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Abstract 

The cognitive systems literature describes many methods for problem solving and planning. Given 

a goal state, these methods search for solutions that achieve the goal through interactions with some 

environment. However, a major assumption is that goals are given, usually by a user directly as 

input or as part of the problem representation. Furthermore, once given, the goals do not change. 

Here, we formalize the notion that goal formulation and goal change are themselves major cognitive 

operations. We include in our model not just plan generation and execution but also interpretation 

of the environment as plans execute, exogenous events occur, and plans change.  

1.  Introduction 

In virtually all intelligent systems, goal states are predefined and exogenously provided by an 
external user. But to have a continuing existence over time, agents must be flexible to survive and 
to continue to be useful. Recent work on goal reasoning (see Aha, Cox, & Muñoz-Avila, 2013; 
Hawes, 2011) has started to examine how intelligent agents can reason about and generate their 
own goals instead of always depending upon a human user for them. Much of this work has been 

situated within the context of the automated planning community and has borrowed their formal 
notations as a theoretical framework. The goal of this paper is to extend the standard planning 
formalism to account for mechanisms of goal reasoning and to begin to integrate the vocabulary of 
cognitive systems with that of the larger artificial intelligence (AI) field. The result combines 
notations for planning, action, and interpretation within the scope of goal reasoning. The intent is 
to seek a uniform theoretical basis for expressing and communicating work on integrated cognitive 

systems. That is, cognitive agents interpret a changing world and express their desires in terms of 
dynamic goals; they do more than just plan for and achieve a set of goals given by an outside party. 

As an example, consider a package-delivery domain (Figure 1) that involves a network of 
locations connected by roads. From time to time, vehicles must transport objects from one location 
to another as requests arrive. Deliveries may be accomplished by picking up and delivering 
packages (e.g., delivering pallets of bottles to a cola bottling plant). AI planning research has 

considered similar but simplified domains in which the world is static (i.e., no states change unless 
the agent performs an action), a given fixed goal exists to be achieved (e.g., the delivery of specified 
packages), and the problem ends at any world state in which the goals are satisfied. In some sense, 
routine delivery of packages on a route is hardly a problem requiring intelligence. These problems 
omit any consideration of why those goals should be achieved and what the agent should do after 
achieving them. In a more realistic model of a dynamically changing world, bottles must be 

delivered to the bottling plant as the inventory changes, and the agent may need to explain and 
hence understand this to generate new goals when the inventory becomes unexpectedly low. 
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The first section of the paper provides our formal representations for goal reasoning and frames 

the research using a simple blocks world example. The subsequent section examines the formalism 

within a kind of goal reasoning called goal-driven autonomy. After this, we discuss related research 
and draw some conclusions. 

2.  A Formalism for Goal Reasoning 

Much of the research in AI planning has focused on a restricted case called classical planning, in 

which all actions have deterministic effects, and the task is to generate a plan that reaches any of a 

predefined set of goal states. This section examines the formal model for classical deterministic 

planning, briefly considers non-deterministic planning, extends the formalism to represent interpre-

tation (including goal change and formulation), and then unifies the individual formalisms into a 

single model of planning, action, and interpretation. The model is illustrated with a simple example. 

2.1  Classical Planning Theory 

A classical planning domain is typically defined (e.g., Ghallab, Nau, & Traverso, 2004) as a finite 

state-transition system in which each state 𝑠 ∈ 𝑆 = {𝑠1, … , 𝑠𝑛} is a finite set of ground atoms of a 

function-free, first-order language 𝓛. A planning operator 𝑜 ∈ 𝑂 is represented as the triple 

(ℎ𝑒𝑎𝑑(𝑜), 𝑝𝑟𝑒(𝑜), 𝑒𝑓𝑓(𝑜)), where 𝑝𝑟𝑒(𝑜) and 𝑒𝑓𝑓(𝑜) (the preconditions and effects of 𝑜, respec-

tively) are sets of literals (logical atoms and negated logical atoms) and ℎ𝑒𝑎𝑑(𝑜) is a syntactic term 

of the form 𝑛𝑎𝑚𝑒(𝑎𝑟𝑔𝑠), where name is the operator’s name and args is a list of the variables in 

𝑝𝑟𝑒(𝑜) and 𝑒𝑓𝑓(𝑜). Each action 𝛼 is a ground instance of a planning operator.  
An action 𝛼 ∈ 𝐴 is executable in a state 𝑠 if 𝑠 ⊨ 𝑝𝑟𝑒(𝛼). The state resulting from the execution 

of action 𝛼 is (𝑠 – 𝑒𝑓𝑓−(𝛼)) ∪  𝑒𝑓𝑓+(𝛼), where 𝑒𝑓𝑓+(𝛼) and 𝑒𝑓𝑓−(𝛼) are the atoms and negated 
atoms, respectively, in 𝑒𝑓𝑓(𝛼). A plan π = 〈𝛼1𝛼2 … 𝛼𝑛〉 is executable in 𝑠 if each 𝛼2≤𝑖≤𝑛 is 

Atlanta

Coke

Birmingham

Chattanooga
McCaysville

Pepsi

Bottle
Distr.

Greenville

Sugar Distr.

Dalton

Bank1

Bank2

Figure 1. A simple package delivery domain for manufacturing soft drinks. Product ingredients and packag-

ing must be moved through the network of locations and finished products must be delivered, advertised, and 

sold to consumers. 
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executable in the state produced by 𝛼𝑖−1 and 𝛼1 is executable in 𝑠. For a classical planning domain, 
the state-transition system is a tuple  = (𝑆, 𝐴, ), where 𝑆 is the set of all states and 𝐴 is the set of 
all actions as above. In addition, 𝛾: 𝑆 × 𝐴 𝑆 is a state transition function that returns the resulting 

state of an executable action given a current state. Thus, given a state and action, one infers the 
subsequent state 𝛾(𝑠,) → 𝑠′ that follows after the action is executed.  

A classical planning problem is the triple 𝑃 = (, 𝑠0, 𝑔), where  is a state transition system, 𝑠0 
is the initial state, and 𝑔 G (the goal formula) is a conjunction of first-order literals.1 A goal state 
𝑠𝑔 satisfies a goal if 𝑠𝑔 ⊨ 𝑔. A plan () represents a (possibly empty) sequence of plan steps (i.e., 
actions 〈𝛼1𝛼2 … 𝛼𝑛〉) that incrementally changes the state of the world. Here we will use a notation 

that enables indexing of the individual steps or sub-sequences within a plan. In equation (1), we 
use the subscript 𝑔 to indicate a plan that achieves a specific goal. A plan is composed of the first 
action 𝛼1 followed by the rest of the plan. 

