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Abstract
Trial-and-error learning is often needed to acquire a new skill. Humans can use domain knowledge
to minimize the number of trials required. However, existing reinforcement learning systems are
either incapable of reasoning about domain knowledge or use hard-coded domain knowledge. Thus,
these systems are insufficient for the online learning of robotic skills. We present a hierarchical
architecture that learns the domain knowledge of a robotic system in the form of a qualitative
model. The model is used by a symbolic planner that reduces the search space for trial-and-error
learning. We evaluate the architecture on a real robot that learns to climb over obstacles.

1. Introduction

When humans learn a new skill they often employ a combination of reasoning using background
knowledge and trial-and-error learning. For example, a tennis player learning how to serve may
be told by the coach that the service action is similar to throwing a ball, that is, it is like throwing
the racquet at the ball. This advice helps the player visualize the action, but practice is required
to achieve an operational level of skill because there are many parameters to be tuned, such as the
height of the ball toss and the speed of swinging the racket. However, without the coach’s advice,
the player may take much longer to find an acceptable action. Similarly, a robot acquiring a new
behavior can benefit from high-level reasoning and background knowledge to reduce the search
space of parameter settings required to execute the low-level actuator actions of the behavior.

Learning the parameter settings for a behavior is a complex task for robots because they often
operate in large continuous domains, have noisy sensors, and imprecise actuators. Learning behav-
iors is commonly achieved by some form of reinforcement learning (see Section 9). However, most
reinforcement learning systems assume that a simulation is available, allowing thousands of trials
to be performed before an acceptable behavior is achieved. If we wish to acquire a skill online, as
the robot operates, rather than learning in simulation, trial-and-error learning must be restricted to
as few trials as possible because each trial is time consuming and could damage the robot. In this
paper, we present a Planning and Learning Hierarchy (P/LH), inspired by human learning that is
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Figure 1. Overview of the Planning and Learning Hierarchy in relation to the three-layered architecture for
robotic software. The left side learns the domain knowledge of a robotic system, while the right side acquires
new robotic skills from domain knowledge.

intended to reduce the number of trials required to learn a skill. Figure 1 shows an overview of the
P/LH, which extends earlier work in hybrid learning systems (Brown & Sammut, 2011; Sammut &
Yik, 2010) that use high-level symbolic planning to reason about domain knowledge to constrain
the search through the space of action parameters.

A planning hierarchy (right side of Figure 1) is provided with domain knowledge for the robot
and its environment, along with a task that the robot must complete, for which a behavior is to
be acquired. Domain knowledge is expressed as a qualitative model (de Kleer & Brown, 1984;
Forbus, 1984) that describes the dynamics and possible actions of the robot within the environment.
A symbolic planner uses the qualitative model to produce an rough plan to complete the task, but the
parameters for each action are under-constrained. A parameter refiner narrows these constraints by
online trial-and-error learning to produce a control policy for the acquired behavior. At the lowest
level of the hierarchy, a reactive controller is required to execute both the refinement trials and the
control policy on the robot.

The domain knowledge for P/LH may be programmed or learned by the robot. In the coaching
example, above, the domain knowledge already exists and is passed on from teacher to student.
However, it is often difficult to accurately model a robot and its interaction with its environment
because motors and sensors may not perform to specification and parts of the environment may
be unknown. Obtaining this knowledge usually involves a considerable amount of human learning
and programming. A better solution is to give the robot the ability to acquire its own domain
knowledge. Learning is performed by two additional components in the architecture (left side of
Figure 1). The state space sampler makes the robot “play” by performing random actions and
recording the actions and the variable values that describe the resulting states. From these samples,
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x0 x1 = ? x2 = ? xg

x := [x0, x1, x2, xg]

v := [vmin, 0, vmax]

a := [−1, 0,+1]

deriv(v, x)

deriv(a, v)

Figure 2. Domain knowledge for a 1D Cart, where the task is to move from x0 to xg by changing its acceler-
ation (a). The value of intermediate points x1 and x2, where the cart’s acceleration is changed, is unknown.

a model inducer constructs domain knowledge in the form of a qualitative model, which can be used
to acquire behaviors for multiple tasks. Learning the domain knowledge is done offline, analogous
to a human exploring a domain before attempting to perform any real tasks. Thus, model building is
not part of the performance element of the system, but parameter tuning is embedded in it. To adjust
the parameter values, the robot needs feedback that can only be obtained by attempting to execute a
plan and changing the control policy if it fails. The robot may stop learning once a working policy
found or it can continue to tune parameters to improve its performance.

