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Abstract

Many question-answering systems rely on a significant amount of engineering effort. They of-
ten require both knowledge bases and rules, which can be very expensive to create. Even when
these systems rely heavily on statistical machine learning, there is also an enormous amount of ef-
fort spent on identifying what features are useful for learning and implementing capabilities (often
using knowledge bases and rules) to assign values to those features. However, in recent years an al-
ternative approach has been growing in popularity: single-strategy systems in which one statistical
model is used to address the entire task. These models take in questions and content and produce
answers from that content. Of course, configuring a statistical learning system (e.g., deciding on
the structure of a neural network) requires some engineering work, but it can be vastly less. As are-
sult, people building practical question-answering systems for commercial use have an incentive to
prefer this kind of technology: it is cheaper to develop. Furthermore, there is mounting evidence in
the field of reading comprehension to suggest that single-strategy statistical models are extremely

(© 2018 Cognitive Systems Foundation. All rights reserved.



J.W. MURDOCK ET AL.

effective at answering questions. However, we believe that this evidence is a misleading artifact of
the way that the reading comprehension task has been formalized. We explore two types of data:
for conventional reading comprehension and for end-to-end factoid question answering. We show
that the former is extraordinarily well suited to pure statistical methods and there is little additional
benefit from engineered knowledge and rules. However, we also show that this result does not
generalize to factoid question answering, where engineered knowledge and rules have substantially
more impact. We conclude that the dramatic success of purely statistical methods on conventional
reading comprehension reflect the artificially constrained nature of the problem and that engineered
knowledge and rules remain useful for more realistic and open-ended tasks.

1. Introduction

A comprehensive question-answering system might be able to answer questions such as “What is
the capital of New Jersey?” or “Which is more important, honesty or beauty?” Factoid question
answering is a subproblem of question answering, in which questions (like the latter) that do not
have concise factual answers are out of scope. Reading comprehension is also a constrained form
of question answering: a specific piece of text is provided to the system along with a question
and the system is required to answer the question using the text. In principle, a highly effective
reading comprehension system should be similarly effective as a component of a factoid question-
answering system: if a system is good at producing answers from pieces of text, then the factoid
question-answering task breaks down into two simple steps: find some relevant text and then use
your reading comprehension system to produce an answer using that text. In this paper, we explore
this possibility by examining and synthesizing two radically different approaches to identifying
answers to questions. We compare their effectiveness on a set of factoid question answering data
and a set of (mostly factoid) reading comprehension data.

We examine two radically different approaches to interpreting and responding to natural lan-
guage queries:

o A massively multi-strategy system consisting of many components that use manually engi-
neered rules and/or knowledge plus a few components that use statistical machine learning

o A single-strategy system that directly maps question/passage pairs to answers without using
any manually engineered features

We consider these approaches in the context of two different data sets. SQuAD 1.1 (Rajpurkar
et al., 2016) is widely used to train and assess statistical models of reading comprehension. It was
developed by showing humans articles from Wikipedia and asking them to create questions and for
each question to highlight a chunk of text in the article that is the answer to the question. The ques-
tions range from prototypical factoid questions such as “What year was Super Bowl 507" (answer:
“2016”) to questions with somewhat longer answers such as “Why are coastal species tough?” (an-
swer: “to withstand waves and swirling sediment particles”) that might also be considered factoid
questions for a sufficiently broad definition of the term. The second is an open-domain factoid
question-answering set in which questions seeking short factual answers were written without be-
ing tied to any particular source. We use a combination of Wikipedia and Wiktionary to find text
containing answers for these questions.
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The massively multi-strategy system that we present in the paper is named Discovery DeepQA
(DDQA). This is a revised and updated version of the original IBM Watson 1.0 question-answering
system that participated in the Jeopardy! challenge (Ferrucci, 2012). It embodies the key theoretical
commitments of this original system, but it also includes significant differences in implementation
details. The system incorporates new technological innovations that post-date the 2011 Jeopardy!
challenge, and it has been re-engineered to be less computationally expensive so it can scale out to
many simultaneous users with relatively moderate cost.

We also present several different single-strategy statistical reading comprehension systems. All
of them are deep neural networks that have been documented extensively in other publications that
we cite, so we provide only a brief introduction to each. The key theoretical commitment that
each of these systems makes is that they use a single statistical model that jointly learns the entire
reading comprehension task, as formalized in SQuAD and similar data sets. These systems did
require some engineering effort to build as they involve complex combinations of neurons arranged
in looping graphs to facilitate memory and attention focusing. However, the amount of effort needed
to configure the neural network is extremely small compared to the countless person-years spent
creating all the knowledge and logic in DDQA and its predecessor, IBM Watson 1.0.

We compare the effectiveness of DDQA and single-strategy statistical reading comprehension
systems. We also show how the two can be integrated, by treating each single-strategy statistical
reading comprehension system as an additional strategy within DDQA that can complement the
other strategies. On the SQuAD reading comprehension data, single-strategy statistical systems are
spectacularly effective and adding DDQA provides only very little benefit over them. That result
alone might suggest that all the time and effort needed to build this multi-strategy system with
engineered rules and knowledge provides limited net value. However, when we test on the factoid
question-answering system, we see a dramatically different result: the single-strategy statistical
systems are still reasonably effective but the integrated combination of DDQA and the statistical
systems is substantially more accurate than either alone.

