the true ‘acquire edible food’ explanation, which at this early stage
in the sequence of observations was more difficult to infer. Specifically, beliefs about the crow
opening and closing the jar, the grain being in the jar, and the grain being edible to the crow, were
more costly to assume than the agency of the jar and the crow’s judgement that the jar was not
hostile – all that was required for the crow to be visiting.

A greater number of working memory elements available for incorporation is associated with
a broader search space, which in turn means means a greater number of higher-quality candidate
rule instances are accessible. The converse is also true, with the result that very early in the run,
where input elements are sparse, UMBRA can excessively explore low-quality candidates. For
instance, the system was able to conclude that the jar ate the crow, and that the crow therefore made
a poor judgement call. Upon incrementally processing later inputs about the crow’s actions in the
barn, UMBRA reconstructed the entire target explanation correctly, but these extra incorrect details
remained in working memory due to the way the explanation is monotonically extended.

In the case of the two scenarios that did less well on both precision and recall – The Lurking
Eel and The Trapped Crow – both types of error appeared, for similar reasons. Some of the social
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Figure 2. Precision and recall scores on each of the eight fable scenarios discussed in the text for UMBRA
runs, after removing (a) the ability for embedded processing and (b) knowledge about social interactions.

interactions went unexplained (“the crow believed that the fox believed the crow asphyxiated”) and
at the same time, UMBRA jumped to conclusions (“the fox successfully dragged the eel out of the
pond”), or was excessively imaginative early in the run, when it could later have explained things
better using new input (“rather than escaping, the crow left the fox’s den in order to lay in ambush
for the fox”).

Recall that we are centrally concerned with UMBRA’s ability to understand social interactions
from only partial information, so these initial runs included less than half of the leaf literals in
the target explanations. We measured precision and recall only over these elided elements and
target constraints, which we also omitted from the input.5 However, in order to establish reasonable
behavior, we also ran the system again with all the leaf literals (other than constraints) for each target
explanation given as inputs, with a very low threshold on assumptions per rule application. This
let UMBRA operate in an effectively deductive fashion: each rule application involved inferring
only the head, as the body elements were already present. This time, the system achieved perfect
precision and recall on each of the eight fables. This behavior was fully expected,6 but served to
confirm that UMBRA’s abduction mechanism reaches the same conclusions as deductive reasoning
when it must infer missing elements as default assumptions.

5.4 Utilizing Embedded Structures and Social Knowledge

These results are encouraging, but we should also show that the source of UMBRA’s ability to han-
dle social scenarios come from the recent extensions. To this end, we ran the system under two

5. Note that, in practice, UMBRA made many correct inferences involving assumptions about elements which would in
fact later appear in the inputs. These additional successes are not recorded in the measurements given in this paper,
so the figures actually underestimate the system’s reasoning capabilities.

6. Of course, the system also fails on the deductive task if given only the partial input traces.
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additional experimental conditions in which we removed those extensions. In each case, we pro-
vided the same input information as in the second, ‘deductive’ condition above, in that we provided
UMBRA with literals for each of the terminal nodes in the target explanation for a given fable. The
purpose was to eliminate interactions between the abductive aspects of UMBRA’s operation and
the lesioned mechanisms. While we could have studied the lesioned system’s behavior in abductive
mode, this would not have addressed our questions as well. The usefulness of each extension can
be determined by deviation from 100 percent precision and recall in the deductive setting.

We first eliminated UMBRA’s ability to reason over embedded structures in working memory,
effectively removing its capacity to imagine that another agent might apply the same domain rules
it reasons over, and thus to draw analogous inferences. By removing the nesting mechanism, we
restricted the system to using rules only at the level of the primary agent’s direct inferences about
reality. Figure 2 (a) presents the results on the eight fable scenarios. As expected, the perfect
precision given complete input is unaffected, since eliminating nested inference only reduces the
number of conclusions drawn. In contrast, recall drops to a mean of 62.4 percent.

