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Abstract
In this essay, we advocate the position that research efforts working towards solving human-level
AI (HLAI) necessarily must rely on general mechanisms and (models of) cognitive capacities,
whereas domain-specific systems or task-dependent approaches offer only minor help towards the
ultimate goal. We revisit psychological research on intelligence and the application of psychome-
tric methods in AI, followed by a discussion of actual cognitive systems in light of the previous
conceptual considerations. As part of these elaborations, we examine HDTP and IGOR2 in some
detail as prototypical approaches that model a general capacity or implement a general mechanism.
In the conclusion, we point out four characteristics that we consider generally desirable properties
of HLAI systems.

1. Introduction: Intelligence, Cognition, and Computer Systems

When asked for a definition of AI as a field of study and its aims, one possible answer would be a
variation of Nilsson (2009)’s statement: AI is that science devoted to making machines intelligent,
and intelligence is that quality that enables an entity to function appropriately and with foresight in
its environment. This implies an understanding of AI that is very inclusive, introducing a continuum
of capacity levels ranging from fairly low-level technological systems and lower animals at the one
end to humans (and possibly beyond) on the other. So called “strong” or human-level AI (HLAI)
research is commonly situated at the latter part of the spectrum, aiming at machines on par with
humans in that they are comparable in their capacity to—among many others—reason, pursue and
achieve goals, perceive and respond to different types of environmental stimuli, process information,
or engage in scientific and creative activities.

This line of investigation goes back to the origin of AI research. In the 1956 Dartmouth proposal,
McCarthy et al (2006) laid out the program for generations of researchers to follow: The study is
to proceed on the basis of the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a machine can be made to simulate it.
Although there might be disagreement about the detailed interpretation of “precisely described” or
“simulate”, HLAI as a field still rests on the assumption that the (re-)creation of higher-level human
capacities is possible and will eventually be achieved (Besold, 2013; Kühnberger & Hitzler, 2009).
Researchers in “weak” AI and computational cognitive modelling, on the other hand, usually make
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the weaker assumption that computability provides an appropriate conceptual apparatus for theories
of the mind. That is, computational models can simulate human information processes, thereby
either providing tools that take over specific functions or allow detailed and consistent generative
descriptions of aspects of cognition (Johnson-Laird, 1988).

As we will show, these different foci must have important ramifications for the type of meth-
ods and approaches studied, as well as for what cognition and intelligence mean in the respective
research context: While standard AI can confine itself to the modelling and study of individual men-
tal capacities as isolated subparts of the mind, HLAI necessarily must take a general and holistic
approach to intelligence and cognition.

Three conceptual cornerstones are shared by most, if not all, current endeavours in HLAI re-
search: A computational theory of mind, the Church-Turing thesis, and (one dimension of) the
physical symbol system hypothesis (PSSH). The computational theory (Pylyshyn, 1980) bridges
the gap between humans and computers by advocating that the human mind and brain can be seen
as an information-processing system, and that reasoning and thinking are processes that adhere with
computation as formal symbol manipulation. The Church-Turing thesis (Kleene, 1952) adds lim-
itations on the computational power of such a system by establishing Turing computability as a
valid characterization of computability in general. The PSSH (Newell, 1980) operates on a different
level: taking the computational characteristic of cognition and intelligence as given, it states as gen-
eral criterion that “[t]he necessary and sufficient condition for a physical system to exhibit general
intelligent action is that it be a physical symbol system”. For the current discussion, the “suffi-
cient” part is relevant as it opens the way to machine intelligence. While remaining uncommitted to
the particular computational paradigm used for implementing them, rule-based and rule-following
systems are deemed capable of providing a valid framework for (re-)creating general intelligence.1

Although different in nature and level of description, the three statements all claim generality
and independence of domain or context. In our opinion, this is a necessary feature of all theoret-
ical and methodological accounts of intelligence and is intimately connected to the general nature
of intelligence itself. But this raises another issue. Although the term intelligence is common-
place, no unanimously accepted definition exists (Sternberg & Detterman, 1986). The character-
ization and measurement of intelligence has been delegated to the field of psychometrics, which
studies the theory of psychological measurement, as well as the development and implementation
of the corresponding instruments and procedures. Typically, intelligence tests consist of subtests
that address different aspects of cognition, such as visual-spatial, verbal-linguistic, and logical-
mathematical abilities (Sternberg, 2000). On the other hand, Raven (2000)’s culture-free Progres-
sive Matrices incorporate only one type of item. Theorists following Spearman (1927) emphasise an

