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Abstract 
Evaluation is a key task in design, and a major goal in research on computational design is to 
develop techniques for evaluating design concepts throughout the design process, starting as early 
as possible. Conceptual design in engineering is abstracted as a function-to-structure mapping and 
engages the use of functional models of design candidates. This suggests functional model 
simulation as a method for early evaluation of these alternatives. We describe a computational 
technique that evaluates such candidates in the conceptual phase through simulation of 
hierarchically organized Structure-Behavior-Function models. We demonstrate the capabilities of 
our technique for evaluation in biologically inspired system design that uses biological analogues 
to address design problems. 

1.  Introduction 

Design is a fundamentally iterative process of generation, evaluation and redesign 
(Chandrasekaran, 1990; Dym & Brown, 2012; French, 1985). This is because design problems 
often address large and complex systems, designers are sometimes encouraged to be creative, 
initial design concepts often fail, and the cost of failure for actual designs can be huge. Indeed, 
evaluation, failure, and iteration are so prevalent in practice that “fail early, fail often” has 
emerged as a mantra in many a design community. Early and frequent evaluation of ideas can 
help expose the structure and the constraints of the design problem space, focus the designer’s 
attention to more productive lines of search and exploration, and help reframe and reformulate the 
problem. 

Computational design thus aims to develop techniques for evaluating designs throughout the 
design process as one of its major goals, and it seeks to do so as early in the process as possible. 
Indeed, computational design research has built many methods for evaluating design concepts, 
ranging from design critiquing to geometric modeling to numerical simulation to virtual and 
physical prototyping. However, most of these evaluation methods are useful only relatively late in 
the process, after conceptual design has been completed. The issue thus becomes how to evaluate 
system designs in the conceptual phase itself. 
 Conceptual design is typically abstracted as a function-to-structure mapping and therefore 
engages the use of functional models of design concepts (Hubka & Eder, 1988; Pahl et al., 2007). 
Thus, simulation of functional models offers one strategy for evaluating design concepts but has 
not yet received much attention in the literature. From a cognitive systems perspective, the 
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question now becomes what kinds of knowledge, and what forms of knowledge representation 
and organization, may support functional model simulation of design concepts? We posit that 
functional model simulation requires knowledge of several kinds, including the functions of the 
design, the structure of the design, and the causal behaviors that compose the functions of the 
design’s components into the function of the design as a whole. In particular, we hypothesize that 
Structure-Behavior-Function models (SBF for short; Goel, 2013; Goel, Rubager, & Vattam, 
2009) capture these kinds of knowledge, thus enabling functional model simulation to evaluate 
design concepts. In this paper, we present a computational technique (called SBFCalc) that 
evaluates such concepts through simulation of hierarchically-organized SBF models. We 
demonstrate the capabilities of our technique in the context of using biological analogues to 
address system design problems. 

2.   Biologically Inspired Design 

To contextualize our research problem, let us consider the redesign of the Japanese Shinkansen 
trains in the 1990s described by McKeag (2012) and analyzed by Hoeller (2013). The problem 
entailed redesign of high-speed Shinkansen trains, which succeeded in part through analogy to 
biological systems. The goal was to alter the Shinkansen 300 train to achieve faster speeds. The 
Japanese railway engineers’ initial redesign achieved this goal, but the new version produced too 
much noise at the higher speeds because of ground vibrations, aerodynamic noise, and sonic 
booms when it entered tunnels. The designers then used biological analogies to further redesign 
the train.  To reduce sonic booms, they took inspiration from the beak of the kingfisher bird, 
which helped them design a new nose for the train; Figure 1 illustrates this biological analogy. To 
reduce noise from turbulence, designers took inspiration from the fimbriae on owl wings and 
added a small vortex generator to each pantograph on the train; Figure 2 depicts this biological 
analogy. Suppose that the Japanese railway engineers had created functional models of these 
design concepts (as, say, in Hubka & Eder, 1988; Pahl et al., 2007) to check if the new design 
would achieve the functions desired, if it would result in undesired behaviors, or if it had other 
errors. How might designers verify their proposed conceptual solutions?  This example illustrates 
our research problem. 
  