The next section of this paper describes DDQA: it explains the key theoretical commitments
of the DeepQA framework (which are unchanged from IBM Watson 1.0) and presents some in-
cremental revisions to components within that framework. The following section describes a set
of single-strategy statistical reading comprehension systems. After this, we explain how we inte-
grated those statistical reading comprehension systems as additional strategies within DDQA, and
then discuss related research. In addition, we show experimental results for DDQA, the statistical
reading comprehension systems, and their integration. Finally, we draw some conclusions based on
to the experimental results.

2. Discovery DeepQA

Discovery DeepQA (DDQA) is a massively multi-strategy system that uses manually-engineered
reasoning strategies and knowledge bases to identify candidate answers and provide scores that are
relevant to whether those answers are correct and then uses a learned statistical model to combine
those scores into a final conclusion about how to rank those candidate answers by their likelihoods
of being correct. DeepQA is the technological framework behind both the IBM Watson 1.0 system
and DDQA. Key theoretical commitments of DeepQA include:
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Massively multistrategy reasoning. DeepQA is designed to enable many different reasoning strate-
gies to coexist and complement each other. In some cases, distinct components are employing dif-
ferent strategies and/or resources to perform the same task. For example, the IBM Watson 1.0 had
a suite of passage scoring components (Murdock et al., 2012a) that all had roughly the same goal
(determine if the passage supports some answer contained within it). In other cases, these are strate-
gies with radically different inputs and goals: for example, knowledge-based reasoning components
(Kalyanpur et al., 2012) are using radically different kinds of information to analyze answers than
the passage scoring components. Multiple kinds of components and multiple instantiations of each
type complement each other and outperform what any one component can do alone.

Statistical machine learning to integrate results. In earlier question-answering systems, a common
approach to combining complementary reasoning strategies was for the developers of those systems
to make informed decisions about how to prioritize components. For example, COGEX (Moldovan
et al., 2003) used semantic theorem proving as the highest priority method of ranking answers
and would fall back to more superficial methods only when the deep semantic theorem proving
failed. This approach can be effective for combining a few strategies, but the massively multistrategy
reasoning approach of DeepQA makes it infeasible for developers to manually determine what
strategies should have priority over other strategies and how the conclusions of multiple strategies
should be integrated.

Minimal commitment to inferences. One key to massively multistrategy reasoning is to ensure that
components do not make decisions that constrain the other components. For example, many older
question-answering systems, such as PIQUANT (Chu-Carroll et al., 2005), generate candidate an-
swers using semantic types. If a question asks for a “city”, they only produce candidate answers
that they decide are cities. This requires the system to make a firm commitment about whether
some string is or is not a city. In contrast, DeepQA systems generate many candidate answers that
may or may not have the correct type and employ competing strategies to determine if the answer
has the correct type, as well as other strategies to determine if the answer meets the other require-
ments. The learning component then combines these insights into a final conclusion. This approach
requires much more computation than older approaches because the number of candidate answers
considered is much larger. However, it also provides opportunities to find correct answers in cases
where there is little or no evidence that some candidate answer has the correct type but sufficient
other evidence that the answer is correct to offset that lack.

Deep semantic analysis. Many early efforts to find information using semantic analysis had little
impact on effectiveness (Sanderson & Croft, 2012). Instead, superficial methods like matching
keywords and weighing by inverse frequency have consistently outperformed semantic analysis,
which tends to be more brittle. DeepQA is able to make effective use of semantics because it uses a
learning approach to integrate complementary reasoning strategies. For example, an ablation study
of IBM Watson 1.0 passage scorers (Murdock et al., 2012a) revealed two key results. First, if you
can only include any single one of the passage scoring components, you are most effective if you
select a particularly simple and superficial one, because those methods are highly robust and are
frequently very effective. Second, if you exclude any single one of the passage scoring components,
you lose the most effectiveness if you exclude the one that performs analogical reasoning over a deep
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Figure 1. The DDQA factoid question answering pipeline.

analysis of semantic relations. At first these results seem contradictory: are the superficial strategies
most important or are the deep semantic approaches most important? The evidence suggests that
superficial strategies have more value for a single-strategy approach, but also that a multi-strategy
approach with multiple superficial strategies benefits more from adding in a deep semantic strategy
than from adding additional superficial strategies.

Figure 1 provides an overview of the components of DDQA, which uses a slightly simplified
version of the DeepQA architecture presented by Ferrucci (2012). The pipeline consists of six steps:

e Question Analysis: Analyze the text of the question and determine what it is asking for.
e Passage Retrieval: Find passages that are relevant to the question.

Answer Generation: ldentify candidate answers from passages or from other sources.

Evidence Retrieval: Find additional evidence such as more passages.

Answer Scoring: Compute features of candidate answers useful for checking their correctness.
e Merging and Ranking: Combine equivalent candidate answers and rank/score them.

The following subsections describe incremental revisions in each of these components that distin-
guish DDQA from IBM Watson 1.0. However, they key novelty for the purposes of this paper
comes in later sections, where we describe some statistical reading comprehension systems, explain
how they are integrated into DDQA, and show experimental results for DDQA alone, the statistical
reading comprehension systems alone, and the integration of both.