1. In the terminology of Derthick and Plaut (1986), rule-based systems are characterized by explicitly encoded rules,
rule-following systems by implicitly encoded ones that, although not explicitly represented, still manifest them-
selves in the rule-following nature of the system behavior. An example for the latter class is Rumelhart and Mc-
Clelland (1986)’s connectionist system for phonological representations of the past tense of English verbs from the
present tense form. Due to the lack of explicit rules, the rule-following type of system is at first excluded from the
class of physical symbol systems. Still, if the symbol level is interpreted as explaining knowledge-level behavior
rather than directly implementing it, one can maintain a weakened version of the PSSH. A rule-based approach can
then also provide an explanation for intelligence in the case of rule-following systems.
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all-encompassing general factor of intelligence that is prerequisite for more specific abilities. This
perspective corresponds to the notion of generality in HLAI.

Probably the most noted and ambitious research program applying tests from psychometrics to
HLAI comes from Bringsjord and Schimanski (2003):

Psychometric AI is the field devoted to building information-processing entities capa-
ble of at least solid performance on all established, validated tests of intelligence and
mental ability, a class of tests that includes not just the rather restrictive IQ tests, but
also tests of artistic and literary creativity, mechanical ability, and so on.

Although this proposal challenges AI to develop general-purpose systems that can solve a variety of
problems, it does not explicitly rule out attempts that employ patchwork systems with many special-
ized “island solutions” (Besold, 2014a). When looking at computational approaches to intelligence
tests (Hernández-Orallo et al., 2016), indeed most only address one specific class of problems.

In the sections that follow, we review two computational systems that illustrate this holistic
approach to intelligence and cognition. First we introduce the analogy system HDTP as a com-
putational model that exhibits cross-domain cognitive capacities. Second, we describe IGOR2, a
program learning system that incorporates a general mechanism for inductive inference. After this,
we briefly discuss selected other cognitive systems with claims to generality. We conclude with a
short account of what we consider desirable properties for architectures aiming at HLAI.

2. Towards General Capacities: HDTP and Analogy

We have argued that, to avoid reliance on many inflexible “island solutions”, accounts of cross-
domain general capacities are necessary in order to guarantee generalizability and domain-inde-
pendent functionality. A paradigmatic example for such a high-level capacity is analogical reason-
ing as modelled by the Heuristic-Driven Theory Projection (HDTP) framework (Schmidt et al.,
2014).

HDTP is a conceptual framework and implemented analogy engine that relies on the computa-
tion of explicit generalizations between domains. It is similar to the classical SME (Falkenhainer
et al., 1989) in that both are symbolic, operating over logic-like languages, and rely heavily on syn-
tactic properties of domain elements to determine mappings (Wiese et al., 2008). However, HDTP
computes an explicit generalization of the source and target domain theories into a least-general
subsuming theory that later determines the transfer/evaluation phase of the analogy process. Fig-
ure 1 depicts HDTP’s generalization-based view on analogy making. Given a source and a target
domain, it computes a common generalization that establishes correspondences between domain
elements using a restricted form of higher-order anti-unification (Schwering et al., 2009). The sys-
tem uses these correspondences to transfer and adapt knowledge from the better-informed source to
some target domain.

To clarify HDTP’s analogy process, Table 1 and Table 2 reproduce a classical example from the
literature—Rutherford’s analogy between the solar system and the atom, establishing a conceptual
equivalence between the atom’s nucleus and the solar system’s sun, the electrons and the planets,
and so forth. The system uses the enriched generalization in Table 2 to instantiate an augmented
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Figure 1. A schematic overview of HDTP’s generalization-based approach to analogy.

version of the target theory which also features governing laws for the atomic model about the
revolution of electrons in orbit around the nucleus.