The P/LH reduces the number of trials required by the parameter refinement stage to achieve
a working policy. To demonstrate its efficiency, the P/LH is applied to a complex locomotion task
for the Negotiator multi-tracked robot (Figure 4a), intended for urban search and rescue. All of the
experiments described below were conducted on a real robot.

2. The Planning and Learning Hierarchy

A common architecture for robot software, such as 3T (Bonasso et al., 1997) or ATLANTIS (Gat,
1998), consists of three levels: (1) the upper deliberative layer is responsible for long-term planning;
(2) the intermediate sequencing layer selects parameters required by the motor commands that ex-
ecute the plan; and (3) the lowest reactive layer implements direct control the robot’s actuators and
sensors. The intention of the P/LH (Figure 1) is to improve the efficiency of acquiring complex
behaviors by lifting much of the learning from the reactive layer to the deliberative layer.

2.1 Planning and Parameter Refinement

The symbolic planner combines concepts from classical planning and qualitative reasoning, specifi-
cally the QSIM system (Kuipers, 1986). An action model includes preconditions and postconditions
similar to those in STRIPS (Fikes & Nilsson, 1971), but is extended by the addition of parameters
that set numerical values for the operation of actuators (Sammut & Yik, 2010). Unlike STRIPS,
the post-condition is computed by QSIM, when it predicts the qualitative outcome of operating an
actuator. These postconditions impose constraints on the action’s parameters. Like a classical plan-
ner, action models are used to find a sequence of actions that achieve a specified goal. However, the
actions are qualitative and thus do not specify precise values for actuators, like desired joint angles
or speeds. Thus, each action is only an approximation of the precise movements the robot must per-
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Figure 3. Representation of the SMDP for the 1D cart task. Not all combinations of options may lead to a
successful completion of the task. Each arrow represents a single option that targets a possible parameter
value for one action of the plan in subsection 2.1.

form. The constraints produced by QSIM provide bounds on the possible values of the parameters,
but these bounds may be too broad to guarantee the correct execution of the action.

As an example, consider the 1D cart in Figure 2, whose state is represented by three variables:
the position of the cart, x, its velocity, v, and its acceleration, a. The task is to move the cart from its
initial position, x0, to a goal position, xg. The domain knowledge specifies that the cart’s velocity
is bounded by minimal and maximal values, and that the cart is controlled by setting a value for
acceleration: decelerating (a = −1), coasting (a = 0), or accelerating (a = +1). The qualitative
dynamics of the cart state that acceleration is the derivative of velocity, and that the velocity is the
derivative of the x-position, both with respect to time. The planner may devise a three-action plan:
(1) accelerate from x = x0 to a point x = x1; (2) coast to a second point x = x2; (3) decelerate and
stop at the goal x = xg. Each action changes the cart’s acceleration and is durative. For example,
action (1) starts in position x0 and terminates when position x1 is reached. Thus, the actions are
parameterized by the x position at which they terminate. However, qualitatively it is only known
that x1 > x2 and that both x1 and x2 are in the range x0 . . . xg between the initial and goal positions.
Obviously, there are combinations of values for x1 and x2 that make the cart to stop at the goal, but
there are many combinations that will fail.

The parameter refiner narrows the parameter constraints to a satisficing1 region that will always
lead to successful completion of the task. The constraints may be further refined if an optimal solu-
tion is required. Refinement of the parameter constraints is formalized as a semi-Markov decision
problem (SMDP) using options (Sutton et al., 1999). Options perform the sequencing layer function
of mapping the coarse qualitative constraints into specific quantitative values required for a motor
command. For each action generated by the planner, there is a set of options, where each option
represents a single point drawn from the quantitative parameter space of that action. That is, one
option corresponds to one possible implementation of an action. The job of the refiner is to search

1. Satisficing, coined by Simon (1956), is defined as searching until an acceptable solution is found.
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Figure 4. The Negotiator robot (a) attempting a USAR task and (b) the qualitative variables required used to
model the robot.

for satisficing (or optimal) combinations of options that result in successful completion of the task.
Returning to the 1D cart example, recall that the action, setting the acceleration of the cart, is param-
eterized by the x position at which the action terminates. The domain knowledge assigns qualitative
labels to the x landmark values, but in the “real world”, these labels correspond to specific quan-
titative values, such as x0 = 0 and xg = 100. Figure 3 illustrates the SMDP and options for the
three-action plan for the cart, where, for this example, we assume that the numerical values for each
parameter have been discretized. Selecting x1 = 10 and x2 = 90 as the combination of options
results is a successful completion of the plan, while selecting x1 = 20 and x2 = 20 will fail, and
selecting x1 = 50 and x2 = 50 gives optimal execution. By trial and error, combinations of options
are evaluated against a reward. For a satisficing solution, options received a positive reward if they
lead to successful achievement of the goal, or a negative reward otherwise. For an optimal solution,
an immediate reward which represents properties such as execution time is assigned to each option,
and standard SMDP mechanics calculate a globally optimal combination of options.