2.1 Question Analysis

Question analysis in DDQA includes a core natural-language processing pipeline plus additional
components that are specific to analyzing questions. The key element of the natural-language
pipeline for DDQA is the IBM Watson Relation Extraction service,! which provides grammati-
cal parses and detects entities and relations. The most important question-specific analysis is the
detection of the Lexical Answer Types. Lexical Answer Types are question terms that refer to which
type of answer is being asked for (Lally et al., 2012). For example, in question Which prize did
Frederick Buechner create?, “prize” is the Lexical Answer Type indicating the answer should be
a kind of “prize.” In DDQA, Lexical Answer Types are used by a set of fype coercion scorers
(Murdock et al., 2012b) that determine if a candidate answer is an instance of the answer types.
The original IBM Watson 1.0 system detects Lexical Answer Types using a rule-based approach
with machine learning used only to compute confidence scores (Lally et al., 2012). While the

1. https://www.ibm.com/blogs/insights-on-business/government/relationship-extraction/.
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Figure 2. Encoder-labeler Long Short-Term Memory (LSTM) network for Lexical Answer Type (LAT) detec-
tion. A question is encoded backwards and then decoded back to itself with each token classified as Lexical
Answer Type or not.

approach detects Lexical Answer Types accurately and requires relatively little labeled data, it has
several drawbacks. First, the approach requires handcrafted, comprehensive, language-dependent
rules. Second, the rules are defined on top of parsing information such as part-of-speech tags and
lemmas. As a result, its performance is highly sensitive to accurate parses.

DDQA adopts the encoder-labeler Long Short-Term Memory network (Kurata et al., 2016)
for Lexical Answer Type detection. This supervised approach requires no handcrafted rules, no
parsing or pretrained word embeddings. Figure 2 shows how the encoder-labeler Long Short-Term
Memory network works. The encoder Long Short-Term Memory encodes a question into a fixed
length vector by reading the question backwards word-by-word. Then the labeler Long Short-Term
Memory initializes its hidden state as the vector encoded by the encoder, reads the question word-
by-word, and predicts the label (a Lexical Answer Type or not) of each word, where its label is
predicted by considering both the previous hidden state of the labeler and the previous label.

Our encoder-labeler Long Short-Term Memory network is trained on an internal question-
answer set of 4,153 English questions with human labeled Lexical Answer Types. We pick the
hyperparameters that yield reasonable results on a few confidential question sets. We set the learn-
ing rate to 0.001, the length of the hidden state to 256, the size of word embedding to 64 with context
window size 7, the gradient clipping to 1.0, the dropout to 0.5, and the number of epochs to 15.

2.2 Passage Retrieval and Supporting Evidence Retrieval

Most question-answering systems make use of a passage retrieval component as a way to extract
specific portions of documents within the corpus that potentially include the candidate answers (Fer-
rucci, 2012). In general, passage retrieval is a multi-stage information-retrieval process that includes
document search and scoring to create a set of top documents, passage extraction from the docu-
ment pool to create a set of passages for evaluation, and then passage scoring to determine the best
candidates in the passage pool. The DDQA system makes use of a custom library based on Gémez
et al. (2007), specifically designed for question answering. The document search component is
built on top of Lucene? and makes use of Dirichlet similarity (Zhai & Lafferty, 2001) for document
scoring. The passage scoring component uses the document context in a Distance Density n-gram
Model as described by Gémez et al.

2. https://lucene.apache.org/.
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When we apply DDQA to reading comprehension data sets, passage retrieval is not required
because (by definition) the data sets provide the passages from which the answers should be de-
rived. We do use passage retrieval when we work on question answering data sets that do not
provide text for each question. In addition to the primary passage retrieval used to find answers,
the DeepQA architecture allows supporting evidence retrieval to find additional evidence for each
candidate answer. In principle, we believe that supporting evidence retrieval could be used for
reading comprehension tasks, in much the same way that human readers rely on their background
knowledge to enrich their understanding of text they read. We intend to address this topic in future
research. For the results reported in this paper, we do not use supporting evidence retrieval.

2.3 Answer Generation and Scoring

DDQA employs a variety of additional mechanisms to identify and score candidate answers. Some
are very similar to capabilities in IBM Watson 1.0. For example, DDQA uses an assortment of
manually-engineered knowledge bases to determine if some candidate answer is consistent with
the Lexical Answer Type using many of the strategies from (Kalyanpur et al., 2012). Others are
novel but based on logic (like many of the Watson 1.0 components). For example, DDQA has a
scorer that assesses the grammatical coherence of a candidate answer using the results of our core
natural-language processing; “the tall boat tied up near the dock” is an example of a grammatically
coherent answer because it is a complete noun phrase while “boat tied up near” is grammatically
incoherent. This scorer is particularly useful in a pipeline that includes answer generation statistical
methods, because such components are more likely to produce incoherent answers that are likely to
be wrong (and the Ranker component described earlier can learn an appropriate amount to discount
those answers).