 
 
Figure 1. The bullet shaped nose of the Shinkansen train inspired in part by the kingfisher’s beak. 
(Adapted from The Biomimicry Institute’s Ask Nature, www.asknature.org.) 
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The redesign of the Japanese Shinkansen trains in the 1990s is a well-known example of 

biologically inspired design (Baumeister et al., 2012; Benyus, 1997; French, 1994; Vincent & 
Mann, 2002). The conceptual phase here entails analogies in which the target problems come 
from design domains and the source analogues come from biology. Historically, this paradigm 
has been a source of design creativity and innovation. Its recent transformation into a design 
movement has been driven in large part by the need for environmentally sustainable designs. 
Goel, McAdams and Stone (2014) provide a compilation of recent progress on computational 
theories, techniques, and tools for biologically inspired design. 

Analogical reasoning is also a common method of conceptual design in general (Goel, 1997). 
Although we developed our computational technique for evaluating design concepts through 
functional model simulation in the context of biologically inspired design, the technique is 
potentially applicable to general analogical design. Suppose that a designer uses an analogy to 
address a given problem in systems design, and that, after proposing a conceptual design, she 
wants to verify it. Our computational technique can help the designer verify the proposed 
conceptual design by simulating her functional model, comparing its simulation results to that 
model, and presenting its evaluation for inspection by the designer. 

3.  Structure-Behavior-Function Modeling 

An SBF model of a system contains three submodels. The function submodel specifies functions, 
each of which describe the intended or perceived purposes of the system. The behavior submodel 
specifies behaviors, each of which describes the internal causal mechanisms by which a function 
is achieved, and the structure submodel specifies the physical components, substances, and 
connections between the components that give rise to the behaviors. Here we describe only the 
parts of the function and behavior models relevant to functional model simulation. 
 A function model is composed of one or more functions, each of which specifies (a) a name 
that uniquely identifies it, (b) a “provides” condition that defines values of component and 
substance attributes in the world that must be true at the completion of the function, and (c) a 
pointer to a behavior that provides an implementation of that function. 

Figure 2. The analogy to owl wing fimbriae aided the redesign of the train pantographs.  
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A behavior model consists of one or more behaviors composed of states and transitions.  A 
behavioral state is specified as a set of component and substance attributes and their values. This 
may be a Start state (from whence the behavior begins), a Stop state (where the behavior ends), or 
an Intermediate one. A transition between two states describes a transformation from the Before 
state (where the transition begins) to the After state (where the transition ends).  A transition is 
annotated with zero or more explanations, which specify why or how the Before state became the 
After state. 

4.  Illustrative Example: SBF Model of the Shinkansen Train 

Figure 3 illustrates an SBF model of the conceptual design for the Shinkansen train with a small 
vortex generator attached to its pantograph (a mechanical linkage). As the train moves, air flows 
over the small vortex generator on the pantograph.  This interaction creates low turbulence, which 
in turn reduces the noise made by the train to low noise. 
 The top half of each box in Figure 3 identifies the name of the function and the bottom half 
identifies its “provides” condition, which is the (possibly partial) state of the world that explicitly 
results from the function.  For example, the function TrainGeneratesAerodnyamicNoise declares 
that the NoiseCreated by the Train will be Low when it is done, and the function Engine-

 

Figure 3.  Decomposition of the function for reducing aerodynamic noise of the Shinkansen train.  
Each box represents a function and specifies its name (top half) and the “provides” condition (bottom 
half).  The provides condition specifies the state of the world as a result of the function.  The circled B 
represents a behavior. Each function indexes the behavior responsible for achieving it, and that 
behavior specifies its decomposition into subfunctions. 
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CausesTrainToAccelerate declares that the Accelerating state of the Train will be On when it has 
completed.  The B in a circle represents a behavior, and an arrow extending from a function to a 
circled B denotes a pointer to the behavior that achieves that function. 
 The function TrainGeneratesAerodynamicNoise is the top-level function.  Its behavior de-
scribes situations in which the train is going from standstill to high velocity and producing low 
noise.  EngineCausesTrainToAccelerate is a subfunction of this top-level function, and its beha-
vior describes the result of the train’s throttle being turned on, which in turn causes the train to 
accelerate and increase its velocity.  AirFlowAcrossPantographFormsTurbulence is another sub-
function at the same level. Its behavior describes air flowing towards the pantograph and small 
vortex generator, which causes low turbulence. AirFlowAcrossSmallVortexGeneratorFormsLow-
Turbulence is a subfunction of AirFlowAcrossPantographFormsTurbulence, and its behavior des-
cribes how a low amount of turbulence results from the small vortex generator producing a small 
(represented by the Low value) vortex size.  TurbulenceCausesNoise is the final subfunction of 
the top-level function, and its behavior describes how low noise is created given low turbulence. 