Once an action has been mapped to a set of motor commands, these are executed by the reactive
controller. In our experiments, the reactive controller is implemented is a collection of PID control
loops to achieve the target values given by the numerical action parameters.

2.2 Learning the Domain Knowledge

In the P/LH, learning occurs in two different modules using two different techniques. In the previous
section, we gave an overview of learning constraints on the parameters values to map a qualitative
action into a set of numerical motor commands. The second learning module constructs the quali-
tative background knowledge by observing the interaction of the robot with its environment.

During state-space sampling, the robot’s state is recorded as actuators are randomly operated
in order to explore the robot’s dynamics and interaction with the environment. The Padé algo-
rithm (Žabkar et al., 2011) applies a localized regression, called tubed regression, to label each
sample in the collected data set with the local qualitative dynamics of the robot. For example, each
sample may be labelled by the local qualitative derivative: increasing, decreasing, or steady. The
labelled data set is segmented into piecewise monotonic subsets that are input to a general-purpose
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Figure 5. For the Negotiator, the relationship between the angle of the base (θb) and the angle of the flip-
pers (θf ). The relationship is defined by four distinct regions, using four Rules.

learning system that induces piecewise qualitative models of the robot’s dynamics. The piecewise
models are combined to generate the full qualitative model of the domain knowledge of the robot.

The P/LH is applied to a locomotion task for the iRobot Negotiator, shown in Figure 4. This
robot is typical of those used in urban search and rescue. The Negotiator has two main tracks plus a
pair of articulated subtracks, or “flippers”, that let the robot change its geometry and maneuver over
obstacles. Our aim is to efficiently learn control policies, on board the robot, for locomotion tasks
often encountered in urban rescue, such as climbing steps or staircases and traversing loose rubble.

3. Domain Knowledge as a Qualitative Model

The robot’s domain knowledge, including its interaction with the environment is described by a
qualitative model. Our representation (Wiley et al., 2013a) extends the Kuipers (1984) framework
for causal reasoning, which qualitatively describes the state and dynamics of a system. We divide
QSIM variables into two categories. A control variable is associated with a motor command and a
change in a control variable corresponds to an action. For example, changing the acceleration in the
1D cart is an action. A state variable is any other variable required to uniquely described the state of
the system. On the Negotiator, the control variables include the robot’s heading, hd, the velocity, v,
and the position of the flippers, θf . The state variables include the position of the robot, posx/posy,
and the angle of its base relative to the ground, θb.

The qualitative value of a variable is described by a magnitude and rate of change over time.
The magnitude of a variable is given relative to symbolic landmark values in the variable’s domain,
and may be either at a landmark or in the interval between two consecutive landmarks. The rate
of change of a variable over time is either increasing (inc), steady (std), or decreasing (dec).
For example, if the Negotiator is moving towards a step, the x position of the robot (posx) may be
described as increasing between the robot’s starting position and the position of the step. Thus, the
value of a variable is given by a pair, which can take one of three forms:

li . . . li+1/dec li/std li . . . li+1/inc

A qualitative state is an assignment of a qualitative value to each variable of the system and the
qualitative state space is the set of all such assignments.

98



A PLANNING AND LEARNING HIERARCHY USING QUALITATIVE REASONING

Table 1. Common QDE constraints.
QDE Description

M+(x, y) Monotonicity, i.e., the directions of change x and y are the same
(both positive or both negative).

M−(x, y) Inverse monotonicity, i.e., x and y change in opposite directions.
sum(x, y, z) z = x+ y
deriv(x, y) y is the derivative of x with respect to time.
const(x, k) x = k/std, i.e., the value of x is k and remains steady
qnull The qualitative state is invalid.

The dynamics of the robot are described by a set of rules that determine if a qualitative state is
“legal”, that is, whether the robot can physically achieve the state. A rule consists of a guard and a
qualitative constraint:

Rule := Guard⇒ Constraint

If a qualitative state satisfies the guard then the constraint of the rule is applied. The guard is a pred-
icate that describes an operating region (Williams, 1984). For example, the relationship between
the angle of the Negotiator’s base, θb, and the angle of its flippers, θf , varies through four discontin-
uous regions, as shown in Figure 5, requiring piecewise models of the system’s dynamics (Nishida
& Doshita, 1987). Thus, a qualitative state is legal if, and only if, that state is contained within an
operating region that has a rule whose constraints are satisfied.