2.4 Merging and Ranking

IBM Watson 1.0 uses a sequence of logistic regression models to independently compute the con-
fidence in each answer. The models are aligned in a sequence to let candidate answers be scored,
transformed in various ways, and then scored again. For example, in one phase of the merging
and ranking process, IBM Watson 1.0 draws on a knowledge base to determine whether candidate
answers are semantically equivalent. It uses the ranking from the previous phase as one indicator of
which of the equivalent candidate answers emerges as the final answer (Gondek et al., 2012).
DDQA uses a similar (but smaller) cascade of multiple ranking phases (e.g., ranking both be-
fore and after merging) but instead of logistic regression, it uses the Ranker module from IBM
Watson Retrieve and Rank? on the IBM Cloud. The Ranker module is an implementation of several
learning-to-rank approaches including the LambdaMART algorithm (Burges, 2010) and traditional
logistic regression, as well as ensembles of both. Data augmentation and subsampling techniques
are also applied to improve robustness and performance of the module. At training time, the ranker
receives numerical feature vectors representing question-answer pairs along with relevance labels
(ground truth). The cross-validation method is used to determine an optimum approach and con-
figuration for the training data. At run time, given a set of unlabeled feature vectors corresponding

3. https://www.ibm.com/watson/services/retrieve-and-rank/.
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to a list of candidate answers to a question, the ranker generates scores that can be used to sort the
feature vectors to optimize for the relevance ranking in that list.

3. Single-Strategy Reading Comprehension Models

A variety of reading comprehension models have been proposed for extracting a single entity or a
span of text from a given passage. We have conducted experiments with three models, all of which
are deep neural networks:

e Attention Sum Reader (Kadlec et al., 2016) was originally designed to extract single word an-
swers from passages that contain correct answers. For each question/passage pair, the model
encodes question words and passage words with Bidirectional Gated Recurrent Unit networks.
Each resulting vector representation of a passage word is scored against the question vector
representation. The final score for a passage word is the sum of scores for all its occurrences in
that passage, and the word with the maximum score is identified as the answer.

e Bi-Directional Attention Flow (Seo et al., 2017) is a more complex model that addresses the
task of extracting a span of text from a given passage. The model consists of six layers. Char-
acter and word embedding layers are responsible for generating combined embedding vectors
for question and passage words. The contextual embedding layer models the temporal interac-
tions between words by using Long Short-Term Memory Networks on the embedding vectors.
Context-to-query and query-to-context attention are calculated in the attention flow layer to
form query-aware representations of passage words. These representations are fed into Long
Short-Term Memory Networks again in the modeling layer. The final output layer calculates
begin and end probabilities of each phrase in the passage.

o Multi-Perspective Context Matching (Wang et al., 2017) is another model for extracting a span
of text from a passage. This has many similarities to the Bi-Directional Attention Flow model,
with the key difference being how attentions are calculated to form query-aware passage repre-
sentations. This is done by matching each passage word with the given question from multiple
perspectives, based on the assumption that a span in a passage is more likely to be the correct
answer if its context is more similar to the given question.

In this paper we report results only on Bi-Directional Attention Flow, because our experiments with
the other two models are incomplete. The results that we have gotten from the other two models are
all consistent with the conclusions that we present in Section 7.

4. Integrating Single-Strategy Models into DDQA

We integrate statistical reading comprehension models into DDQA as answer generation compo-
nents that assign a score to each answer they generate. In the experiments in Section 6, we describe
results on two different tasks: reading comprehension and factoid question answering. The former
involves answering questions from a given piece of text while the latter involves answering ques-
tions from any available source. For reading comprehension we use the passage provided in the data
set for each question and do not use the passage retrieval component in DDQA for any purpose. For
factoid QA, we use the passage retrieval component in DDQA to find passages even when running
experiments on the single-strategy statistical components, since they do require passages as input.
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For both tasks, one challenge that we face with the integrated systems is the fact that the statis-
tical reading comprehension model and the final ranking component in DDQA both need training
data. As noted above, the outputs of the former are inputs to the latter. Consequently, if we were to
train both using the same data, the model that the final merging and ranking component in DDQA
learned would be distorted by the fact that its inputs were outputs from a model trained on that data.
In practice, the statistical reading comprehension models we use tend to fit their training data much
more closely than they fit other data, so the distortion that this would cause would be quite severe
(i.e., DDQA would give far too much weight to the statistical reading comprehension models and
not nearly enough weight to the scores of its other components).

We have two alternative solutions for this challenge: subdividing the training data for each
purpose or folding the training data. The former solution involves designating some fraction of the
training data as training for the statistical reading comprehension models and some fraction of the
training data as training for the DDQA final model. The latter divides the entire train set into a fixed
number of folds; for each fold we train the statistical reading comprehension models on the training
data outside the fold and apply it to the training data inside the fold to provide model outputs that
we then use as inputs to train the final ranking model. Subdividing the training data is much quicker
and easier. In contrast, folding the training data requires more time and effort (since we need to
train both the reading comprehension models once for each fold), but it allows both the statistical
reading comprehension models and the DDQA ranking models to both use all of the data.

We present results in Section 6 in which we subdivide the data into 90% for the statistical
reading comprehension model and 10% for the DDQA ranking models. Our statistical reading
comprehension models are deep neural networks and thus benefit more from larger volumes of
training data than the relatively simple model used for DDQA ranking, which is why we give them
a larger share of the data. We believe our results would be slightly better if we folded the training
data instead, and we hope to conduct those experiments in future work.

Regardless of whether the training data is folded or subdivided, the statistical reading compre-
hension models need to be trained on question/passage pairs with some number of answers being
labeled as correct. For reading comprehension data sets, that requirement is trivial to meet because
the training data includes all that information. For factoid QA data sets, no passages are provided.
Thus for each training query, we use the DDQA passage retrieval mechanism (described in Section
2.2) to retrieve passages and then construct training instances for the statistical reading comprehen-
sion model that pairs the question with all of the retrieved passages that contain at least one correct
answer (according to the factoid ground truth for that training query).