Figure 4 depicts the behavior that implements the TrainGeneratesAerodynamicNoise function.  
In this figure, boxes represent states with the name of the state in the top and the condition in the 
bottom.  For example, this figure says that the TurbulenceAmount of Air is Low in the state 
FlowingAirFormsTurbulence. StartState is the start state for this behavior, and Turbulence-
CausesNoise is the stop state.  Arrows represent transitions.  For simplicity, we have not included 
the explanatory annotations on the transitions in the figure.  Table 1 lists the causal explanations 
that annotate these transitions.  

 

Figure 4.  The behavior that implements the TrainGeneratesAerodynamicNoise function in the Shin-
kansen Train model.  Boxes represent states and arrows represent transitions between states.  Table 1 
provides the explanations on the transitions. 
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5.  Functional Model Simulation for Design Concept Verification 

As mentioned in the introduction, our hypothesis is that an SBF model captures the kinds of 
knowledge needed for verifying a design concept. In particular, as Section 4 illustrates, the SBF 
model captures five kinds of knowledge needed for verification by functional model simulation: 
(1) functions of the design that must be verified, (2) causal behaviors intended to accomplish the 
functions, (3) explanations for each state transition in a causal behavior, (4) the design structure, 
where the components annotate state transitions in the behaviors, and (5) a recursive function-
behavior-function decomposition. Figure 3 presents an illustration. We now describe our 
approach to using these knowledge contents for design concept verification. 
 We implemented our computational technique, SBFCalc, as a Java program that takes as input 
an SBF model of a candidate design concept. SBFCalc simulates the model, replacing the values 
of attributes in the specification of the behavioral states with attributes and values it infers 
through simulation. It then evaluates the derived behaviors with respect to the desired functions 
and the specified behaviors. 

5.1  Evaluating the Behavior Model 

When evaluating a model, SBFCalc must verify the behaviors of the model because they are how 
the functions are achieved, and thus errors in behaviors may reflect misconceptions or modeling 
mistakes about how the system works.  Our computational technique takes a two-step process to 
evaluate each behavior.  First, it simulates the behavior: given the attributes’ values in the start 

Table 1. Causal explanations for the transitions in Figure 4. 

Transition 

Identifier 
Explanations for that Transition 

T1 

 Function: EngineCausesTrainToAccelerate 
 Equation E1 “qual: Pantograph.Velocity is directly proportional to the qualitative expression 

Train.Velocity:After - Train.Velocity:Before” 
 Equation E2 “qual: Air.FlowOverPantograph is directly proportional to the qualitative 

expression Pantograph.Velocity:After - Pantograph.Velocity:Before” 

T2 

 Equation: E1 “qual: Train.Velocity is directly proportional to the qualitative expression 
Train.Accelerating:After “ 

 Equation E2 “qual: Pantograph.Velocity is directly proportional to the qualitative expression 
Train.Velocity:After - Train.Velocity:Before” 

 Equation E3 “qual: Air.FlowOverPantograph is directly proportional to the qualitative 
expression Pantograph.Velocity:After - Pantograph.Velocity:Before” 

T3 The same explanations as for T2 

T4  Function AirFlowAcrossPantographFormsTurbulence 

T5 
 Function TurbulenceCausesNoise 
 Equation E1 “qual: Train.NoiseCreated is directly proportional to the qualitative expression 

Air.NoiseCreated:After - Air.NoiseCreated:Before” 
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state, it infers the attributes and values for the subsequent states. Second, it compares the inferred 
states with the originally specified states: a difference between an inferred state and the 
equivalent specified state signals a potential problem. 
 To simulate a behavior, SBFCalc begins at the start state of the behavior, traverses the outgoing 
transition, and infers the attributes and values of the subsequent states based the explanatory 
annotations on the transitions. SBFCalc recursively repeats this process for each subsequent state 
until it runs out of transitions to traverse.  The annotations on the transitions have several types 
(Goel, Rugaber, & Vattam, 2009). Below we describe how SBFCalc reasons about two kinds of 
annotations:  functions (as indicated in Figure 3) and equations. We also describe implicit value 
forwarding, a technique used to infer the value of an attribute in the absence of any annotations 
that affect it. 