𝜋𝑔[1. . 𝑛] = 𝛼1 | 𝜋𝑔[2 . . 𝑛] =  〈𝛼1𝛼2 … 𝛼𝑛〉         (1) 

Now we recursively recast γ as mapping either single actions or plans to states. Hence, 𝜋𝑔 is a 

solution for 𝑃 if it is executable in 𝑠0 and 𝛾(𝑠0, 𝜋𝑔) ⊨ 𝑔.  

Definition 1: Classical plan execution. 

Equation (2) recursively defines plan execution as an invocation of the state transition function. 
From the initial state, sequential execution of each action results in a state that entails 𝑔. 

 Γ(s0, π𝑔) = γ ( γ(s0,1), π𝑔[2. . n]) → s𝑔        (2) 

 

2.2  Planning with Nondeterminism 

In the AI literature, uncertainty about the outcomes of actions has been dealt with mainly in two 

different ways: using Markov decision processes (MDPs) (Boutilier, Dean, & Hanks, 1999; Dean 

et al., 1995; Kaelbling, Littman, & Cassandra, 1995) and using model-checking techniques 

(Cimatti, Roveri, & Traverso, 1998; Aiello et al., 2001; Bertoli, Cimatti, & Traverso, 2006) like 

those used for program verification. Which approach is best depends on the situation: MDPs are 

useful when the transition probabilities are important (e.g., to maximize expected utility) and model 

checking is useful when the transition probabilities are unknown or unimportant (e.g., to achieve a 

goal regardless of which nondeterministic outcome occurs). In both approaches, an action with 

multiple possible outcomes is often (though not always) represented as a nondeterministic classical 

operator 𝑜 = (ℎ𝑒𝑎𝑑(𝑜), 𝑝𝑟𝑒(𝑜), 𝑒𝑓𝑓1(𝑜), 𝑒𝑓𝑓2(𝑜), … , 𝑒𝑓𝑓𝑘(𝑜)) that has multiple possible sets of 

effects. When this representation is used with MDPs, each set of effects 𝑒𝑓𝑓𝑖(𝑜) will have a 

probability 𝑝𝑖(𝑜), where 𝑝1  +  𝑝2  + ⋯ + 𝑝𝑘  =  1. Instead of a sequential plan 𝜋 that achieves a 

goal, MDPs learn a policy 𝜋 (i.e., a mapping from states to actions) that maximizes expected utility. 

                                                 
1 A goal is often represented as a ground literal or conjunction of ground literals (Ghallab, Nau, & Traverso, 2004) and 

the literal is an arbitrary state predicate. For the purposes of this paper we will not assume the goal to be grounded (i.e., 

it can be existentially quantified). Further, the goal is a member of the set of possible goals, not the wider set of all 

possible states. More generally, it could be a complex expression, as discussed in related research, but here we limit 

goals to conjuncts. 
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However, in this paper we will use the classical deterministic definition of planning to illustrate 

clearly the extension to interpretation and goal reasoning.2 

2.3  Interpretation and Goal Reasoning 

Broadly construed, the topic of goal reasoning concerns cognitive systems that can manage their 

own goals (Vattam et al., 2013). Goal reasoning has recently extended the classical formulation by 

relaxing the assumption that an initial goal originates independently of the agent. But even if the 

planning process starts with an exogenous goal, a dynamic environment may present unexpected 

events with which the system must contend. In response, a goal reasoner must be able to generate 

new goals or change old ones at execution time as situations warrant.  
 We posit a simple model of goal management and change that represents the set  =
{  | : 𝐺   𝐺} of potential transformations on goals an agent may select. An individual change 
𝛿: 𝐺 → 𝐺 is a function from one goal expression 𝑔 ∈ 𝐺 to another 𝑔′, where 𝐺  𝑆 is the set of all 
potential desired states.  

Definition 2: Goal-driven interpretation. 

Expression (3) defines the general interpretation function 𝛽: 𝑆 × 𝐺 𝐺 as mapping one goal 𝑔 to a 
(possibly different) goal 𝑔′ given some state 𝑠: 

𝛽(𝑠, 𝑔) → 𝑔′                (3) 

Now given a current contextual state 𝑠 and goal 𝑔,  selects from  a sequence of transformations 

〈 1,  2, …  𝑛〉 that results in the output 𝑛(… 
2

(
1

(𝑔))) = 𝑔′. As such,  is a state interpretation 

process that perceives the world with respect to its goals. Thus, the function is central to goal 

reasoning and management. Theoretically,  represents the choice of an agent, given a new state 

and current goal expression, to determine anew what it wants in the future (i.e., its goal) relative to 

its ongoing observations.3  

2.3.1 Goal Change  

Unlike classical planning models that assume goals to be static and given externally, a goal 

reasoning perspective views goals as malleable and subject to change. In our formalism, a particular 

transformation is represented as  = (ℎ𝑒𝑎𝑑(), 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(), 𝑝𝑟𝑒(), 𝑟𝑒𝑠()), where 𝑝𝑟𝑒() 

and 𝑟𝑒𝑠() are its preconditions and result. The transformation’s identifier is ℎ𝑒𝑎𝑑(), and its input 

goal argument is 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(). Among the elements of  is the identity transformation  𝐼(𝑔𝑖) =

𝑔𝑖 for all 𝑔𝑖 ∈ 𝐺. As a 4-tuple,  𝐼
 is represented as (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑔, {𝑡𝑟𝑢𝑒}, 𝑔). Here, the precondition 

is simply the set containing only true, because it can always be applied in any sequence. When  

selects only identity, the choice captures an agent’s decision not to change its current goal given 

the state 𝑠. But more generally, the capability of  to change substantially an agent’s goals in the 

                                                 
2 We ignore for now the set of exogenous events 𝐸 that are outside the control (and possibly observation) of the reasoning 

system. Note that the use of the word “interpretation” does not correspond to the notion of interpretation that defines 

the logical semantics of formal representations. Rather, it denotes a high-level perceptual-like process. 
3 The language we use here implicitly equates the current state with an observation and thus assumes full observability. 

This simplification is further reinforced by the use of the terms interpretation and perception within the description of 

. But we could (and if space allowed should) distinguish the perceptual observation of partial states from the conceptual 

interpretation of the resulting percepts. We leave this exercise for future work. 
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face of an uncooperative environment represents a powerful adaptive alternative to plan 

modification and replanning.  