5. Related Work

The research we describe in this paper involves fusing IBM Watson 1.0 with statistical models for
reading comprehension. Here we compare our work with those antecedents and then with other
existing approaches to question answering.

5.1 IBM Watson 1.0

The original IBM Watson 1.0 system for Jeopardy! embodies essentially the same core theoretical
commitments as DDQA, as described at the beginning of Section 2. One substantive difference
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between that system and DDQA is that IBM Watson 1.0 retrieves multiple supporting passages
for every candidate answer and combines the evidence scores for each of those answers (Murdock
et al., 2012a). Another is that IBM Watson 1.0 had more more question analysis components,
more primary search components, and more phases of scoring. These differences reflect the fact
that DDQA is designed to become a cloud service than can handle many simultaneous requests
without requiring a prohibitively expensive quantity of computing hardware; some of the most
computationally expensive aspects of IBM Watson 1.0 were excluded from DDQA.

In addition, DDQA includes some new capabilities that are not in IBM Watson 1.0, as described
in Section 2. These represent relatively incremental enhancements because they fit within the exist-
ing architecture. They help DDQA to be effective despite the cuts from IBM Watson 1.0 that were
needed to make DDQA cost effective to run.

5.2 Statistical Reading Comprehension

In reading comprehension, one is given a passage and must answer questions about that passage.
This can be thought of as a slice or aspect of the more general question-answering task. Reading
comprehension data sets include MCTest (Richardson et al., 2013), CNN and DailyMail (Hermann
et al., 2015), bAbi (Weston et al., 2015), the Children’s Book Test (Hill et al., 2016), NewsQA
(Trischler et al., 2016), and SQuAD (Rajpurkar et al., 2016). Most systems that achieve high ac-
curacy on this task use deep neural networks. Given a passage and a question asking about the
passage, these systems “read” through the question and the passage and pinpoint the answer span
within the passage.

In a later section of this paper, we present results on version 1.1 of the SQUAD data set. When
we answer factoid questions using passages found by an information retrieval system is that some
retrieved passages contain a correct answer but others do not; in contrast, all questions in SQuAD
1.1 contain the correct answer and provide sufficient evidence to conclude that the answer is correct
(by design). This contradiction represents a defect in SQuAD 1.1 as a proxy for the task of extracting
answers from found passages. SQuAD 2.0 (Rajpurkar et al., 2018) addresses this defect by adding
in more than 50,000 additional questions where the correct answer is not available in the text, to
test the ability of systems to recognize when no correct answer is available. We believe that this is
a substantial improvement and we intend to use SQuAD 2.0 data in future work. However, we also
believe that there are other crucial limitations of SQuAD, which we discuss in more detail in the
concluding section of this paper.

5.3 Other Question-Answering Systems

Baseball (Green et al., 1961) is an early question-answering system that answers questions about
baseball statistics. It works by parsing the question, determining the semantic relationships among
the entities in the question, using these relationships to form a query against a structured knowledge
base, and then retrieving the answer from that structured knowledge base. The Answer Lookup
component in IBM Watson 1.0 (Kalyanpur et al., 2012) uses this same approach, with a much bigger
and more broadly applicable knowledge base and much more powerful parsing and relationship
detecting components. However, Answer Lookup was only a marginal contributor to answer finding
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in IBM Watson 1.0, providing far fewer correct answers than answer generators based on text search,
and the component is not included in DDQA.

IBM Watson’s Answer Lookup, like Baseball and other predecessors using this approach, has
limited effectiveness for two main reasons: existing knowledge bases cover only a small fraction of
all questions that can be asked and even when the knowledge base does have the answer, reliably
converting the question into a structured query is very difficult. As knowledge bases such as DB-
Pedia (Bizer et al., 2009) and Freebase (Bollacker et al., 2008) become larger, the former problem
is alleviated but the latter problem is exacerbated: very large and complex knowledge bases have
an enormous variety of relation types among entities and, as a result, converting a question into a
structured query becomes increasingly difficult. Aqqu (Bast & Haussmann, 2015) is remarkably ef-
fective at dealing with this challenge because it uses the contents of the knowledge base to constrain
and guide the mapping of the question to a structured query: it looks at the entities in the questions,
sees what relationships those entities participate in (and what relationships the related entities par-
ticipate in), and then tries to match those relationships to the text of the question (using statistical
methods). We have started to integrate Aqqu into DDQA; none of the results in this paper include
Aqqu, but we expect to report them in the future. For the implementation in this paper, knowledge
bases are only used for scoring and merging answers found in text.

SAM (Lehnert, 1977) is able to answer reading comprehension questions in which the answer is
not explicitly stated in the text but rather can be inferred indirectly from the context. For example,
given a story about a bus ride and a question about how the passenger was able to ride the bus, SAM
replies by saying that the passenger probably had a ticket, even though no ticket is mentioned in the
story. It does this using a “script” for bus riding in which a ticket is used to enable the bus riding.
This is a very impressive result, and Lehnert makes a reasonable argument for the plausibility of
the method used as a coarse model of human cognition. However, nobody has managed to engi-
neer script knowledge of this sort at the scale needed to make SAM effective at answering a large
percentage of real-world questions in a broad domain. Even if this knowledge were available, sys-
tems using it would face the challenge that systems answering factual questions from large factual
knowledge bases do: mapping language to knowledge base queries is very hard. The Elemental
Cognition Pipeline Model (Chu-Carroll, 2017) for reading comprehension also attempts to answer
questions in which the answer is not explicitly stated but can only be indirectly inferred. Like SAM,
it uses background knowledge and like the work reported in this paper, it also uses deep learning
to provide broad coverage for answering easier questions too. The creators of this system have not
provided extensive details of how it works, but the preliminary results provided seem promising.