Constraints are specified as qualitative differential equations (QDEs). Table 1 lists the common
QDEs, including const and qnull, introduced by Wiley et al. (2013b). QDEs place restriction
on the qualitative values of pairs or triplets of variables. For example, M+ (x, y) states that the
rate of change of variables x and y, must be the same, that is, if x is increasing then y must also
be increasing. The planning module of the P/LH uses the qualitative domain knowledge to find a
sequence of actions to achieve a specified goal.

4. The Qualitative Planner

A plan is a sequence of actions, aQi , that transforms the initial state, sQ0 , into successive states until
the goal state, sQg , is reached. The superscript, Q, is used to remind the reader that these states are
qualitative, i.e., they are represented by a set of qualitative values.

sQ0
aQ0−→ sQ1

aQ1−→ sQ2 → . . .
aQn−→ sQg

An action model, shown in Figure 2, consists of an identifier, a precondition, a postcondition (or
effect), an implementation, and a set of parameter variables. The precondition specifies the qualita-
tive states in which the action may be selected. The postcondition is a set of qualitative states, any
of which may result from the action. The implementation details how the action is to be executed
by setting a qualitative value for every control variable. Actions may set several control variables
simultaneously, causing multiple actuators to operate concurrently. The parameter list of an action
is the variables whose values govern how the action is executed on the robot.
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Table 2. A qualitative action used for symbolic planning, where each sQi is a “legal” qualitative state, each
cvarQi is a control variable with a qualitative value defined by a magnitude (mag) and rate of change (roc),
and each vari is a variable of the system.

Identifier: name

Pre-condition:
{
sQi , s

Q
j , . . .

}
Post-condition:

{
sQk , s

Q
l , . . .

}
Implementation: cvarQi = mag/roc, . . .

Parameters: vari, varj . . .

Action models are nondeterministic, since they allow a transition into one of several possible
new states. The nondeterminism occurs because, unlike classical planning, the set of possible post-
conditions resulting from the execution of an action is computed by QSIM from the precondition
and implementation. For example, with the 1D-cart from Figure 2 an action’s precondition may
require that the cart is coasting between the initial and goal positions (x = x0...xg/inc, v =
0..vmax/std, a = 0/std), with “decelerate” (a = −1/std) listed as the action’s implementa-
tion. From this QSIM predicts two possible successor states: either the cart stops at the goal (x =
xg/std) or before it (x = x0...xg/std), but it cannot decide which will occur. The use of pa-
rameterized actions addresses this nondeterminism. We make the assumption that, with the correct
choice of parameter values for each action, any of the states QSIM predicts can be successfully
targeted. In the 1D cart, by switching from coasting to decelerating at the appropriate x position,
either of the above outcomes can be targeted deterministically.

The planner uses forward chaining to search for a sequence of actions that will achieve the
goal. However, for a complex system, the number of actions and the size of the qualitative state
space renders a naive search strategy intractable. We have proposed two solutions in previous work.
In Wiley et al. (2013a), we introduced a heuristic termed the qualitative magnitude distance. The
heuristic estimates, from any qualitative state, the minimum number of actions required to reach
the goal using the difference in magnitudes of the qualitative values of variables in the respective
qualitative states. This planner, implemented in Prolog, combines this heuristic with an A* search
and assumes that the best plan has the smallest number of actions. The original formulation of
QSIM does not have the concept of an action model. Instead, the QSIM constraint solver generates
a sequence of qualitative states. For planning, action models are generated on-the-fly, during the
search, derived from the qualitative state transitions. In Wiley et al. (2014b), we observed that
QSIM’s calculation of the postconditions of an action can be formulated as a constraint satisfaction
problem, which can be solved efficiently using answer set programming (ASP; Gebser et al. 2013).
In this case, the planner is directed to find the shortest sequence of actions. Planning with both
the Prolog implementation and ASP is tractable. However, the ASP planner is considerably faster,
provided that continuous variables can be discretized into a small number of bins. If this is not
possible, the Prolog planner, which is more general, must be used at the cost of speed. Earlier
publications (Wiley et al. 2014a; 2014b) have compared and evaluated these two alternatives.
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Figure 6. Qualitative planning with funnel states. The top row, with solid arrows, is a plan between funnel
states. Each action generalizes across a sequence of qualitative states.