Table 1. Formalization of the solar system model (source domain) and Rutherford’s atom model (target do-
main) as used by HDTP.

Sorts: real, object, time
Entities: sun, planet, nucleus, electron : object
Shared functions of both theories: mass : object→ real× {kg}, dist : object× object× time→ real× {m}
Functions of the solar system theory: force : object×object×time→ real×{N}, gravity : object×object×time→ real×{N},
centrifugal :object× object× time→ real× {m}
Predicates of the solar system theory: revolves_around : object× object
Facts of the solar system theory: (α1) mass(sun) > mass(planet), (α2) mass(planet) > 0,
(α3) ∀t : time : gravity(planet, sun, t) > 0, (α4) ∀t : time : dist(planet, sun, t) > 0
Laws of the solar system theory:
(α5) ∀t : time, o1 : object, o2 : object : dist(o1, o2, t) > 0 ∧ gravity(o1, o2, t) > 0
→ centrifugal(o1, o2, t) = −gravity(o1, o2, t),
(α6) ∀t : time, o1 : object, o2 : object : 0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t) > 0 ∧ centrifugal(o1, o2, t) < 0
→ revolves_around(o1, o2)
Functions of the atom model theory: coulomb : object× object× time→ real× {N}
Facts of the atom model theory: (β1) mass(nucleus) > mass(electron), (β2) mass(electron) > 0,
(β3) ∀t : time : coulomb(electron, nucleus, t) > 0, (β4) ∀t : time : dist(electron, nucleus, t) > 0

Because HDTP relies on many-sorted first-order logic and purely syntactic generalization, the
framework has shown remarkable generality. The system was originally designed for modelling
the Rutherford analogy, poetic metaphors (Gust et al., 2006), and heat flow (Falkenhainer et al.,
1989; Schwering et al., 2009), but it has since been applied without major changes to other tasks in
different domains. As Besold (2014b) has recounted, HDTP has been used for modelling sensory-
motor-based transfer learning in mathematics and physics education, knowledge transfer between
disparate domains (embodied sensory-motor interaction and abstract, structured knowledge) and
subsequent concept formation. Also, Guhe et al. (2010) have shown how HDTP can model an
inductive process for establishing the fundamental concepts of arithmetic starting from concrete
experience.

Besides knowledge transfer and concept formation, another related but distinct capacity that
HDTP can model is concept blending (Fauconnier & Turner, 1998) of theories. This is an impor-
tant form of combinatorial creativity that joins familiar ideas in an unfamiliar way to produce novel
ones. Martinez et al. (2012) outline HDTP’s perspective on concept blending and reconstruct Ar-
gand’s discovery of the complex plane, a famous example of theory blending. On a related note,
Guhe et al. (2011) describe a process blending different conceptualizations of number to form new
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Table 2. Common generalization between models of the solar system and the Rutherford atom, enriched by
transfer axioms γ5 and γ6: Axioms α5 and α6 from the source domain—although not matched by corre-
sponding axioms in the target theory—give rise to γ5 and γ6 by reuse of anti-unifications established at ear-
lier stages. In particular, one generalizes gravity and coulomb from α3 and β3, respectively, to the generic
variable F , and then reapplies the gravity → F anti-unification in generalizing α5 into γ5. The predicate
revolves_around from α6 is unmatched but carried over to γ6.

Sorts: real, object, time
Entities: X, Y : object
Functions: mass : object→ real× {kg}, dist : object× object× time→ real× {m},
F : object× object× time→ real× {N}, centrifugal :object× object× time→ real× {m}
Predicates: revolves_around : object× object
Facts: (γ1) mass(X) > mass(Y), (γ2) mass(Y) > 0, (γ3) ∀t : time : F(X, Y, t) > 0, (γ4) ∀t : time : dist(X, Y, t) > 0
Laws:
(γ5) ∀t : time, o1 : object, o2 : object : dist(o1, o2, t) > 0 ∧ F(o1, o2, t) > 0
→ centrifugal(o1, o2, t) = −F(o1, o2, t),
(γ6) ∀t : time, o1 : object, o2 : object : 0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t) > 0 ∧ centrifugal(o1, o2, t) < 0
→ revolves_around(o1, o2)

conceptualizations via recognition of common features and judicious combination of distinctive
ones.