Goals can undergo sequences of transformations (Cox & Dannenhauer, 2016; Cox & Veloso, 

1998) including priority shifts (Choi, 2011) and in extreme cases, abandonment (Cox & 

Dannenhauer, 2017; Harland et al., 2017). As an example, a chess player may start out with the 

goal to achieve checkmate. Let this be represented by 𝑔𝑐ℎ. Given a series of 𝑘 < 𝑛 unsuccessful 

opening moves, 𝜋𝑔𝑐ℎ
[1. . 𝑘] where 𝑛 = ⌊𝜋𝑔𝑐ℎ

⌋, the player may change the goal to draw (i.e., 𝑔𝑑𝑟). 

We denote this through the application of the transformation  (𝑔𝑐ℎ) → 𝑔𝑑𝑟 and by specializing 

expression (3) as 𝛽(𝛾(𝑠0, 𝜋𝑔𝑐ℎ
[1. . 𝑘]), 𝑔𝑐ℎ) → 𝑔𝑑𝑟. 

While maintaining consistency with automated planning theory, this formalization is broad and 
generalizable to many types of cognitive processes. Cox, Dannenhauer, and Kondrakunta (2017) 
enumerate a specific set of transformations  that represent many of the operations on goals that 
exist in the goal reasoning literature. Furthermore, goals can follow arcs or trajectories through a 
space of goals over time (Bengfort & Cox, 2015; Eyorokon, Panjala, & Cox, 2017). These 
trajectories result from repeated goal changes through different instances of  interpretation. But 

most importantly for high-level cognition, goals can be created or formulated given a particular 
problem state.  

2.3.2 Goal Formulation 

From some initial state 𝑠0 and an empty goal state, an agent formulates a new goal as in the 

expression 𝛽(𝑠0, ∅) → 𝑔. This transformation, designated as  ∗( ) = 𝑔, is called a goal insertion 

(Cox, 2013; Paisner et al., 2013). Here we do not commit to how the transformation might be 

selected in 𝛽. Cost and expected benefit information might be used, but these details are at the 

discretion of the application (see Section 3.1 for one approach to goal insertion). 
In one sense, goal formulation through 𝛽 can still involve user-provided goals. If the input state 

is one resulting from a speech act whereby a human requests a goal to be achieved, the function of 
 would be to interpret the intention of the human and to infer the goal from the utterance. In 
another sense, however, allowing an agent to generate its own goals substantially departs from the 
classical formulation of a problem. For goal reasoning in its simplest form, a planning problem can 
be cast as the pair 𝑃 = (, 𝑠0). Given a state transition system and an initial state, the goal-reasoning 

task is to formulate a goal, if a problem indeed exists in the initial state, and to create (then execute) 
a plan to achieve it. Under classical planning and indeed under most planning schemes, the system 
halts when the goal state is achieved or even when a plan is simply found. In goal reasoning, an 
agent can search for new problems once all goals are achieved by interpreting the final goal state 
𝑠𝑔. This goal formulation is covered by specializing expression (3) as 𝛽(𝑠𝑔, ∅) → 𝑔′. As we will 
show, goals can potentially be formulated from any state.  

2.4  A Model of Planning, Action, and Interpretation 

A plan to achieve a goal 𝑔 = 𝛽(𝑠, ∅) can now be written as 𝜋𝛽(𝑠0,∅). Using this notation, we 

combine planning, action (plan execution), and interpretation in equation (4): 

 𝛾(𝑠0, 𝜋𝛽(𝑠0,∅)) = 𝛾 ( 𝛾(𝑠0,1),  𝜋𝛽(𝛾(𝑠0,1),𝛽(𝑠0,∅))[2. . 𝑛] )       (4) 

When goals change (or new ones are added) through 𝛽, plans may need to change as well. The 
problem with the above formalization is that, in the recursive right-hand side of (4), the plan is not 
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static as defined in (1). That is, it is not necessarily of size 𝑛 − 1. Instead, because the goal may 
change, the goal reasoner may need to replan and alter the length and composition of the remainder 
of the plan.  

Definition 3: Planning and replanning. 

To cover the above contingency, expression (5) defines the function  ∶ 𝑆 × 𝐺 × 2𝑂 → 2𝑂, which 
takes as input a state, goal, and current plan. The expression covers the case of initial planning and 
of replanning during plan execution time. 

   𝜑(𝑠, 𝑔′, 𝜋𝑔[1. . 𝑛]) →  𝜋𝑔′[1. . 𝑚]               (5) 

Note that in the general case 𝑔′ may or may not be equal to 𝑔. Inserting the re-planning function 

into (4), we obtain equation (6). This resolves the anomaly indicated above.  

 𝛾(𝑠0, 𝜋𝛽(𝑠0,∅)) =  𝛾 ( 𝛾(𝑠0, 𝛼1), 𝜑(𝛾(𝑠0, 𝛼1), 𝛽(𝛾(𝑠0, 𝛼1), 𝛽(𝑠0, ∅)), 𝜋𝛽(𝑠0,∅)[2. . 𝑛]))  (6) 

Given , the formalism is general across different variations of goal reasoning and (re)planning. 
More fully, we have equation (7) below.  

Definition 4: Goal reasoning. 

We define goal reasoning as goal-driven interpretation in the context of planning, action, and 

replanning. On the left-hand side of the equation, 𝜑 instantiates the initial planning process from 

the initial state with a goal provided by 𝛽. The right-hand side specifies the recursive structure for 

interpretation of the state and its associated goal reasoning, together with replanning and plan 

execution. The annotations above and below the figure indicate intermediate results to help 

readability. The key portion to examine on the right-hand side is the outer-most invocation of 𝜑 

from 𝑠1 with a potential new goal 𝑔2 and the remainder of plan 𝜋𝑔1
. This is where replanning can 

occur if the goal has changed. 

  𝜋𝑔1
            𝜋𝑔2

 

 

𝛾 (𝑠0, 𝜑(𝑠0, 𝛽(𝑠0, ∅), ∅)) = 𝛾 (𝛾(𝑠0, 𝛼1), 𝜑(𝛾(𝑠0, 𝛼1), 𝛽(𝛾(𝑠0, 𝛼1), 𝛽(𝑠0, ∅)), 𝜑(𝑠0, 𝛽(𝑠0, ∅), ∅)[2. . 𝑛]))  

  𝑔1     𝑠1           𝑠1  𝑠1   𝑔1  𝜋𝑔1
 

             𝑔2       𝜋𝑔1
[2..n] 

When  generates an exogenous initial goal 𝑔1 = 𝑔𝑢𝑠𝑒𝑟 from the initial state 𝑠0 and simply returns 

the input goal from all other states (i.e., 𝑔′ = 𝑔 in 3 using  𝐼), the formalization reduces to classical 

planning with a user-given goal. That is, equation (7) is equivalent to (2) essentially because (3) 

represents a trivial boundary case.  