6. Experimental Evaluation

In this section, we describe experiments on DDQA along with Bi-Directional Attention Flow, which
is one of the single-strategy (deep learning) reading comprehension systems described earlier in
Section 3. We compare the effectiveness of that single-strategy model alone to the effectiveness
of the integrated system. The single-strategy model has an enormous practical advantage in that
it requires no engineered knowledge, no engineered decomposition of the task (other than what is
implicit in how their neural networks are structured), and no engineered reasoning strategies beyond
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forward and backward propagation. As commercial practitioners trying to build useful systems
with minimal time and effort, we would prefer to just train a single-strategy model if that model
can be as effective as an integrated system that includes both types of capabilities. We consider
this opportunity first in the context of a reading comprehension data set, where single-strategy deep
learning models are known to be highly effective. We then reconsider the question in the context of
the general factoid question-answering task.

6.1 Data Sets

We evaluate DDQA and reading comprehension models on two data sets: SQuAD 1.1 (Rajpurkar
et al., 2016), a public reading comprehension data set, and Factoid-1527, a confidential factoid
question answer set.

SQuAD 1.1 contains 107,785 question-answer pairs (87,599 training questions and 10,570 de-
velopment questions which we use for evaluation). Each question-answer pair consists of a passage
from a Wikipedia document, a crowd-sourced question based on the passage content, and an an-
swer that is a span of the passage. Compared to other reading comprehension data sets, we choose
SQuAD because (a) reasoning is required to answer the questions, (b) the passage span answers are
easier to evaluate, (c) the questions are written by real crowdworkers, and (d) the answer types are
more diverse beyond numbers and entities.

We also have a data set we refer to as Factoid-1527, which consists of 1,527 general-knowledge
factoid trivia questions including topics like geography, politics, popular culture, etc. We use 1,272
of these questions for training and 255 for evaluation. This data set is confidential so we are not
able to share it with the community and it is much smaller than SQuAD. However, it has a key trait
that SQuAD does not: the questions were not written to be specific to a particular piece of text so
they are useful for testing a complete system that finds relevant text and extracts answers from that
text. In our experiments, we use a recent download of Wikipedia and Wiktionary as the corpora of
text from which we find candidate answers.

As noted in Section 4, for both data sets we divide up our training data into 90% that we use
to train the single-strategy model and 10% that we use to train the DDQA model that combines the
single-strategy model with the engineered answer generation and scoring methods in DDQA. For
both data sets, this subdivided training data is disjoint from the evaluation data; no data is used both
to train and to evaluate the system.

6.2 SQuAD 1.1

Table 1 shows results for the single-strategy statistical model (Bi-Directional Attention Flow) trained
on the full train set, the results of that model trained on 90% of the train set, and the results of the
combined DDQA and single-strategy statistical model in which 90% of the training data is used to
train the statistical model and 10% of the data is used to train the final ranking model that combines
the output of the single-strategy statistical model with the values of all of the other scores produced
by DDQA to rank answers. The last two lines in this table show the direct impact of adding DDQA
to the single-strategy system. However, this comparison is insufficient to address the question of
how much value the engineered knowledge and reasoning strategies contribute to DDQA, because
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Table 1. Discovery DeepQA (DDQA) and single-strategy model (Bi-Directional Attention Flow) results on
the SQuAD 1.1 data set.

Configuration Exact Match  Precision Recall MRR
Single-strategy model (full train) 66.90 77.61  80.45 71.67
Single-strategy model (90% train) 66.03 7698  80.31 70.74
DDQA (10% train) + Single-strategy (90% train) 67.15 7197 77.69 73.20

the benefits of these features are partially offset by the cost of having to set aside some training data
to train the integration. So we believe that comparing the first line of this table to the third gives a
more fair estimate of the net cost and benefit of adding DDQA and consequently allocating some
training data for training the integration.

The exact match, precision, and recall metrics are used to assess the single top-ranked answer
that each system outputs. The exact match score is percentage of queries for which the top-ranked
answer exactly matches one of the ground-truth answers. The precision and recall measures treat the
top-ranked answer and the ground-truth answers as predicted and expected bags of tokens; precision
is the percentage of top-ranked answer tokens that are ground-truth answer tokens, and recall is the
percentage of ground-truth answer tokens that are top-ranked answer tokens.

We also present the mean reciprocal rank (MRR) metric (Voorhees, 1999), which is not limited
to assessing the top-ranked answer for each query. Instead, it looks at all the answers that the
system returns and gives full credit when the top answer is correct and partial credit for when a
lower ranked answer is correct (if the highest ranked correct answer is in second place then half
credit is awarded, if it is in third place then one third credit is awarded, etc.). We believe that this
metric is a useful complement to the recommended metrics for SQuAD because it measures the
ability of the system to get a correct answer close to the top rank. This is capability is useful in
practice for question-answering systems that present multiple alternative answers to users.

What we observe across all the numbers in Table 1 is that the single strategy model is quite ef-
fective on this data set, and that there is little or no measurable benefit to adding in all the engineered
knowledge and reasoning that DDQA provides. However, we will see in the next section that we do
not get the same result on our other data set.