5.1.1  Reasoning about Quantitative Equations 

Recall that a transition in a behavior describes the transformation of one state (the Before state) to 
another state (the After state), and a transition is annotated with zero or more explanations.  Each 
explanation clarifies why or how the system moves from the Before state to the After state.  
Equation explanations can be either quantitative or qualitative, which are denoted by the prefixes 
“quant:” and “qual:”, respectively. 
 A quantitative equation says that an attribute’s value in the After state will be equal to a 
mathematical expression in which variables denote component or substance attributes that resolve 
to numerical values.  The syntax of a quantitative equation is: 
 
quant: <Attribute> = <Expression> 
 

Here, “quant:” signifies that this is a quantitative equation, <Attribute> is an attribute of a 
component or substance to which we are assigning a value (e.g., Box.Weight, where Box is a 
component and Weight is one of its attributes), and <Expression> refers to a mathematical 
expression that may contain attributes as variables.  Each attribute in <Expression> has an 
additional :Before or :After tag, indicating if the value should be taken from the attribute’s value 
in the Before state or the After state, respectively.  For example, an <Expression> could be 
Box.NumberOfOranges:After * Orange.Weight:Before. 

To solve an <Expression>, all attributes within the expression must resolve to numerical 
values.  SBFCalc checks to see if it has a value for all the attributes within an <Expression>. If 
there are any After attributes within the expression for which there is no value, it may need to 
solve another equation in the transition before it can resolve the After attribute in that expression.  
For example, consider a hypothetical situation in which there are two equation explanations on 
the same transition: 
 
quant: Box.Weight = Box.NumberOfOranges:After * Orange.Weight:Before 
quant: Box.NumberOfOranges = Box.NumberOfOranges:Before + 1 
 

To solve the <Expression> in the first equation, SBFCalc must know the value for 
Box.NumberOfOranges:After, which requires solving the second equation.  It tackles such 
situations in two ways.  First, it initially reasons about function explanations and implicit value 
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forwarding so that it knows as many After values as possible before reasoning about equations.  
Second, it takes an iterative approach by solving at most one equation at a time, starting with an 
equation with no unresolved attributes.  If no equations are solvable, SBFCalc fails the task and 
exits.  An <Expression> might also be unsolvable because it contains Before attributes for which 
SBFCalc does not know a value.  This is also covered by the iterative approach because all 
attributes in an <Expression> must be resolvable for it to be solvable. 
 Figure 5 depicts a hypothetical example of reasoning with quantitative equation. This example 
also uses implicit value forwarding.  The Before and After states describe the change in weight of 
a box due to an increase in the number of bricks in the box.  The transition between these two 
states is annotated with two quantitative equations.  The first equation, E1, describes how to 
calculate the weight of the box. The second equation, E2, describes how an additional brick is 
being added from the Before state to the After state. 

 
5.1.2  Reasoning about Qualitative Equation Explanations 

A qualitative equation specifies whether an attribute’s value, defined as a quantity in a predefined 
quantity space, in the After state is either directly or inversely proportional to a qualitative or 
quantitative expression.  SBFCalc uses two predefined quantity spaces, one with quantities Zero, 
Low, Medium, High, and Maximum and the other with quantities Off and On. A qualitative 
expression is one in which all attributes resolve to values in the two quantity spaces.  The syntax 
of a qualitative equation is: 
   
qual: <Attribute> is (directly | inversely) proportional to the    
      (quantitative | qualitative) expression <Expression> 
 

Here, “qual:” signifies a qualitative equation, and <Attribute> means the same as in quantitative 
equations, except that its value now is a quantity in a quantity space rather than a numerical value. 
To solve a qualitative expression, SBFCalc first replaces all the attributes with their respective 
values, using the same procedure for deciding whether the <Expression> is solvable as with 
quantitative expressions.  Next, it replaces the qualitative values with their numerical equivalents 
and then solves the <Expression> as if it were a quantitative expression. SBFCalc then inspects 
the result to see if it is either less than, equal to, or greater than zero.  If the specified relationship 
is directly proportional, the value of <Attribute> will increase if the result of <Expression> was 

 

Figure 5. Hypothetical example of reasoning using quantitative equations. 
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greater than zero, stay the same if the result was equal to zero, or decrease if the result was less 
than zero. If the relationship is inversely proportional, the increase and decrease conditions are 
reversed. However, the change in <Attribute> is limited in that an attribute’s value can never 
increase beyond the maximum quantity in the quantity space, nor can it ever decrease below the 
minimum quantity in the quantity space.   