Theorem: Goal reasoning subsumes classical planning and acting. 

Proof: It is sufficient to show that goal reasoning as defined by equation (7) is equivalent to 

classical plan execution as defined by equation (2) when (3) and (5) are restricted in scope. Here 

we limit the scope by assuming a special case of a goal insertion transformation as  ∗( ) → 𝑔𝑢𝑠𝑒𝑟 

where 𝑔𝑢𝑠𝑒𝑟 = 𝑔 in classical planning and by assuming  = { ∗,  𝐼 }.  

         (7) 
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Restricted functions 𝛽 (interpretation) and 𝜑 (planning) are as follows: 
 

  𝛽(𝑠, 𝑔) = {
 ∗( ), (𝑠 = 𝑠0)⋀(𝑔 = ∅)

 𝐼(𝑔),                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         𝜑(𝑠, 𝑔, 𝜋) = {

𝛼1𝛼2 … 𝛼𝑛,   (𝑠 = 𝑠0)⋀(𝜋 = ∅)
𝜋,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

On the left-hand side of (7), we can now replace 𝜑(𝑠0, 𝛽(𝑠0, ∅), ∅) with 𝜋𝛽(𝑠0,∅) because of the 

new output of 𝜑 along with equation (1), and then replace 𝜋𝛽(𝑠0,∅) with π𝑔 given the specialization 

of 𝛽 and  ∗. Similar substitutions reduce the right-hand side of (7) to equation (2). From states 
other than 𝑠0, the functions  and 𝜑 simply return their parameters 𝑔 and 𝜋 respectively. 

 

2.5  A Blocks World Example 

The representational formalism presented in the preceding sections extends the traditional AI 

planning notation to include a more inclusive scope that incorporates major cognitive functions for 

an autonomous agent. This includes both action and planning as well as perceptual interpretation 

and flexible goal reasoning. These representations can be chained together to capture the reasoning 

and behavior of an agent, and as such, allow an agent to reason about the entire cognitive and 

environmental context related to what it wants to accomplish (i.e., its goals). 

 Consider a simple blocks world situation where goals are given to the agent by a human user in 

natural language. In this case,  does not just input a goal in first-order predicate form. Instead it 

must translate an utterance or the result of a speech act into a predicate representation. That is, it 

must infer the intent of the user from the current state of the world and what was said. Indeed, when 

a user both states imperatives and asks questions, the intended illocutionary act is most often a 

request for the agent to achieve a goal4 for the speaker. Consider the utterance “Put block B on 

block C”. Although spoken as an action, the intent is actually for the agent to achieve the state of 

block B being on top of C. Although we will not discuss details here, Figure 2 shows how the 

formalism organizes the context of a dialog between human and agent so that inferring the intent 

of the last utterance “Add one more” is possible. 

 However, Figure 2 hides many details. The plan 𝜋1 has two actions that execute sequentially, not 

concurrently in one invocation of γ as the figure suggests. A more realistic depiction of the partial 

plan execution from 𝑠0 to 𝑠1 in Figure 2 is shown in Figure 3. Here we see that the execution of the 

action 𝑝𝑖𝑐𝑘𝑢𝑝(𝐵) results in an intermediate state (now 𝑠1 in Figure 3). From that state no new goal 

is formulated, and subsequently no new re-planning is performed. The goal 𝑂𝑛(𝐵, 𝐶) (i.e., 𝑔1) is 

achieved in the next state 𝑠2, and  evaluates the goal achievement and returns the null goal. 

 Representations such as those depicted in these illustrations provide a clear vocabulary for both 

the AI planning community and researchers working on integrated cognitive systems. We have 

shown elsewhere that the combined context as represented in these examples provides a basis for 

explicit cognitive traces reasoned over by a metacognitive system (Cox & Dannenhauer, 2016; 

Dannenhauer, 2017). Finally, implementations of such concepts apply to a wide range of 

applications for robust autonomy, particularly for worlds that change in unexpected ways.  

                                                 
4 For questions, the intended goal or objective is considered a knowledge goal (Bengfort & Cox, 2015; Ram, 1990) as 

opposed to an attainment goal. 
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3.  Goal-Driven Autonomy (GDA) 

Goal-driven autonomy (GDA) (Aha et al., 2010; Cox, 2007; Klenk, Molineaux, & Aha, 2013; 

Muñoz-Avila et al., 2010) is a kind of goal reasoning that focuses much of the research on goal 

formulation and causal explanation. In the GDA framework, goal management is significant and 

represents a key computational feature. A common framework (Klenk, Molineaux, & Aha, 2013) 

partitions goal reasoning into a pipeline of (1) discrepancy detection; (2) explanation generation; 

(3) goal formulation; and finally (4) goal management. In alternative frameworks, goal formulation 

and management are seen as part of the same computational process; i.e., goal management is 

considered as combinations of various goal transformations, with formulation simply an 

instantiation of the goal insertion transformation (Cox, 2013). Regardless, the common assumption 

is that formulation of goals need not depend directly upon an outside human user, and it represents 

a central feature of autonomy for intelligent agents. Here we examine GDA to illustrate concrete 

aspects of the theory put forth in this paper. 

Figure 2. Partial context for simple block stacking example. The structure is read from the bottom upward. 

Note that horizontal arrows are return values, whereas all other arrows are input arguments. Initially A, B, 

and C are on the table and D is on A. No explicit goal exists, but the statement to put B on C is part of the 

initial state. The function 𝛽 interprets the utterance (stated as an action) as the goal state of B on C. The 

planning function 𝜑 then creates a plan to pick up B and stack it on C. The transition function 𝛾 executes the 

plan to achieve the state pictorially shown on the left and above the initial state. 
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3.1  Explanation and Goal Formulation 

The current goal 𝑔𝑐 of an agent is a distinguished member of the goal agenda Ĝ. As shown in 

equation (8), the agenda is the set of all goals the agent currently desires, whereas 𝑔𝑐 is the subset 

of Ĝ the agent selected for planning.  