Our second manipulation involved removing UMBRA’s access to the knowledge about social
interactions presented in Table 2, which we believed was critical to properly understanding the
fables. Each of these 13 rules incorporated multiple interacting agents, referred to mental states of
those agents, and included at least one element that referred to domain-independent content (such as
the false information in a deceptive act). As noted earlier, these rules included knowledge about the
effects of communicative acts, jealousy, deceptive behavior (e.g., playing dead), offering trades in
good or bad faith, viewing (rightly or wrongly) others as threats or nonthreats, and perceiving others
through images (e.g., reflections in water). Figure 2 (b) shows the results of running UMBRA with
this diminished knowledge base. As before, precision on the complete input sequence is maintained
because the lesion strictly reduces the number of inferences generated, but recall drops, this time to
a mean of 74.3 percent.

The first set of results supports the second claim presented earlier, that much of UMBRA’s
ability to understand social interactions depends on applying domain knowledge at different levels
of mental embedding. This result is unsurprising, as we introduced nested reasoning specifically to
support reasoning about social scenarios, but the study quantifies how often it arises. The second
study’s findings support our third hypothesis, that social understanding benefits from the application
of high-level knowledge about social interactions. Again, these results introduce no surprises, but
they underpin the importance to social cognition of social knowledge and the ability to reason about
others’ mental states. One can imagine other representations and mechanisms that support this
capacity, as we discuss shortly, but our results show that UMBRA embodies a viable response to
this challenge.

6. Related Research
As we have noted, our approach to social understanding relates to many earlier themes in AI and
cognitive psychology – too many to review in detail. However, our research draws on three main
ideas to account for social cognition, and in this section we examine prior work relevant to each of
these themes.
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One central assumption in our work in that social cognition relies on representing and reasoning
about models of other agents’ mental states. A number of other researchers have described systems
that adopt this idea. Fahlman’s (2011) Scone encodes models of mental states in terms of ‘contexts’
or ‘worlds’ that separate memory into distinct partitions; his system also includes the ability to
comprehend deceptive activities by applying knowledge to content in nested contexts. Polyscheme
(Cassimatis, 2006) adopts a similar approach, organizing content into worlds that let it carry out
counterfactual reasoning and mind reading for purposes of behavior explanation. Both Scone and
Polyscheme rely on default reasoning supported by inheritance, which UMBRA achieves through
nested application of domain rules. Another example is Bridewell and Isaac (2011), who introduced
a computational framework for deception based on the capacity to reason about the goals of other
agents, resting on mental state ascription. Again, their account stores mental states in partitions,
with content moved between them to deal with conflicting beliefs. Our work shares several tenets:
explanations are constructed in an incremental fashion, different forms of deception involve associ-
ated patterns of mental states, and the inference task involves making plausible assumptions. Our
mental states are also associated with meaningful temporal information, a design feature shared
with some other architectures (e.g., Icarus, in Stracuzzi et al., 2009).

Our second key assumption is that plan understanding involves a process of incremental abduc-
tion that constructs an explanation of observed inputs. We have borrowed this idea from AbRA
(Bridewell & Langley, 2011), which we view as UMBRA’s theoretical predecessor. Although
both systems construct cohesive explanations using a form of incremental, data-driven abduction,
they differ in many specifics, including their approaches to constraints and time. UMBRA unifies
Skolems automatically during inference for purposes of explanation, whereas AbRA makes explicit
decisions for this purpose. Both use a form of lookahead when evaluating rule instances, but their
criteria for selection differ markedly. For example, UMBRA views the rule choice metric as a ‘cost’
function and links it to the number of rule applications allowed on a given input cycle. Other work
on abductive inference for plan understanding (e.g., Ng & Mooney, 1992; Raghavan & Mooney,
2010) are more distantly related, in that they usually operate in a query-driven and nonincremental
fashion.