To further minimize the impact of QSIM’s nondeterminism, the planners incorporate funnel
states (Brown & Sammut, 2011), which are critical regions in the robot’s state space that it must
pass through to complete a task, as illustrated by Figure 6. From the initial state, sQ0 , the system must
pass through funnel states sQ1 and sQ2 before reaching the goal sQg . However, we noted earlier that
actions are durative. Thus, the system may pass through several intermediate states, and there may
be more than one path from one funnel state to the next. The exact path taken by the robot to reach
the funnel state is unimportant, provided the it is reached. Funnel states buttress our assumption that
a desired qualitative state may always be reached, with the correct parameter setting, as multiple
ways of reaching a funnel state gives greater flexibility.

The output of the planner is a list of actions that should achieve the agent’s goal, but this list can
be interpreted as a collection of sequential constraints on the control policy, which is found by the
parameter refiner described in the following section.

5. Parameter Refinement

The parameter refiner narrows the constraints on the action parameters of a plan by online trial-and-
error learning. Refinement is treated as a semi-Markov decision problem (SMDP) over options (Sut-
ton et al., 1999), mapping the qualitative state space of the deliberative layer of the P/LH into the
quantitative state space of the reactive layer. An option represents a specific way of executing a
single action of a plan on the robot. As we saw in Section 2 with the 1D cart, the qualitative range
to which QSIM restricts an action’s parameters is converted to a quantitative range using the known
values of each variable’s landmarks, from which the range is discretized. One option is constructed
for each parameter value in the discretized range. Options are chained to construct an SMDP, lead-
ing from a quantitative initial state to a quantitative goal state. Executing an option on the robot
involves starting in a specific quantitative state and attempting to reach a goal state, defined by the
parameters of the related action. However, it may not be possible for the robot to reach the goal, nor
may the option represent the optimal approach to completing the task. Therefore, refinement of a
task is reduced to finding “good” sequences of options, where “good” may be defined as any option
that reaches the goal (satisficing) or as the best sequence.

Standard SMDP mechanisms measure the quality of each option for completing the task. An
immediate reward is received for each option, from which standard MDP backpropagated value it-
eration (Sutton & Barto, 1998) calculates an expected delayed reward. For a satisficing refinement,
options are assigned an immediate reward of success (+1) or failure (−1), depending on whether
the robot can successfully execute the option, and the expected reward copies the maximum of
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successor options. Thus, the satisficing options are ones that, at the completion of learning, have
success (+1) for their delayed reward. For optimality, the immediate reward is some measure ac-
cording to the optimality criterion. For example, to optimize for speed, the immediate reward might
be the length of time the robot takes to execute the option, and the expected rewards accumulate
times from successive options.

Immediate rewards are acquired by online experimentation. To conduct a trial, the robot chooses
a sequence of options from the initial state to the goal and then attempts to execute them. As each
option is completed, immediate rewards are assigned according to the type of refinement (satisficing
or optimal). The trial concludes when the robot either reaches the goal or fails to execute an option.
The sequence of options chosen for each trial depends on the type of refinement. For satisficing
refinement, the robot selects a trial that maximizes the number of options that have not been tested,
and trials continue testing all options that may lead to a successful completion of the task. For
optimal refinement, we employ the MCMC hill-climbing approach of Sammut and Yik (2010),
which carries out random trials until it finds a successful sequence of options. For subsequent trials,
the robot chooses a sequence of options that is spatially similar to the current optimal solution,
conducting trials until no untested spatially similar options exist.

6. Learning a Qualitative Model

The domain knowledge used by the P/LH may be programmed or learned. The first stage in learning
is to collect training data by sampling the quantitative state of the system as the robot operates its
actuators and interacts with the environment. The second stage involves inducing a qualitative
model from the training data.

The model inducer is built on Padé (Žabkar et al., 2011), a tool for learning qualitative models
from numeric data. Padé induces a qualitative function, y = f(x), of a single value, y, with respect
to the argument, x. First, each sample of the training data is labelled with the local qualitative
behavior (increasing, decreasing, or steady) of the target function, f(x). Next, a general-purpose
machine learning algorithm induces a classifier from these training data, creating the target function.
For the P/LH, we want to learn the effect of changing a control variable on the state of the robot.
That is, we want to learn

svars = f(cvars),

where svars is the set of state variables and cvars is the set of control variables. Padé can only
induce a function of one variable. To learn a multi-variable function it must be decomposed into
several functions of <state variable / control variable> pairs. Padé induces functions for each pair,
which are combined to form the complete qualitative model.