   Ĝ = {𝑔1, 𝑔2, … 𝑔𝑐 , … 𝑔𝑛}  G            (8) 

Many techniques can apply to the goal selection problem; see Kondrakunta and Cox (2017) for the 
implemented approach we use in practice. Also, in the GDA framework, the goal reasoner produces 

not only a plan  but also a set of expectations 𝐸𝑋 = {𝑥1, … , 𝑥𝑘}, which represents anticipated 
states associated with each of the 𝑖 = 1. . 𝑘 actions 𝛼i. When any currently observed state 𝑠𝑐 
diverges from the agent’s expected state 𝑠𝑒 = 𝑥𝑐 𝐸𝑋, a discrepancy 𝑑: 𝑠𝑐 ≠ 𝑠𝑒 | 𝑑 𝐷 is said to 
occur (Dannenhauer, 2017; Dannenhauer & Muñoz-Avila, 2015; Dannenhauer et al., 2016).  

To elaborate the causal factors responsible for the discrepancy, a GDA agent applies the 
abductive explanation function in Table 1. A case-based explanation pattern (XP)5 𝜒: 𝜔… 𝑠𝑐 

                                                 
5 The explanation is actually a graph 𝜒 = (𝑉, 𝐸) with 𝜔 𝑉 a set of source node antecedents and 𝑠𝑐 𝑉 a distinguished 

element of the sink nodes or 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝜒). See also Cox (2011). 

Figure 3. Greater contextual detail shown for the execution of 𝜋1. The structure is read from bottom to top. 

Here we drop the user imperative in Figure 2 to put A on B. The individual steps of the plan are executed 

sequentially by 𝛾 and shown with earlier steps lower in the figure. 
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traces a path from some set of antecedents 𝜔 through one or more causal factors to the unexpected 
state. From the expectations and discrepancy, a set of candidate explanations are retrieved from the 
casebase. Unification computes a substitution set 𝜎 from the current state and the explanation’s 

target node. Instantiating role variables from 𝜎 produces a context specific explanation. The 
function returns the first such explanation whose preconditions hold. Dannenhauer et al. (2016) 
provide implementation details with respect to both the expectation generator X(𝑠𝑐 , 𝛼i) and the 
check  function that detects a discrepancy.  

  

Table 1. Case-based explanation function for a goal-driven autonomy agent. 
 

 

Parameters: 𝑠𝑐 – current state; 𝛼i – action; X – expectation function; Casebase – explanations. 

function GDA-explanation (𝑠𝑐 : S; 𝛼i : O; X:S×ΠS; Casebase: {𝜒}): 𝜒 

1. 𝑠𝑒 ← X(𝑠𝑐 , 𝛼i)                                                                          ;; determine expectations 

2. 𝑑 ← 𝑐ℎ𝑒𝑐𝑘(s𝑒 , s𝑐 , 𝛼𝑖)                                                            ;; see Dannenhauer et al. (2016) 
3. if  ∄d, then 𝐫𝐞𝐭𝐮𝐫𝐧() 
4. XPs ← {[𝜔 → ⋯ → 𝑠′]Casebase|𝑐𝑜𝑣𝑒𝑟𝑠(𝑠′, 𝑠𝑐)}        ;; retrieve candidate XPs 

5. for 𝜒 ∈ XPs do 
6.      𝜎 ← 𝑢𝑛𝑖𝑓𝑦(𝑠′, 𝑠𝑐)                                                             ;; unification returns a substitution set 

7.     for 𝑦  𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝜒) 𝐝𝐨 𝑠𝑢𝑏𝑠𝑡(𝜎, 𝑦)                            ;; instantiate explanation variables 

8.      if  ∀𝑦|𝑦  𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝜒)  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝑦)                      ;; do XP preconditions hold ? 
         then return (𝜒)                                                      ;; if so, then return candidate 

9. return ()                                                                      ;; no suitable XP found 
 

 

The explanation 𝜒: 𝜔… 𝑠𝑐 contains a salient antecedent  ∈ 𝜔 that represents the root cause 
of the problem signaled by the discrepancy (Cox, 2007). The goal then is to remove the cause of 

the problem, hence 𝑔𝑛 =  ( ) = . Goal formulation is thus a search for an explanation that 
operationalizes the problem in terms of root causes. Table 2 presents a procedure defining the goal-
insertion transformation that formulates a goal and inserts it into the goal agenda. The details of 
what constitutes a salient antecedent is outside the scope of this paper. But see Cox (2013) and Cox 
et al. (2016) for an integrated cognitive system that implements goal insertion. 

Consider again the blocks world example from Section 2.5. When told to put A on B, the system 

creates a plan to clear A, pick it up, and place it on B. During the planning, it had to solve the 
subgoal of having A clear before picking up the block. But B is already clear, and the system 
expects it to stay that way. 

 

Table 2: Goal-insertion function for adding new goal to current goal set Ĝ. 
 

 

Parameters: 𝑋𝑃 – explanation pattern; Ĝ – goal agenda. 
function GDA-goal-insertion (𝑋𝑃: 𝜒; Ĝ: S): S 

1. XP: 𝜔 → ⋯ → s  
2. if  ∀ |  𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑋𝑃)  𝑠𝑎𝑙𝑖𝑒𝑛𝑡() 

    then Ĝ ← Ĝ  ∪  ¬                                   ;; insertion transformation, i.e.,  ( ) inserted into Ĝ 

3. 𝐫𝐞𝐭𝐮𝐫𝐧(Ĝ) 
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Now assume that block B catches on fire and is no longer clear (see Figure 4 and Paisner et al., 
2014, for an extended domain description for this scenario). Figure 4 shows state 𝑠2 after the agent 
unstacked pyramid D from block A during the execution of plan 𝜋2. The agent is still holding D, 
and B is on fire and hence no longer clear. Here the expectation 𝑠𝑒 is 𝑐𝑙𝑒𝑎𝑟(𝐵), whereas the current 

observed state 𝑠𝑐 is 𝑐𝑙𝑒𝑎𝑟(𝐵). A very simple explanation is that a block being on fire causes it to 
not be clear: 

𝜒: 𝑜𝑛-𝑓𝑖𝑟𝑒(𝑦)  𝑐𝑙𝑒𝑎𝑟(𝑦)     (9) 
 

Given 𝜔 = {𝑜𝑛-𝑓𝑖𝑟𝑒(𝑦)} from (9) and the substitution set 𝜎 =  {𝑦 ↦ 𝐵}, the explanation 
becomes 𝑜𝑛-𝑓𝑖𝑟𝑒(𝐵)  𝑐𝑙𝑒𝑎𝑟(𝐵). As a result of 𝜔 having only one element, the salient 
antecedent  is trivially chosen as 𝑜𝑛-𝑓𝑖𝑟𝑒(𝐵). The new goal thus becomes 𝑔𝑛 = 𝑜𝑛-𝑓𝑖𝑟𝑒(𝐵), 
and it is added to the agenda. Hence Ĝ = {𝑔𝑛, 𝑔2}. Planning can subsequently create a sequence of 

actions to put out the fire before continuing. The planning function represented by  needs to be 
intelligent enough to infer that the putdown action is duplicated in both plans 𝜋2 and 𝜋3. However, 
for  to be equally intelligent, it should have been informed of the current plan. Therefore, we 
redefine (3) as follows: 