Figure 6 depicts a hypothetical example using both a qualitative equation and a function 
explanation.  The Before and After state pair of this example describes how the room remaining 
in a cup decreases as the amount of soda poured into the cup increases.  The model annotates the 
transition between the two states with both a qualitative equation explanation and a function 
explanation. Reasoning about the function explanation determines that the After value of 
Soda.AmountPoured is Medium.  The qualitative equation E1 specifies that the RoomRemaining 
attribute of Cup is inversely proportional to the change in value of Soda.AmountPoured.  Thus, if 
AmountPoured increases between the Before and After states, then RoomRemaining will 
decrease and vice versa, with the limitation that they cannot increase or decrease beyond the 
bounds of their quantity spaces. 

5.1.3  Reasoning about Function Explanations 

Figure 3 illustrates the centrality of functional decomposition to SBF modeling. The functional 
decomposition allows a partitioning of the large and complex verification problem into a series of 
smaller and simpler verification problems.  Figure 3 also illustrates that in SBF modeling, 
behaviors mediate functional decomposition: a behavior specifies how a function is decomposed 
into subfunctions, or conversely, how the functions of components are composed into the 
functions of systems as a whole. 
 A function explanation on a transition in a behavior indicates that a subfunction is responsible 
for the change in some or all of the attributes’ values from the Before state to the After state. To 
address a function explanation, SBFCalc runs a simulation of the behavior linked to the function 

 

Figure 6. Hypothetical example for reasoning with a qualitative equation and a function explanation. 
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in the explanation.  The system then sets the attributes and values based on that simulation’s 
output.   

Figure 6 depicts a hypothetical example of reasoning about a function explanation.  When 
SBFCalc encounters this example, it simulates the behavior pointed to by the function 
PersonPoursSoda and uses the simulation’s output to infer the After state attributes and values. In 
this case, the behavior pointed to by the function PersonPoursSoda has the same output as its 
“provides” condition, so the system infers that the AmountPoured attribute of Soda in the After 
state is equal to Medium. 

5.1.4  Reasoning with Implicit Value Forwarding 

In addition to reasoning about equation and function explanations, SBFCalc uses a technique that 
we call implicit value forwarding.  In a given Before and After state pair, the system may not 
always be able to infer the After state values for all the attributes in the Before state.  When this is 
the case, it assumes that the values of those attributes remain the same.  Thus, it will set the After 
state’s value for that attribute to be the same as the Before state’s value.  

Figure 7 depicts a hypothetical example without (the top half of the figure) and with (the 
bottom half of the figure) implicit value forwarding.  Without this mechanism, the value for the 
WaterFlowing attribute of Hose is missing in State B—the After state—because SBFCalc could 
not infer it from any explanation on the transition.  With implicit value forwarding, the system 
still cannot infer the value from any explanation, but it sets Hose.WaterFlow = On for State B, 
forwarding it from State A, the Before state. 

 

Figure 7. Hypothetical example without (top half) and with (bottom half) implicit value forwarding. 
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5.1.5  Tying Things Together: Inferring an After State 

The previous sections looked at how SBFCalc reasons about/with quantitative and qualitative 
equations, function explanations, and implicit value forwarding to determine values in the After 
state.  We will briefly describe how, given a Before state, an After state, and a set of explanations, 
the system combines these various techniques to infer the values for the After state. 

SBFCalc builds a map that connects Before and After state attributes to their values in those 
states.  This map is only applied to the After state at the end of reasoning about the Before-After 
state pair.  The system first stores the Before attribute and values pairs in the map, then reasons 
over any function explanations on the transition, storing the After state attribute and value pairs 
that it infers.  Next, it uses implicit value forwarding to store After state attributes and values that 
(a) have not already been set by the function explanation reasoning and (b) will not be set by the 
equation explanation reasoning, as determined by inspecting the equation annotations on the 
transition. After this, it processes the qualitative and quantitative equations (if any exist) and 
stores the results in the map. Finally, it uses the map to set the After state attributes and values.  

5.2  Evaluating the Function Model 

The function model is comprised of one or more functions.  Verification of this model ensures 
that the proposed conceptual design actually delivers the functions desired of it. To this end, our 
computational technique determines the extent to which the behavior responsible for a function 
actually achieves it. After it has completed its behavior simulations and evaluations, SBFCalc 
evaluates all the functions.  Conceptually, the “provides” condition of a function specifies the 
state of the world that must be true at the execution of the function, and the behavior it points to 
should implement the function.  Therefore, the Stop state of a behavior should reflect a world 
state that is consistent with the “provides” condition. For a given function, SBFCalc compares the 
attribute and value pairs from this condition with the attribute and value pairs that result from the 
simulated behavior, looking for contradictions and thereby determining whether the behavior will 
achieve the desired function. 