A final assumption of our work is that social understanding depends not only on domain knowl-
edge, but on more generic knowledge about social interactions and their effects on mental states.
Wilensky (1978) reported early research along these lines: his PAM system inferred the intentions
of interacting agents, but its reasoning was shallow compared to that in UMBRA. Dyer (1983)
dealt with similar concepts in extracting morals or adages from social scenarios for use as abstract
planning advice. More recently, Winston’s (2012) approach to story understanding incorporates
reflective patterns, describing abstract social relationships, to support inference and question an-
swering. However, his Genesis system does not appear to include knowledge about how agents’
actions influence others’ mental states.

Our approach to social understanding has much in common with Castelfranchi’s (1998) frame-
work for social intelligence, in assuming that agents interact with others in accordance with their
embedded models to achieve their goals, and that mind reading plays a key role in this process.
However, where Castelfranchi’s contribution was purely theoretical, we have grounded our ideas in
an implemented system.
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Our theory of social cognition incorporates ideas from earlier research traditions, but combines
them in novel ways to support new capabilities for deep understanding of scenarios in which agents
reason about each others goals and beliefs.

7. Concluding Remarks

In this paper, we have introduced and addressed the task of social understanding. We gave a the-
oretical basis for social cognition and formalized it in the context of a number of relevant fields,
including activity and plan recognition, behavior explanation, collaborative planning, and story un-
derstanding. We suggested fables as good case studies for this endeavor, because of their focus on
goal-directed social interactions with agents modeling each others’ mental states.

We described UMBRA, an implemented system for incremental abductive plan understanding,
and laid out the representational augmentations and processing extensions necessary for represent-
ing and explaining the plans of social agents. The improved system makes inferences not only about
the environment and agents in it, but about agents’ mental states as they apply the same knowledge
it has available. We carried out experiments with our system on eight fable scenarios, demonstrating
its ability to generate appropriate explanations from partial information, achieving precision and re-
call scores of over 85 percent. We discussed how our approach combines other threads of research
in innovative ways to support deep understanding of social situations.

There are several directions in which we might extend UMBRA in future work. One obvious
change would be to add a broader body of high-level social knowledge, encoding behaviors such
as instruction (realizing an agent lacks a relevant belief and providing it), rectification (recognizing
and correcting an agent’s false belief), and persuasion (goal-directed action to bring about an agent’s
application of some reasoning rule). This will likely require the capacity to identify and react to
differences in knowledge and disposition between agents.

We also intend to extend the architecture itself in several ways. We will improve the system’s
efficiency, speed, and scalability by having it learn rule embeddings after generating them, instead
of repeating the process with each new cycle. Another extension will widen the scope of our work
by modelling more facets of social behavior, such as morality and emotions (two aspects of the fable
setting we have not yet addressed). It will involve adding high-level mechanisms for causal reason-
ing, goal ascription, and inference about intentionality (links between agents’ goals and activities).
When combined with goal-generating knowledge, this should allow also UMBRA to support other
tasks such as question answering and autonomous rule learning.

Other extensions will change how UMBRA processes the contents of working memory. We
plan to alter the temporal components of mental embeddings so that agents may introspectively
identify and reason about their own mistakes, as well as infer beliefs that they possess particular
beliefs (e.g., see Bello & Guarini, 2010). At the implementation level, we will replace unification
with explicit equality constraints, so that an agent may (for example) cease to believe that two things
are the same. This will allow a more sophisticated approach to contradiction detection. It will also
pave the way for a belief revision system with which UMBRA will use new information to identify
incorrect default assumptions and rule applications, then make suitable repairs to the explanation.
This is important as in social settings there can be major points of realization or reversal, where
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one element of explanation (for example, “the lion is sick”) is replaced by another (“the lion is
pretending to be sick”).

In summary, we have presented a theoretical framework for social understanding and an ini-
tial implementation. We have argued that their key components include inference over domain-
independent social knowledge, temporally situated mental states, constraints as explicit mental
structures, and application of rules at different levels of agents’ embedded models. We made
clear claims about UMBRA’s capacity for social explanation using partial information, empirically
demonstrating that this ability depends on the availability of high-level social knowledge and the
indirect embedding of rules. Although our work remains in its early stages, we have provided a
promising account of social understanding, reported encouraging results, and identified important
avenues to explore in the future.
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