We have extended Padé to improve its ability to induce models of robot systems. Training data
sampled from a robot often suffer from severe sampling bias, which is problematic for the labelling
stage. To reduce this bias, the data set is discretized and each bin is resampled so that every bin
contains an equal number of training instances. Another problem is that the training data only
contain positive samples, that is, samples from regions of the robot’s state space that were visited
during sampling. Padé will overgeneralize across the unvisited regions. However, these regions
may indicate parts of the state space that the robot cannot reach. To correct for this, random qnull
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Figure 7. Labelled data set produced by Padé for the relation between the angle of the flipper (θf ) and the
angle of the base (θb) on Negotiator. Padé’s labelling mirrors the theoretical relationship shown in Figure 5.
The figure also shows the seeded qnull samples.

samples from the unvisited regions (see Table 1) are added to the data set as negative examples, to
indicate that regions not represented in the original sample are invalid. The revised training data are
then used to induce a pairwise model. The assumption that unvisited regions are invalid may result
in generalisations that are too conservative, but otherwise learning from positive only data would be
difficult. Consider, for example, inducing a pairwise model for the relationship between the angle
of the flipper (θf ) and the angle of the base (θb) on the Negotiator. Figure 5 describes the theoretical
relationship between the two angles and Figure 7 shows labeled training data. The raw training data
were collected from observations of the flipper-base relation. These were then evenly redistributed
and passed to Padé, which labelled the samples Q(+θf ), Q(−θf ), or Q(). These state that, for the
specific sample of the training data, the value of θf is increasing in relation to θb, decreasing in
relation to θb, or unrelated to θb, respectively. Additional qnull instances were randomly added as
artificial negative examples.

Now that the robot has a labelled training set, any symbolic induction algorithm may be used
to construct a mapping between a qualitative state and a qualitative action. As suggested by Žabkar
et al. (2011), the system uses C4.5 (Quinlan, 1993) to construct a decision tree. Figure 8 shows
the decision tree that is induced for the Negotiator’s flipper-base relationship using the labelled data
shown in Figure 7. A decision tree can be trivially converted into rules, forming a qualitative model
of the relationship. The guard for a rule is derived by combining the conditions leading to a leaf node
and the qualitative behaviors of the leaf nodes become monotonic QDEs using the forms in Table 1.
For example, the qualitative behavior θb = Q(+θf ) equates to M+ (θb, θf ), and θb = Q(qnull)
reduces to the qnull. The main limitation of using Padé is that this conversion cannot generate
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| | | | theta_f>-10.273
| | | | | theta_f<=98.500: Q(+theta_f)
| | | | | theta_f>98.500: Q(null)
| | theta_f>133.524
| | | theta_f<=154.558: Q(-theta_f)
| | | theta_f>154.558: Q()

(b)
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Figure 8. A text description of the decision tree is given in (b) which is induced from training examples in
Figure 7, which is then overlaid in (b) on the plot of the training examples.

rules that involve derivatives or arithmetic. Finally, the complete qualitative model is the union of
all pairwise state-control variables models.

7. The Planning and Learning Hierarchy (P/LH) on a Multi-tracked Robot

We have evaluated the P/LH using the multi-tracked Negotiator robot (Figure 4) to complete two
terrain traversal tasks: climbing a single large obstacle, such as a step, and climbing a 45-degree
staircase. The Negotiator may climb a step using one of two methods (Figure 9). The obvious
approach is to raise the flippers to approximately 45-degrees before the robot drives forward over
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Step - Driving forward Step - Reversing Staircase

Figure 9. Depiction of Negotiator performing the two terrain traversal tasks: climbing a step and climbing a
staircase. The step-climbing task may be solved by one of the two methods: driving forward and reversing.

the step. A more complex method is needed if the step is too high for the flippers to get traction.
The robot must execute a 180-degree turn and reverse up to the step. Then by supporting its weight
on the flippers, the robot raises the base and places it on the step. The flippers are rotated to provide
enough leverage so that the robot may continue reversing onto the step. This approach may seem
counterintuitive, but getting the longer base onto the step lets the robot climb onto higher obstacles.
Climbing a staircase (Figure 9) shares similarities with the step task. The robot first raises its flippers
to drive up and onto the stairs. However, the flippers must be lowered to gain enough traction to
drive up the staircase. This additional traction becomes more important as the pitch of the staircase
increases. The staircase also introduces a safety concern. As the robot reaches the top, it may fall
onto the landing at the top of the staircase, potentially damaging computers, sensors, or motors. The
fall can be prevented by lowering the flippers at the top of the staircase.