6.  Evaluation of Model Simulation for Design Verification 

We have evaluated SBFCalc on a small set of verification cases in biologically inspired design. In 
this section, we first describe of the case of the Shinkansen Train in some detail, and then briefly 
summarize two other cases on which we have tested the computational technique.  

6.1  The Case of the Shinkanesen Train 

Although we ran SBFCalc against the entire Shinkansen Train model (shown in Figures 3 
through 5), for brevity we will only report here the verification results related to the top-level 
TrainGeneratesAerodynamicNoise function (Figure 3) and its associated behavior. Figure 8 
depicts the results of function verification.  Attribute and value pairs with a + prefix were in the 
behavior output but not in the function’s “provides” condition.  Only one attribute and value pair, 
Train.NoiseCreated = Low, is missing this prefix, as it was in both the behavior’s output and the 
function’s “provides” condition.  As can be seen, SBFCalc deems the output of the inferred 
behavior to be completely compatible with the target function.  Note the many extra attribute-
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value pairs produced by the behavior, which suggests a more complex world state than examining 
the function’s “provides” condition alone. 
 We found that the attribute-value pairs that appear in both the simulated and original behavioral 
states (see Figure 4) were identical.  However, we also found that the simulated behavioral states 
had many other attribute-value pairs. Figure 9 illustrates these additional pairs for each behavioral 
state of Figure 4. We have prefixed these additional attribute-value pairs with a +. 

As noted above, the behavioral states simulated by SBFCalc for this function’s behavior agreed 
with all the state conditions in the original in that no attributes had different values.  This is a 
positive outcome because it shows that the functional model of the train correctly specified its 
behaviors. In the results for another behavior, SBFCalc found a different value for one attribute, 
showing that it can find differences if they occur. Second, our computational technique identified 
many additional attribute-value pairs in the simulated behavior that likely came from implicit 
value forwarding and function explanation reasoning. Although these do reflect differences 
between the simulated and original behaviors, we are considering how to handle the new 
attribute-value pairs because they do not represent contradictions in the model, and they may have 
been deliberately left out by the modeler. 
 The successful verification of the conceptual design of the Shinkansen train provides evidence 
in support of our hypothesis that an SBF model captures the kinds of knowledge useful for 
verifying the design concept. Several aspects of SBF models for enabling functional model 
simulation and design concept verification are especially noteworthy:  Knowledge of the structure 
of the design is distributed through annotations on the state transitions in the behaviors; this 
enables functional model simulation to take design structure into account. Each state transition in 
a behavior is annotated by explanations on the transition; this enables behavioral simulation. 
Function is broken down through a recursive function-behavior-function decomposition; this 
ensures that the behavior corresponding to any function in the hierarchy is small and simple and 
that it can be simulated easily and efficiently.  

 

Figure 8.  Results of evaluating the TrainGeneratesAerodynamicNoise function of the Shinkansen 
Train model. 
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6.2  Additional Case Studies 

In addition to the Shinkansen train design, we have tested our computational technique on two 
additional examples. For the sake of brevity, we provide here only short descriptions of them as 
evidence for the generality of our approach.  In the first study, we intentionally allowed an 
SBFCalc-identified error to persist to illustrate its ability to catch incorrectness in models. 
 In the first case, we modeled a medical patch inspired by the spiny headed worm. We derived 
this from McKeag (2015), wherein he describes efforts to design biologically inspired attachment 
(or attachment-removal) mechanisms in the domain of invasive surgery.  The patch incorporates 
conical tips on a needle array.  When the patch is inserted, the tips swell, allowing the patch to 
adhere to the location.  Our model of this device contains a superfunction (PatchHoldsOn) and a 
subfunction (TipsSwell), each with its own behavior.  PatchHoldOn’s behavior describes the 
patch being inserted and obtaining a 3.5 adhesion strength relative to staples.  This behavior 
contains three states and two transitions. TipsSwell’s behavior, which describes the tips swelling, 
contains two states and one transition. 
 When we ran SBFCalc on the SBF functional model of the medical patch, the simulated 
behaviors agreed with the behavioral models, except that both included additional state attribute-
value pairs due to implicit value forwarding and, in the behavior for the superfunction, function 

 