In summary, HDTP’s capacities of analogy, cross-domain generalization, cross-domain spe-
cialization, and detection of congruence relations lets the framework support new cognitive faculties
without significantly changing the underlying model. This versatility results from several design de-
cisions that set the framework apart from most other computational models of analogy. The choice
of many-sorted first-order logic as a very expressive representation language allows modelling of
rich domains with complex internal structure and recursively-defined relations among domain el-
ements. Also its generalization-based approach provides—through the explicit availability of the
generalization over domain theories—information and structure that can be reused for addressing
many tasks beyond analogy that are essential for other key capacities such as learning.

3. Towards General Mechanisms: IGOR2 and Program Learning

IGOR is a system for inductive programming, that is, for the automatic generation of computer pro-
grams from incomplete specifications, typically input/output examples. Since program construction
from examples is based on inductive inference, it can be seen as a special area of machine learning:
The input/output examples constitute the training data and the hypothesis formalism is usually a
declarative programming language. The successor IGOR2 has a broader scope than most compa-
rable systems (Kitzelmann, 2009) and it can learn functional programs for insertion sort, reverse,
odd/even, multiplication by addition, and Fibonacci numbers from examples (Hofmann et al., 2009).
For induction of a linear recursive function with one recursive call, IGOR2 typically needs only four
examples. Table 3 illustrates its abilities: The input are examples for reversing a list and the output is
a generalized program that returns the empty list if the input is empty. For nonempty lists, with x as
first element of a list and xs as a (possibly empty) remainder, the last element of this list is inserted
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Table 3. Inductive programming with IGOR2: Generalizing reverse from examples

Specification of Data Types and Target Function

data [a] = [] | a:[a] reverse :: [a]-> [a]

I/O Examples

reverse [] = [] reverse [a,b] = [b,a]
reverse [a] = [a] reverse [a,b,c] = [c,b,a]

Generalized Program

reverse [] = [] reverse (x:xs) = last (x:xs) : reverse(init (x:xs))

Automatically Induced Functions (renamed from f1, f2)

last [x] = x init [a] = []
last (x:xs) = last xs init (x:xs) = x:(init xs)

(operator ’:’) in front of the reversed init list (the list without the first element). The subfunctions
last and init are themselves induced automatically.

We can use this problem to illustrate the basic ideas of IGOR2’s induction algorithm. Kitzel-
mann (2010) provides formal details. In addition to the input/output examples, the algebraic data
type for the target function must be specified. For reverse, this is the data type list defined over
arbitrary elements a. Algebraic data types are specified using constructors, which are a minimal set
of functions from which instances of this type can be built. Here these are the empty list [ ] and
the function ’:’ (cons), which inserts an element in front of a list. The target function reverse is
specified to have a list as input and output. For the example, we omit the additional specification of
background knowledge, but one could define the last function in advance and use it during program
construction.

Hypothesis construction in IGOR2 is based on anti-unification of sets of equations. It constructs
hypotheses in the form of partial programs by applying an induction operator and carryies out a
best-first search that prefers hypotheses with fewer equations. Anti-unification of the four exam-
ples in Table 3 results in the overly general expression reverse x = y. The body of this function
contains an unbound variable y that tells IGOR2 program induction has not yet terminated, and the
system applies three induction operators to generate successor hypotheses: partitioning examples
into sets of equations divided by case distinction; replacement of the right-hand side of an equation
by a program call; and replacement of subterms with unbound variables by induced subfunctions.
Partitioning results in separating the treatment of the empty list from the other three cases. For the
remaining three cases, subfunctions are introduced (reverse (x:xs) = f1(x:xs):f2(x:xs)) and for each
subfunction, new training examples are abduced:

f1 [a] = a f1 [a,b] = b f1 [a,b,c] = c
f2 [a] = [] f2 [a,b] = [a] f2 [a,b,c] = [b,a].
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Table 4. Samples of number series used to test IGOR2’s induction abilities.