To apply the P/LH to solve both terrain traversal tasks, a model of the staircase and the step may
be learned or programmed. The experiments presented here used handcrafted qualitative models
for both tasks. The planner was provided with the qualitative models and tasked with finding three
plans: one with the qualitative model configured for a low step, one for a high step, and one for
climbing a staircase. Previous papers (Wiley et al., 2013a; 2014a; 2014b) have described theoretical
and experimental results with the planner.

Table 3. Performance of the planner for terrain traversal tasks.
Task No. Actions No. Options

Low step 4 442
High step 10 2904
Staircase 9 799

Table 3 lists the number of actions in the plan and the number of options in the SMDP used for
refinement. The low step requires the shortest plan, which consists of only four actions and 15%
of the number of options compared to the substantially more complex plan for the high step. Much
of the complexity in the high step plan is due to the coordination of the movements of Negotiator’s
flippers and the location of the robot relative to the step. In this task, the robot is restricted to
operating either the flippers or the drive train, which lengthens the plan and increases the number of
options. The flippers and drive train can be operated in parallel for the other two tasks. The staircase
task has more actions than simply climbing one step because the robot must rotate the flippers to
gain traction and to prevent it from being damaged.

105



T. WILEY, C. SAMMUT, B. HENGST, AND I. BRATKO

Table 4. Number of trials required to find a desired set of parameters for each terrain traversal task.
Task Satisficing Optimisation

Time Safety Both
average minimum maximum average average average

Low step 3 1 11 30 N/A N/A
High step 17 1 45 51 N/A N/A
Staircase 14 7 36 37 53 60

Table 4 summarizes the number of online trials that the parameter refiner requires to find a
satisficing control policy for each task and to find control policies for various optimization tasks.
Some snapshots from these trials are shown in Figure 10. Trials for a satisficing solution were
constructed by randomly choosing options that had not previously been tested, until a satisficing set
of options was found. Optimization trials were constructed using a hill-climbing method, with trials
being conducted until the optimal set of options did not change between consecutive trials.

Although all three tasks may appear simple, each plan has critical points where incorrect pa-
rameters cause it to fail. For the low step, if the flipper position is too low or too high (Figure 10j),
the robot cannot to get onto the leading edge of the step. This is also the case for the start of the
staircase plan (Figure 10k). Choosing the wrong flipper values at the top of the staircase may cause
the robot to topple backwards down the stairs or to fall heavily onto the landing (Figure 10l). The
high step has many failure scenarios if the combination of parameters for operating the drive train
and configuring the flippers is chosen poorly.

For all three tasks, we were primarily concerned with finding a single, reliable satisficing so-
lution. That is, we desired a set of parameter values that guarantees the trained reactive controller
will let the robot successfully complete the task every time it is attempted. Thus, for the satisficing
refinement, trials were run until the system found a sequence of options that always completed the
task. We are also interested in finding optimal solutions for each task, where optimality may be
defined in various ways. One obvious measure for optimality is time, that is, the fastest execution
of the plan by the robot. Risk of damage to the robot, safety is another measure, so we want a plan
that minimizes that risk. Options that find a balance between time and safety may also be criteria
for optimization. For step climbing, only the length of time to execute a plan is optimized. This is
because these tasks have a low chance of the robot falling from a great height. However, as there is
a high risk of falling from staircase, the robot’s reward weights safety more heavily than time.

A significant claim of our work is that the use of the P/LH enables reactive controllers to be
feasibly trained online, that is, on board the robot as it is executing. These results demonstrate that
feasibility, especially where only a satisficing solution is required. The real time required to find
an optimized control policy for the high step and staircase scenarios is between three to four hours.
This includes time for resetting the robot between each trial and for minor running repairs. Where
an only satisficing solution is required, no more than 30 minutes is required to find a control policy
for the the physical robot.
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(a) Step - Approach 1 (b) (c)

(d) Step - Approach 2 (e) (f)

(g) Staircase (h) (i)

(j) Failing on Step (k) Failing on Staircase (l) Dangerous fall on Staircase

Figure 10. Various stages of trials for the three terrain traversal tasks. Figures (a) – (c) show the step climbing
task when driving forward, Figures (d) – (f) the step climbing task when reversing, and Figures (g) – (i) the
staircase climbing task. Figures (j) – (l) show trials which may fail or be unsafe.