6.3 Factoid-1527

Table 2 shows results on the Factoid-1527 data set. As with SQuAD, we show the single-strategy
model data with both 90% train (to show the direct effect of adding engineered knowledge and rea-
soning) and with full train (to show the net effect of adding engineered knowledge and reasoning and
allocating some training data to enable the integration). We also show the results with DDQA alone
trained on the full data and the integrated system. The numbers in the top line of the table reflect
the percentage of queries for which a correct answer appears in any of the retrieved passages; this
is an upper bound for how well any system can do in finding answers in these passages. Of course,
it is possible for a system to get even better results if it had more and better sources (including text,
knowledge bases, etc.) from which to find answers.
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Table 2. Discovery DeepQA (DDQA) and single-strategy model (Bi-Directional Attention Flow) results on
the Factoid-1527 data set.

Configuration Exact Match MRR
Upper bound for the retrieved passages 89.02 89.02
Single-strategy model (full train) 1490 20091
Single-strategy model (90% train) 15.29 20.98
DDQA (full train) 50.59 58.59
DDQA (10% train) + Single-strategy model (90% train) 4745 55.66

For Factoid-1527, we do not report the token-level precision and recall numbers that we report
for SQuAD. We believe that these numbers are useful for the SQuAD task because each question
has a single passage from which to draw answers, so there is a small pool of tokens from which both
ground-truth answers and system answers are drawn. In contrast, in the general factoid question-
answering task embodied in Factoid-1527, the pool of available tokens are all possible tokens in all
possible sources from which answers could be drawn. Consequently, assessing the results of the
task as if it were trying to classify the tokens in some source makes less sense. Instead, the creators
of the Factoid-1527 data set did their best to enumerate as many possible ways of expressing each
correct answer as possible, and we just assess whether the answers that we produce exactly match
one of those known ways to express a correct answer. As in the previous experiment, the exact
match scores reflect the percentage of queries for which the top-ranked answer exactly matches a
ground-truth answer, and the mean reciprocal rank scores generalize those results by also providing
partial credit for lower-ranked answers that exactly match a ground-truth answer.

The key observation from Table 2 is that the single strategy model is not very good at finding
answers to questions in this data set, and severely under-performs both DDQA alone and the inte-
grated system with both DDQA and the single strategy model. Consequently, the conclusion that
one might draw from SQuAD alone (that single-strategy statistical learning systems can solve the
complete task very well and engineered knowledge and features provide little additional value) do
not seem to generalize to this task. We discuss this contradiction in more detail in the concluding
section of this paper.

6.4 Limitations of the Evaluation

We have some concerns regarding the results reported above that we would address immediately
if we had more time. We intend to provide more complete results in future work. Noteworthy
limitations of the current set of results include:

e For both SQuAD and the Factoid-1527 data, we used a fixed train and test set that had been
pre-determined by the original creators of this data. An alternative design would have been a
cross-fold validation in which all the available data was split into multiple folds and for each
fold the system was trained on data outside the fold and tested on data inside the fold. That
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design would produce test results on all the data instead of just a fraction of the data, and
consequently, we would have more accurate estimates of how effective the system would be
on comparable unseen data. We recommend this approach to anyone designing data sets and
conducting experiments with them.

In the experiments above, we subdivide training data for use in training the statistical reading
comprehension models and for use in training the DDQA ranker. We believe that the integrated
systems would be more effective if we used folded training (see Section 4) instead. Our factoid
results show worse results with the integrated system than with DDQA alone, which we believe
is a consequence of subdividing. Folded training experiments are more time-consuming to
conduct, especially if you are doing cross-fold validation. However, we believe that this added
effort is essential for determining whether the single-strategy statistical systems can improve
on a highly engineered multi-strategy system like DDQA. We do not believe that is is essential
for this paper, because it explores a different question: Can single-strategy statistical systems
replace highly engineered multi-strategy systems? We do not need the best possible strategy
for training the integration of methods to answer it.

We do not use the SQuUAD test set for any purpose, because its developers did not publish the
answers to the SQuUAD test set. Researchers can only assess results for the SQuAD test set by
packaging their system up into a Docker container and uploading it to servers owned by the data
owners. That seems like an excellent policy for ensuring fairness in evaluations. Unfortunately,
it is technically infeasible for us to bundle all of DDQA into a single Docker container and
deploy it outside of the IBM Cloud, particularly given our dependency on IBM cloud services
that our team does not control. So we are reporting results only on the development set, which
seems to be common practice for researchers who work on this data (e.g., Rajpurkar et al.
2016; Seo et al. 2017). Consequently, we believe that reporting results on this data is useful
in enabling comparisons to other work. However, we also acknowledge that it would be more
useful if we could also deploy our system on the SQuAD server so we could also report results
on the associated test set (as do most researchers who use these data).

It is common practice for statistical systems trained across many epochs to select the model that
is most effective on the development set and apply that model to the test set. As noted above, we
use the development set as our test set, so using this approach would produce deeply misleading
results. Instead, we just take the output of the last training epoch. A consequence of this design
is that the models we produce are slightly less effective than they would be otherwise.

As noted earlier, the Factoid-1527 data set is much smaller than SQuAD, which is confidential
so other researchers cannot produce results on it data and compare to ours. In future work, we
hope to use larger data sets for factoid question answering, and we plan to focus on data sets that
are broadly available to the research community, such as WebQuestions (Berant et al., 2013).