Constant 15 15 16 15 15 16 15 f(n− 3)
Arithmetic 2 3 8 11 14 f(n− 1) + 3

1 2 3 12 13 14 23 f(n− 3) + 11
Fibonacci 1 2 3 5 8 13 21 34 f(n− 1) + f(n− 2)

3 4 12 48 576 f(n− 1)× f(n− 2)

Geometric 3 6 12 24 f(n− 1)× 2
6 7 8 18 21 24 54 f(n− 3)× 3
5 10 30 120 600 f(n− 1)× n
3,7,15,31,63 2 ∗ f(n− 1) + 1

For both subfunctions, IGOR2 calls its induction process recursively. Function f1 corresponds to
the function last in Table 3 and function f2 is elaborated to a recursive call of the target function
reverse and another subfunction corresponding to init.

Schmid and Kitzelmann (2011) have applied IGOR2 to a variety of problem domains. Without
any modification, the system can learn recursive solution procedures for the Tower of Hanoi, build-
ing a tower of sorted blocks, and the rocket problem (Veloso & Carbonell, 1993). Furthermore, it
can learn simple phrase-structure grammars from example sentences and recursive relations such as
ancestor, as well as the transitivity of the is-a relation in a concept hierarchy. More recently, Hof-
mann, Kitzelmann, and Schmid (2014) have applied IGOR2 to number series problems like those in
many intelligence tests. Such problems aim to measure inductive reasoning ability, which some re-
searchers claim to be a crucial component of general intelligence (Sternberg, 2000). Table 4 shows
a selection of problems presented to, and successfully solved by, the system.

Although IGOR2 was designed specifically for inductive programming, the underlying approach
offers a generic mechanism for generalizing productive rules from example experience. We use the
term ‘productive rule’ following Chomsky (1959)’s characterization of human linguistic compe-
tence. A set of rules is productive when it can be applied to input of arbitrary complexity. For
example, the reverse program in Table 3 has the competence to reverse lists of arbitrary length.
Contrary to Chomsky, we propose that this human ability to generalize productive rules from a
few observations is not restricted to language but applies to all areas where such knowledge can be
obtained by detection of regularities.

Of course, IGOR2 is not the only possible approach to generalizing over regularities, but it has
some characteristics that make it a better candidate than many others. First, the system learns on the
symbol- or knowledge level (Rosenbloom et al., 1987). This makes it relevant to cognitive models
that assume that information in working memory can be inspected and verbalized. Second, IGOR2’s
learning strategy uses not generate and test but a mechanism that builds hypotheses based on regu-
larities detected in the observations. A cognitive system that generates many arbitrary hypotheses
and checks them against examples seems implausible. Third, IGOR2 has no built-in heuristics that
are tuned to a specific domain of application; it uses only a simple preference bias to guide search
that prefers hypotheses with fewer rules and recursive calls.
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4. Other Approaches Aiming for Generality

HDTP and IGOR2 are far from the only cognitive systems that aim for generality (see, e.g., Langley
et al., 2009, for an overview). Here we discuss two paradigms and corresponding architectures that,
in our opinion, also qualify as general approaches to HLAI, namely Langley and Choi’s (2006)
ICARUS and Forbus and Hinrich’s (2006) COMPANION cognitive systems.

ICARUS is an integrated cognitive architecture for physical agents, storing concepts and skills
as distinct forms of knowledge. Skills specify reactive goal-relevant reactions to classes of prob-
lems, while concepts provide percept-based relational descriptions of environmental situations. The
architecture is subdivided into an inference module, a planning module, and an execution module.
Conceptual memory stores information about general object classes and their relationships, while
skill memory archives knowledge about ways of acting. Within this, ICARUS infers beliefs from
percepts in a bottom-up way while connecting goals to skills and actions in a top-down fashion,
operating on a recognition-action cycle. Although this constitutes a general set up without strong
commitments to particular representations or classes of tasks, the architecture can also perform
problem solving using a variant of means-end analysis. Through its planning and learning modules,
ICARUS can incrementally learn new concepts and skills, which it can subsequently apply to handle
similar situations reactively. This capability to acquire new abilities and to expand its conceptual-
ization of the environment let it handle several quite disparate tasks and scenarios, ranging from
classical problem solving hurdles like the Tower of Hanoi, logistics planning, FreeCell solitaire,
simulated urban driving, and first-person shooter scenarios (Choi et al., 2007). Another agent-based
cognitive system that we should mention in passing in this context is MIRCOPSI (Bach, 2009),
which focuses on the impact of motivation and emotion on action selection: Although not directly
inspired by ICARUS, there are clear conceptual similarities in that MICROPSI agents (which can
model human problem solving) combine associative learning, reinforcement learning, and planning
to acquire knowledge about their environment and navigate in pursuit of resources.