8. Related Work

Several cognitive architectures incorporate high-level planning with reactive control layers. For
example, RCS (Albus & Barbera, 2005) provides a detailed framework for constructing complex
autonomous systems. Laird et al. (2012) describe extensions to the SOAR architecture that let it
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invoke SLAM and navigation systems. Ferrein & Lakemeyer (2008) introduce an architecture that
includes a deliberative layer, programmed in a logical action language, on top of a reactive control
layer. The main distinction of our work is that it extends qualitative simulation so that it can be used
in planning. The planner incorporates a constraint solver that combines semi-numerical reasoning
with logical inference.

Other architectures combine task planning with motion planning or trial-and-error learning. For
example, Tenorth et al. (2014) use a PDDL planner for cooking a pancake and Lagriffoul et al.
(2014) use a similar technique for pick-and-place tasks. Each action has a parameterized motion
description that a motion planner uses to generate the actuator movements executed on the robot.
Dynamic motion primitives (DMPs; Schaal et al. 2005) are parameterized mathematical models for
complex motor actions. Common or repeated actions are stored in libraries and can be combined to
construct more complex behaviors. The parameters of the DMPs can be refined by reinforcement
learning to train robot arms to play table tennis and shoot an ice hockey puck (Neumann et al.,
2014), or to throw darts and flip pancakes (Kober et al., 2011). However, these methods rely on
time-consuming simulations to construct the Dynamic motion primitives and they cannot reason
using domain knowledge. In contrast, our P/LH is well suited to online learning on noisy mobile
robots that are difficult to simulate.

Reinforcement learning is often used to acquire new behaviors, such as visual UAV naviga-
tion (El-Fakdi & Carreras, 2013) and teaching a dog-like robot to jump (Theodorou et al., 2010).
These also use handcrafted simulators for initial learning, since the number of trials required in-
creases rapidly as the complexity of the domain increases. The learned policies are refined in a
second stage of online learning. Imitation Learning, or behavioral cloning, has been used to learn
control policies using training data obtained by observing the actions of a human expert (Michie
et al., 1990), with applications to tasks such as plotting a simulated aircraft (Sammut et al., 1992;
Šuc et al., 2004; Ng et al., 2006) and controlling container crane (Šuc & Bratko, 1999). Behavioral
cloning is complementary to the methods presented here, as the performance traces provided by the
human experts can be used as training data for learning at both the deliberative and control layers.

9. Conclusions and Future Work

The normal engineering approach to building robot behaviors is to carefully model the robot and its
environment, and to hand craft control functions to achieve specified goals. However, it becomes
increasingly difficult to construct these models and behaviors as we build more complex robots and
expect them to perform more difficult tasks. Rather than handcrafting them, it is less laborious
for the robot to learn a model of itself and how its actions affect the environment. The Planning
and Learning Hierarchy (P/LH), described here, acquires its models from examples of the robot’s
interaction with objects. The examples can be provided as traces from a human operator controlling
the robot or from the robot’s own experimentation. To reduce complexity, the robot learns in two
stages. First, the robot builds a qualitative model that lets it reason about actions and create a high
level plan to achieve a goal. Initially, the plan only specify qualitative actions, lacking the precise
numerical values required for motor commands. However, the actions provide constraints so that
the second stage of learning can find operational parameter values efficiently. We formulate the
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second stage of learning as a semi-Markov decision problem, since the robot must perform some
trial and error to obtain enough information to find those parameters.

All of the components of P/LH are implemented and have been tested individually. The exper-
imental results presented in this paper are from those isolated tests. We are currently conducting
experiments to demonstrate the complete learning cycle, starting with building qualitative models
from the robot “playing” in its environment through planning to achieve a specified goal and refining
the action models through online learning during the performance of the task. One motivation for
this work is to be able learn in a small number of trials on a real robot. We wanted this because, as
stated above, it is difficult to build accurate simulations. Thus, the experiments used a real tracked
rescue robot with both learned and handcrafted qualitative models.

A major advantage of symbolic representations over numerical ones is that the former are easier
to reason about and to generalize. It should be possible to generalize the qualitative models that
the robot builds for one problem and transfer them to another. A state space may contain many
regions that share similarities, as do the resulting qualitative models for those regions. For example,
obstacles often have regions of flat ground before and after, so whether the obstacle is a staircase
or a single block, the robot should be able to execute similar actions leading to and away from the
obstacle. Automatically identifying and reusing common regions should reduce the need to induce
new qualitative models and let existing plans be reused. In ongoing work, we are adapting methods
from inductive logic programming (Muggleton et al., 2014) to generalize qualitative models to be
stored in libraries, along with associated control policies. If successful, this will take robots some
way toward the ability of reasoning in a new task its way to a workable solution, as do humans.
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