 𝛽(𝑠, 𝑔,,) → 𝑔′     (3’) 

In (3’),  can use the current plan for expectations. Indeed, we stated in the example above that 𝑠𝑒, 

the expectation that B will remain clear, occurred during planning for 𝜋2. With such input,  can 
also generate a goal to retry a failed plan step during execution (e.g., vacuum cleaner did not remove 
all the dirt during a particular sweep). Furthermore, goal reasoning can be clear when trying to 
determine, under unexpected and dynamic contexts (e.g., sudden resource reductions), whether 

Figure 4. A structure representing processes during explanation-based goal formulation, read from bottom to 

top. During the execution of plan 𝜋2 to put A on B, a fire breaks out. The interpretation function 𝛽 returns 

the goal 𝑔3 of not having B on fire, given the state 𝑠2 and the old goal 𝑔2. 
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plan adaptation or goal adaptation (using ) is the most rational choice. Planning is not only 
informed by goals from interpretation, but interpretation is also informed by planning. Alavi and 
Cox (2016) further discuss the influence planning can have upon interpretation.  

Finally, given d, χ, and 𝑔𝑐, goal generation seeks to determine a new top-level goal or subgoal 
𝑔𝑛 to remove the discrepancy by either changing the state 𝑠𝑐 to 𝑠𝑒 or by learning a new expectation 
that justifies 𝑠𝑐. Given this approach, we define a GDA planning problem as the six-tuple in 
equation (10): 

𝑃𝑔𝑑𝑎  =  (, 𝑠𝑐 , 𝑔𝑐 , 𝑠𝑒 , Ĝ,)                  (10) 

In the case where all plan execution outcomes equal expectations (i.e., 𝑠𝑐 = 𝑠𝑒) and thus no ex-
planation is necessary (i.e., 𝜒 = ), and where the current goal is given (i.e., 𝑔𝑐 = 𝑔) and the initial 
current state is 𝑠0, 𝑃𝑔𝑑𝑎 devolves into a classical planning problem 𝑃 = (, 𝑠0, 𝑔). 

3.2  GDA and the Learning of Goals 

The function  is less about planning per se than about understanding the larger context within 
which a planning agent finds itself. If planning and interpretation are to be successful, learning 
must also be taken into consideration. Technically, learning in this context is about inducing the set 

of possible goal states along with their applicability conditions from the observed behavior of an 
execution system. The main role for planning then is to enable a GDA agent to infer which of the 
possible goal states are achievable within the expected costs and rewards of achieving those goals 
(see also Pozanco, Fernandez, & Borrajo, 2016). 

In the simplest sense, goal formulation can be cast as a novel classification task. An agent is 
given a state transition system  and a current state 𝑠𝑐 and it must infer the current goal 𝑔c. Using 

a naïve supervised learning approach, one can present the system with positive and negative 
examples of the tuple (𝑠, 𝑔). From these examples, it can then learn a mapping in the form of a 
decision tree with goals at the leaves (see Maynord et al., 2013, for an implementation of this 
approach). However, the time it takes to learn such relations and the effort it takes to prepare 
suitable examples may not be available. Instead, another approach is to exploit failure in 
performance by explaining why expectations do not hold in new situations and then using these 

explanations to learn appropriate goal orientations (i.e., to learn 𝐺 ⊂ 𝑆, the set of useful goal states 
defined in Section 2.3). We do not limit ourselves to goal generation alone, because this would shift 
the burden of providing an external goal to human specification of the complete range of goal 
representations. Instead, if it is to be effective, the agent should also learn the classes of states in 
the world that constitute useful goals. This general approach represents a new conception of 
autonomous behavior. 

3.2.1 The Package Delivery Example 

Consider again the planning domain from the introductory section and Figure 1. If a GDA-based 
agent interacts with other agents performing actions, it may observe a sugar distributor make a 
delivery to an Atlanta cola plant and then watch the manufacturer produce Coca-Cola at that 

location. The Coca-Cola is then delivered to Greenville where an advertising campaign has 
concluded. Sales are then observed to produce profits. Given these exogenous-event observations 
from the execution of 𝐶𝑜𝑘𝑒 and 𝑆𝐷𝑖𝑠𝑡𝑟, the GDA-agent can understand the causal relations by 
performing a goal regression (Veloso, 1994; Waldinger, 1981) upon the goal-subgoal graph en-

DDR
Pencil
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tailed by  and the observations, as in Figure 5(a). Each node in the graph is an instantiated action-
operator whose preconditions must be satisfied before the action can be executed. A tree of 
conjuncts can then be extracted, which will give the causal explanation structure that is shown in 

Figure 5(b). For example, the predicate 𝑎𝑡(𝐶𝑜𝑙𝑎-5, 𝐶𝑜𝑘𝑒) holds true because the conjunct 
ℎ𝑎𝑠(𝐶𝑜𝑘𝑒, $) 𝑎𝑡(𝐵𝑜𝑡𝑡𝑙𝑒𝑠-2, 𝐶𝑜𝑘𝑒) 𝑎𝑡(𝑆𝑢𝑔𝑎𝑟-1, 𝐶𝑜𝑘𝑒) has been satisfied. If any term is un-
satisfied, then the explanation structure collapses. 

Now a subsequent series of observations may violate the expectations present in this causal 
structure. For example, the system may expect Coke to have further profits in Greenville, but Coke 

might lack the sales. Sugar may be delivered, and promotions may occur, but without bottles, no 
cola is produced and hence no deliveries arrive for sale. In this case, the goal insertion function 
(Table 2) would detect the discrepancy between the expectation ℎ𝑎𝑠(𝐶𝑜𝑘𝑒, 𝑠𝑎𝑙𝑒𝑠-11) and the 
observation ℎ𝑎𝑠(𝐶𝑜𝑘𝑒, 𝑠𝑎𝑙𝑒𝑠-11). An explanation process would then use the prior explanation 
(from Panel b) to derive a relational sequence responsible for the impasse. The resulting causal 
chain is shown in Figure 5(c).  