Figure 9.  The results of evaluating the behavior that achieves the TrainGeneratesAerodynamicNoise 
function of the Shinkansen Train model.   Boxes represent states and arrows represent transitions 
between states.  
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explanation reasoning.  This is similar to the results we presented earlier.  SBFCalc found the 
PatchHoldsOn function to be compatible with its behavior’s results.  However, SBFCalc found 
the TipsSwell function to be incompatible with its behavior, for that function’s “provides” 
condition states that NeedleArray.TipSize should be Large when instead the behavior resulted in 
it being Medium1. This provides evidence that our approach to functional model simulation can 
both verify that a conceptual design is correct and can also catch errors in the design concept. 
 Until now, we have presented SBFCalc as a technology for verifying design concepts.  In a 
second case study, we also modeled the source analogue for the small vortex generator that 
appeared in our train example.  Unlike the earlier examples, this illustrates the usefulness of 
SBFCalc for validating source analogues.  The SBF model describes how the fimbriae 
(serrations) on the owl’s primary wing feathers create micro-turbulences that let the owl fly 
quietly. This model, derived from McKeag (2012) and Hoeller (2013), contains a superfunction 
(OwlFliesSilently) and a subfunction (FimbriaeBreakDownAir), each with its own behavior.  
OwlFliesSilently’s behavior contains three states and two transitions that describes the owl 
moving and creating low noise.  FimbriaeBreakDownAir’s behavior contains two states and one 
transition that describe how the air moving past the owl generates micro-turbulences. 
 When we ran SBFCalc on this model of an owl’s flight, the simulated behaviors agreed 
completely with the specified ones, with the exception that, as with our prior examples, it 
identified additional attribute-value pairs through implicit value forwarding and, in the behavior 
for the superfunction, function explanation reasoning.  It also found both functions to be 
compatible with their behaviors.  These findings illustrate that SBFCalc can help verify source 
analogues in analogical design in addition to verifying candidate designs.  The case studies 
further support our original hypothesis. In particular, they indicate that SBF models capture the 
kinds of knowledge needed to verify the correctness of conceptual designs, identify errors in 
design concepts, and verify source analogues in biologically inspired design.  

7.  Related Research 

This work builds on several lines of research in conceptual design, functional modeling, 
qualitative simulation, analogical design, and biologically inspired design. The process of 
engineering design consists of several phases, with problem formulation and conceptual design 
being the earliest phases (Dym & Brown, 2012; French, 1985; Hubka & Eder, 1988; Pahl et al., 
2007). The task of conceptual design takes a desired function as the input; the goal is to generate 
a structure that delivers this function. Thus, the task is abstracted as a function-to-structure 
mapping. This is why languages for formulating design problems typically specify the desired 
functions, the operating environment, the performance criteria, and constraints on structure 
(Helms & Goel, 2014; MacLellan et al., 2013). 

This abstraction has led to the development of several functional modeling schemes 
(Chandrasekaran, Goel, & Iwasaki, 1993; Gero & Kannengiesser, 2004; Kitamura et al., 2004; 
Rasmussen, 1985; Sembugamoorthy & Chandrasekaran, 1986; Umeda & Tomiyama, 1997). 
According to Simon (1996), a functional model of a design provides a functional decomposition 
of the design and a functional explanation of how the structure of the design delivers the desired 
functions. Functional models typically use behavior as an intermediate abstraction to explain how 
the structure achieves the functions. Our technique works on Structure-Behavior-Function (SBF) 