The COMPANION cognitive architecture aims to understand how to build intelligent systems
that are social beings, making them different from skill-oriented architectures like ICARUS. The re-
sulting systems collaborate with human users, working through complex arguments, automatically
retrieving relevant precedents, providing cautions and counter-indications, and offering supporting
evidence. This necessarily involves the incremental assimilation of new information and perma-
nent learning about domains, users, and themselves. As Forbus, Klenk, and Hinrichs (2009) state,
this is achieved by seven general features: (i) Generalization-based analogy lets the system learn
from experience and reuse past experiences in new situations. (ii) Extensive conceptual knowledge
provides a foundation for acquiring or learning domain content. (iii) Flexible, resource-sensitive
reasoning takes into account constraints on memory and processing time. (iv) Coarse-grained par-
allel processing implements companions as distributed systems by allocating individual nodes of
a cluster computer to a few semi-independent, asynchronous processes. (v) Costly learning tasks
are offloaded to dedicated nodes in the background, while focused learning is guided by flexi-
bly constructed, prioritized, and scheduled explicit learning goals. (vi) Extended lifetimes allow
compute-intensive learning during periods with low general demands, switching between domains,
and incremental construction of user and self models. (vii) Natural interaction modalities enable a
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natural and unmediated interplay of companions with their environment as a basis for learning and
interaction on the envisioned scale.

Although ICARUS and the COMPANION cognitive systems are based on different paradigms,
architectures, and mechanisms, they share an ambition for generality and a conscious emphasis on
task-independent and capacity-unspecific approaches. Also, the central role of powerful learning
mechanisms, together with the capability to reuse past experiences and general representations,
supports domain independence and cross-domain functionalities.

5. Conclusions

In this essay, we advocated the need for generality in approaches to HLAI: While standard AI and
cognitive modelling can meaningfully restrict their focus to (re-)implementing individual cogni-
tive capacities, the goal of creating general intelligence with artificial means necessarily requires
general mechanisms and capacities. As discussed, this need for flexibility and cross-domain valid-
ity goes back to the very nature of intelligence and cognition as many-facetted phenomena stud-
ied in psychology and, taking inspiration from results there, seems desirable. The specificity and
domain-centricity of individual psychometric tests should not distract us from the general nature of
intelligence.

As positive examples for systems that cut across domains and tasks, we discussed HDTP and
IGOR2, sketching several applications that illustrate their coverage. In our opinion, the key prop-
erties common to these architectures, and shared with ICARUS, MICROPSI, and COMPANION, are a
good starting point for future endeavours in HLAI. They operate at the symbol level, using expres-
sive representations that allow considerable freedom in the choice of domains. They are based on
a very general, domain-independent mechanism, namely anti-unification that operates on such rep-
resentations, that is not bound to particular tasks, and that is involved in many different processes,
such as generalization and representation alignment. Both approaches explicitly target high-level,
domain-independent capacities, namely analogy making and inductive learning, conceptually ex-
cluding the specialization of the computational-level theory with respect to specific domain or task
properties. Finally, both systems can take into account semantic aspects of the domain content
without requiring a case-specific approach, namely the algebraic data types used in IGOR2 and
the many-sorted representations in HDTP. And while also HDTP and IGOR2 remain only initial
steps towards truly general systems, we believe that, when taken together, these four properties
form a solid foundation for development of systems that exhibit general intelligence and cognitive
capacities.
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