The goal insertion process would use the extracted failure chain to generate a goal and to add it 
to the agent’s current set of desired goals Ĝ. In Panel c, the salient causal antecedent  of the 
explanation is 𝑎𝑡(𝐵𝑜𝑡𝑡𝑙𝑒𝑠-2, 𝐶𝑜𝑘𝑒), that is, the bottles are not at the plant (and that is ultimately 
why Coke lost profits). The new goal 𝑔𝑐 is therefore to obtain the state of bottles being at this 
location (equation 11):  

𝑔𝑐  =   (𝑎𝑡(𝐵𝑜𝑡𝑡𝑙𝑒𝑠-2, 𝐶𝑜𝑘𝑒)) =  𝑎𝑡(𝐵𝑜𝑡𝑡𝑙𝑒𝑠-2, 𝐶𝑜𝑘𝑒)       (11) 

(a)         (b)               (c) 

 
 

Figure 5. Inducing an explanation from the goal-subgoal structure inherent in the state transition system: 

(a) Goal-subgoal graph; (b) Causal explanation structure; (c) Failure causal chain. 
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Given a cooperative agent domain where the GDA agent represents a bottle distributor (i.e., 
𝐵𝐷𝑖𝑠𝑡𝑟) that coordinates with the sugar distributor and the cola manufacturers, the GDA agent can 
solve the new goal by generating a plan to perform the delivery method. That is, it will load the 

bottles at the 𝑀𝑐𝐶𝑎𝑦𝑠𝑣𝑖𝑙𝑙𝑒 location, drive the load to 𝐴𝑡𝑙𝑎𝑛𝑡𝑎, go to 𝐶𝑜𝑘𝑒, and unload the 
shipment there. However, a number of technical problems remain. Two in particular concern issues 
of goal generalization and of goal anticipation. 

3.2.2 Goal Generalization 

First, the goal above must be generalized. It is not useful to learn an overly specific goal of getting 
a particular shipment to a destination. Rather, the agent must generalize the shipment to any 
available instance of type 𝑏𝑜𝑡𝑡𝑙𝑒𝑠. Furthermore, the agent must eventually generalize the 
destination to any cola manufacturer in the domain (and not to just any location). That is, 𝑃𝑒𝑝𝑠𝑖 as 
well as 𝐶𝑜𝑘𝑒 require bottle stock. By doing so, this simple explanation-based generalization rules 
out many irrelevant potential goal states such as 𝑎𝑡(𝑏𝑜𝑡𝑡𝑙𝑒𝑠, 𝑏𝑎𝑛𝑘) or 𝑎𝑡($, 𝐷𝑎𝑙𝑡𝑜𝑛). Here we 

intend to induce the goal expression 𝑔𝑐 in equation (12) and to add 𝑔𝑐G. 

 𝑔𝑐 = 𝑎𝑡(𝑏, 𝑚) 𝑏𝑜𝑡𝑡𝑙𝑒𝑠(𝑏) 𝑐𝑜𝑙𝑎𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟(𝑚)    (12) 

3.2.3 Goal Anticipation 

Second, the agent must anticipate the conditions under which the causal chain in Figure 5 might 
re-occur and plan to prevent it in the future. It should not wait until Coke sales fail each time. Thus, 
in this example the GDA agent learns to generate the goal, 𝑔𝑐, when the bottles are low in inventory, 
not waiting until bottles run out and sales plummet. The agent learns a characterization 𝑠′ of the 
state, 𝑠𝑐, that predicts when 𝑔𝑐 is appropriate. That is, the system needs to acquire a rule 𝑔𝑐   𝑠′. 
This is the problem of learning goal-selection criteria (Powell, Molineaux, & Aha, 2011). 

Unlike Powell and colleagues who use human guidance to acquire goal-selection knowledge, we 
suggest that an agent can learn this through unsupervised means. For example, the state of inventory 
at manufacturers may include the predicates 𝑠𝑢𝑟𝑝𝑙𝑢𝑠, 𝑙𝑜𝑤, 𝑣𝑒𝑟𝑦-𝑙𝑜𝑤, and 𝑜𝑢𝑡-𝑜𝑓. The GDA agent 
should learn that bottles should be delivered when the supplies are low or very low, rather than 
waiting until they are out or trying to deliver when a surplus exists. In another instance of failure-
driven learning, after the agent attempts to deliver bottles to a manufacturer having a bottle surplus, 

it would learn to rule out the expression 𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑚, 𝑏) 𝑏𝑜𝑡𝑡𝑙𝑒𝑠(𝑏) 𝑐𝑜𝑙𝑎-𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟(𝑚). 
In this case, we assume that the 𝑢𝑛𝑙𝑜𝑎𝑑 action would not receive permission at the destination. 
Essentially, the learned rule asserts the goal 𝑔c when bottles at the manufacturer are low. This is 
what the introductory section meant when it stated that the agent should be able to explain that 
bottles need to be at the bottling plant because the inventory is low.  

Although a goal state sg would be a desirable state, there are several situations in which 𝑔 may 

not be a useful goal for a goal-reasoning agent to formulate. For example, 𝑠𝑔 may be impossible to 

achieve, or in a nondeterministic domain, it may be impossible to guarantee that 𝑠𝑔 will always (or 

usually) be achieved. Even if 𝑠𝑔 is achievable, there may be another goal state 𝑠𝑔′ that is nearly as 

desirable as 𝑠𝑔 and can be achieved at a much lower cost than 𝑠𝑔. In such a situation, it may be 

better for the GDA process to insert 𝑔′ into the agenda rather than 𝑔. An open research question is 
how to learn which goals are worth formulating and which ones to commit to first.  
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4.  Related Research 

Many researchers have explored ideas similar to those presented here, especially in the recently 

constituted goal reasoning community. This body of work includes formalisms for goal life-cycles, 

frameworks of cognitive architectures, and the concept of goal-driven autonomy. Additionally, 

researchers have examined the mechanism of explanation as it applies to goal formulation. 