                                                 
1 This is the error that we allowed to persist in order to demonstrate error detection. 
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models, in which a behavior is a causal process that composes the functions of sub-systems into 
the functions of the system as a whole (Goel, Rugaber, & Vattam, 2009). 
 Cognitive systems research on analogical reasoning has a long history (Falkenhainer, Forbus, & 
Gentner 1989; Hofstadter, 1995; Holyoak & Thagard 1996). Regarding computational approaches 
specifically for analogy evaluation, Falkenhainer (1987) evaluated an analogy by simulating a 
qualitative model of the inferred concept and comparing the results of the simulation with 
observations. Falkenhainer leverages observations of actual data for verification, while our work 
instead compares the results of simulation to a conceptual model.  In addition, we use our 
computational technique to verify the source analogue.  
 Other researchers have also pursued verification of functional models using qualitative 
simulation.  For example, Price (1998) uses “functional labels” to analyze the results of a 
simulation derived from a component model. Klenk et al.’s (2012) work combines qualitative 
simulation with Modelica models of designs, verifying functional requirements against simulation 
results drawn from topologies.  D’Amelio et al. (2011) use qualitative reasoning to simulate 
Function-Behavior-State models (Umeda & Tomiyama, 1997) in order to detect anomalous states 
due to redesign or module combinations. Iwasaki et al. (1995) verify functions by simulating a 
component model with additional behavioral pieces and comparing resultant trajectories against a 
function description that includes behavioral descriptions. 
 Our computational technique differs from these methods in two significant ways.  First, it 
preserves the hierarchical nature of SBF models by independently performing a simulation and 
verification pass for each function-behavior pairing in a model.  Other models may have 
abstraction built in (e.g., Price’s (1998) “[e]ncapsulate complex behavior within a component”), 
but their simulations and thus verifications produce results for the entire model in one chunk.  Our 
technique enables individual verifications to stay focused on one function or one behavior at a 
time even if the functional decomposition is very large, which should make results easier to 
handle.  Additionally, we believe our work is a step towards the “[m]ulti-level modelling” 
mentioned by Price et al. (2006) as necessary to achieve future targets for qualitative reasoning. 
 Second, our technique leverages the same causal process representation (state diagrams) for 
both reasoning and representing simulation results, whereas other work uses representations for 
reasoning (e.g., component models or model fragments) that differ from the state-based 
representations in their simulation results.  Our approach allows a natural comparison between the 
state diagrams produced by the simulation and those made by the modeler.  In addition, from the 
perspective of SBF modeling, this also means that our technique does not require modelers to 
learn a new representation it since it leverages something that is already part of SBF models, 
although modelers will need to learn our equation syntax.  

Finally, a sister project in our laboratory on scientific modeling has developed an interactive 
technique for verifying conceptual models of ecological phenomena through simulation using off-
the-shelf simulation platforms (Joyner, Goel, & Papin, 2014). The work we have described here 
differs in that it evaluates design concepts through simulation of associated functional models in 
the context of system design. 

8.  Conclusions 

As one of its major goals, research in computational design seeks to develop techniques for 
evaluating design concepts early in the conceptual phase. Engineering typically abstracts this task 
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as finding a function-to-structure mapping and engages the use of functional models of the design 
concepts. Simulation, in particular functional model simulation, is a potential method for early 
evaluation of design concepts. The question then becomes what kinds of knowledge, and what 
forms of knowledge representation and organization, may support functional model simulation of 
such concepts? 

We posited that the knowledge captured by Structure-Behavior-Function models would enable 
functional model simulation for design concept verification. In particular, we showed evidence 
that SBF models capture several kinds of knowledge, described in section 5, that are useful for 
verifying design concepts. 

Three aspects of SBF models are especially important for enabling qualitative simulation and 
design verification: (1) Knowledge of the structure of the design on state transition annotations in 
behaviors enables simulation to account for structure; (2) Explanations that annotate state 
transitions in a behavior enable behavioral simulation; and (3) The recursive function-behavior-
function decomposition ensures that each function’s behavior will be small and simple, enabling 
easy and efficient simulation. Regarding (3), SBF models decompose and organize the 
simulations of the conceptual design into simulations of smaller, simpler subsystems, and 
organize and abstract the simulations of the subsystems into simulation of the system as a whole. 
 We described a computational technique called SBFCalc that evaluates design concepts 
through simulation of their SBF models. This technique represents the main contribution of this 
work and rests at the intersection of conceptual design, functional modeling, and qualitative 
simulation.  We demonstrated its capabilities for verifying design concepts in the context of 
biologically inspired system design using functional model simulation. In particular, the 
Shinkansen train case study shows that our technique can verify the correctness of conceptual 
design, the medical patch study indicates that it can identify errors in design concepts, and the 
owl flight study demonstrates that it can verify source analogues in biologically inspired design. 

That said, our technique does have room to grow.  First, we believe that a designer could use 
the same technique not only to verify proposed conceptual designs and source analogues but also 
to verify the functional models of deficient designs. Second, our computational technique should 
support more types of causal explanations so that it can interpret and usefully evaluate models 
written in a larger subset of the SBF language. Finally, our technique should better handle 
ambiguity in qualitative equations, which due to their abstractness, may have ambiguous results. 
For example, given a simulation result that says a value (e.g., Low) should increase, it may be 
unclear whether it should stay the same or change to Medium or High. To account for this kind of 
ambiguity in simulation, SBFCalc should produce an envisionment with multiple trajectories, 
with each one representing a possible configuration of values through the state space.  Our system 
could then verify the given behavior against these projected trajectories.  Considering trajectories 
in verification builds conceptually on work by Iwasaki et al. (1995) and Klenk et al. (2012), who 
generated them via simulation for reasoning about this task. 
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