 Johnson et al. (2016) and Roberts et al. (2014, 2015) proposed an alternative formal model that 

treats goal reasoning as cyclical goal-refinement. Using an extension of the plan-refinement model 

of planning, they model goal reasoning as a refinement search over a goal memory M, a set of goal 

transition operators R, and a transition function delta that restricts the applicable operators from R 

to those provided by a fundamental goal life cycle.6 Unlike the formalism here, which represents 

much of the goal reasoning process with the single function , Roberts et al. propose a detailed 

cycle consisting of goal formulation, selection, expansion, commitment, dispatching, monitoring, 

evaluation, repair, and goal deferment. Thus, many of the differential functionalities in  are distinct 

and explicit in the goal reasoning cycle. However, the model here distinguishes between the 

planning and action aspects of reasoning (i.e.,  and γ) and the interpretation and evaluation compo-

nents inherent in goal reasoning (i.e.,  ). We note, however, that  relates to Roberts et al.’s goal 

expansion and repair, whereas  relates to goal formulation, monitoring, and deferment. Processes 

for goal dispatching, commitment, and evaluation are missing in the current analysis.  
Additionally, Roberts et al. propose a more complex goal structure. A goal node includes not 

only the desired state but also superordinate and subordinate goal linkages, constraints, quality 
metrics, and pointers to the associated plan. We have been more circumspect regarding the syntactic 

structure of a goal. Section 2.1 defined the goal formula to be a conjunction of first-order literals, 
but goals have been expressed more generally as universally quantified predicate conjuncts (Cox 
& Veloso, 1998; Veloso, Pollack, & Cox, 1998). Thus, in a package delivery domain they allow 
∀𝑝 | (𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑝) ∧ ∃ 𝑑|(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝 𝑑) ∧ (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝 𝑑) as a goal to deliver all packages to 
their destination. Under the scope of this goal expression, new goals (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝 𝑑) may arise 
during planning or execution time as additional packages arrive at the warehouse for delivery. 

Talamadupula et al. (2010) have a similar concept of open-world quantified goals. Despite these 
differences, our framework has much in common with their approach, including an association with 
learning (Roberts & Aha, 2015). 

The two problems of goal generalization and goal anticipation briefly mentioned in Section 3 
make the learning task considerably different from related research. Planning research is concerned 
with generating an action sequence to carry out a goal that is given to a system by an external user 

(see survey in Ghallab, Nau, & Traverso, 2004). In the larger scope of integrated cognitive systems, 
we maintain that autonomy includes the capacities to recognize novel problems and to 
independently form the desire to remove these problems. Goal anticipation and goal generalization 
are instrumental processes associated, respectively, with these two aspects of autonomy. However, 
unlike bottom-up, data-driven learning, top-down explanation of anomalies is a central pivot in our 
framework.  

Our explanation-based approach to GDA and to learning should not be confused with the older, 
mainly deductive approach used in explanation-based learning (DeJong & Mooney, 1986; Mitchell, 

                                                 
6 Harland et al. (2014) propose a goal life-cycle for attainment and maintenance goals. The latter, which we have not 

addressed, seek to maintain a state of the world and thus require monitoring to ascertain if the state departs from a 

desired range of values. Goals can therefore be pending, active, suspended, aborted, or (in the case of maintenance 

goals) monitored. 
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Keller, & Kedar-Cabelli, 1986). We use explanatory techniques (Cox, 2011; Cox & Ram, 1999; 
Roth-Berghofer, Tintarev, & Leake, 2011) that depart significantly from earlier work, in that they 
are more abductive, knowledge-rich, and case-based. Given a discrepancy and a context, the idea 

is to retrieve a graph structure called an explanation pattern, instantiate it, bind it to the discrepancy, 
and then adapt it to the context. This also departs from other GDA systems (e.g., ARTUE, 
Molineaux, Klenk, & Aha, 2010), which use abductive causal inference in the form of an 
assumption-based truth maintenance system (de Kleer, 1986) for explanation. 

As mentioned previously, goal formulation or generation has been an instrumental task in 
research on goal reasoning and goal-driven autonomy. Using knowledge structures called prin-

ciples, goal formulation occurs as a response to discrepancy detection in the ARTUE system 
(Klenk, Molineaux, & Aha, 2013). Other approaches rely upon links between specific states and a 
priori goal candidates (Dill & Papp, 2005) or triggering schemas based on the current state 
(Talamadupula et al., 2009). In the EISBot interactive game-playing system, association rules 
called goal formulation behaviors link discrepancy-explanation types to goal types (Weber, Mateas, 
& Jhala, 2010). Here we discussed the use of the negation of explanation root causes to generate 

new goals.  
Finally, a number of existing cognitive architectures, such as Soar (Laird, 2012; Laird, Rosen-

bloom, & Newell, 1986) and ICARUS (Choi & Langley, 2018; Langley, Choi, & Rogers, 2009), 
include an accounting of goal formulation and goal selection. A typical approach is to enumerate 
all possible goals and the conditions under which they are triggered. Tac-Air Soar (Jones et al., 
1999) uses this technique. Operators exist for various goal types and data-driven context-sensitive 

rules spawn them given matching run-time observations. A similar approach is used by ICARUS 
(see especially Choi, 2011) and its successor architecture PUG (Langley et al., 2017). Here, rules 
are defined for top-level goals and the conditions under which the environment triggers them. An 
extended version of the PUG architecture also lets an agent generate goals during plan execution 
and assign numeric utility to them. However, even if one could enumerate with operators or rules 
all the relevant goals for a domain and all the conditions under which they apply, an expectation 

failure or surprise may occur if the domain shifts (e.g., introduction of novel technology). The 
general capacity to recognize new problems and explain their causes enables the formulation of 
goals from first principles, even under conditions not necessarily envisioned by an agent designer. 

5.  Conclusion 

This research attempts to reconcile some of the existing research on goal reasoning in the cognitive 

systems community with theoretical frameworks in the automated planning and intelligent agent 

communities. The resulting goal-reasoning formalism augments notions of planning and plan 

execution with formal models of re-planning and both goal formulation and goal change. In 

situations where goals are given at initialization time and do not change throughout the process, 

and where plans execute as expected, the model is equivalent to a classical planning formalism. 

We have illustrated the model with a kind of goal reasoning called goal-driven autonomy, and we 

have applied the model to ideas about explanatory learning of those goals worth pursuing.  

 Much of this theoretical work does have a specific instantiation in computational implemen-

tations, but we have focused on the formalism and the general framework rather than empirical 

comparisons or analyses. Instead, the theory provides a conceptual vision of high-level cognition 

and deliberate choice firmly rooted in the goals an agent seeks rather than the correlations it 

experiences. The framework provides a uniform language for describing how goals originate and 

change, and understanding the role goal operations serve within an agent. The framework also 
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situates important aspects of goal-based reasoning within a distinct interpretation process that is 

separate from planning and action. Finally, the formalism we propose integrates all three cognitive 

processes within a single recursive expression.  

 Details about how goal management occurs within the interpretation process and the 𝛽 function 

have not been discussed in this paper. For example, the selection procedure that chooses a specific 

  from  and representations for goal transformations (other than the basic identity function) 

remain for future publication. Rather, the purpose of this paper has been to enumerate a set of 

principles of goal reasoning that have a consensus within the cognitive systems community but use 

the formal notations and representations of the larger AI community in their expression. The hope 

is to bridge some of the differences in style and method and to encourage synthesis and reflection. 
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