We report results only on DDQA and single-strategy systems. The Factoid-1527 data set was
also used to test other IBM-internal question-answering systems, including some which relied
much more heavily on statistical methods and achieved results that were comparable or better
to DDQA on some metrics. However, all the systems that got good results were systems with a
substantial number of distinct components engineered into a pipeline to address distinct subtasks
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separately. We believe that both sets of results support the view that engineering complex
systems is more effective than solving the entire task via a single classifier, but our results
should not be seen as proof that knowledge and rules are more effective than statistical analysis.
We believe that more work with more and better data is needed to explore the benefits of such
components for building practical question-answering systems.

e We report results for the Bi-Directional Attention Flow model; for this model we ran experi-
ment with both SQuAD and Factoid-1527. We also ran experiments with the Multi-Perspective
Context Matching model on SQuAD and with the Attention Sum Reader on Factoid-1527, but
we have omitted these results from this paper because they cannot be used to compare across
the two data sets (since we ran each of them on only one of the sets). Given more time, we
would run a consistent set of experiments with all three models on both data sets and report the
results.

e In the next section, we discuss flaws in SQuAD that we believe partially explain why single-
strategy systems are so effective on it. There are other data sets used for reading comprehension
research for which single-strategy statistical systems have also been very effective, and some
of them lack these flaws, although they do have other ones). More research involving more
data sets is needed to better understand where single-strategy statistical systems can be highly
effective on their own.

We do not believe that these issues collectively invalidate the conclusions in the next section, but
we will have more confidence in those conclusions when we conduct more complete and powerful
experiments in the future.

7. Conclusions

Is engineered Al obsolete for the question-answering task? Can the power that engineered knowl-
edge and engineered logic provide be replaced by a single statistical model? Our results on the
SQuAD data set seem to suggest the answer is yes: a deep neural network can be trained to be so
effective that a combination of big knowledge bases and many independent reasoning strategies add
little or nothing to that one statistical model alone. However, SQuAD is, in some sense, an artificial
(“toy”) problem: there is no direct practical application for a system in which users give the system
a paragraph and ask a question about that paragraph and hope that it can find the answer they intend
for it to find. There is nothing inherently wrong with using toy problems to explore Al strategies,
but it is important to understand the limitations of those toy problems when drawing conclusions
about the relative merits of different solutions.

For example, one passage in the SQuAD development set includes the sentence “Various species
of poison dart frogs secrete lipophilic alkaloid toxins through their flesh” and a question/answer
pair for that passage is “What are dart frogs known to secrete?” and “lipophilic alkaloid toxins.”
The question and answer both seem valid, but the phrasing of the question seems remarkably well
aligned with the phrasing of the answer. Many other SQuAD questions contain question answer
pairs where the alignment is less specific, for example, a passage with the phrase “the hero Siegfried
killing a dragon on the Drachenfels (Siebengebirge) (‘dragons rock’)” has the question/answer pair
“What is the translation of Siebengebirge?” and “dragons rock.” In this example, the verb “transla-
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tion” in the question is missing from the passage. It is not unreasonable to expect that given a large
training set, a statistical model could learn that a phrase in parentheses after a word is likely to be
the answer to a question asking for a “translation” of that word. Would such a model really have
learned to comprehend text? Or would it merely have learned a systematic regularity in the way
people write questions to be answered by a given piece of text? To the extent that these models do
the latter, we would expect them to have less value for answering questions that were not written by
someone who was looking at the text.

Our results for factoid question answering suggest that perhaps the remarkable successes that
single-strategy statistical models have on SQuAD are (at least to some degree) artifacts of the way
in which it was generated. For SQuAD, our single-strategy statistical system was so effective that
adding all of our engineered Al capabilities to it provided little or no benefit. But on the factoid
data set, that same single-strategy statistical system was much less effective than our engineered
Al capabilities or the combination of both. Because the questions in the factoid set are not written
to be answered by given passages, we believe that they represent a better proxy for real-world
information gathering needs and that they represent a challenge that is inherently less amenable to
a pure statistical analysis.

We suspect that the flaws that SQuAD has as a proxy for general-purpose question answering
may exemplify a broader trend in modern machine learning research. Researchers develop clever
and innovative methods to systematically generate enormous quantities of data that appear to be a
good proxy for some important real-world task (e.g., Hermann et al. 2015; Maas et al. 2011; Benzi
et al. 2016). They build statistical models that are spectacularly effective at learning from that
data, but it is not entirely clear how much those systems are learning to succeed at the important
real-world task and how much they are merely learning statistical trends in the systematic data
generation methods. If our suspicions are correct, Al may be headed toward a major realignment
when many apparent breakthroughs fail to deliver on their initial promise. We would not argue that
all single-strategy statistical work is invalid as a result of this issue: clearly there are some tasks such
as identifying objects in images where deep neural networks are remarkably effective in practical
applications. However, we feel that these methods are more valuable as one tool in a diverse toolbox
of Al methods than as a replacement for the entire toolbox.

We intend to conduct more experiments in which we compare single-strategy statistical systems
with engineered Al and integrated combinations of the two. We expect that single-strategy statistical
methods will continue to excel at some tasks but under-perform at other tasks. As noted in the
previous section, we recognize that the evidence in this paper has room for improvement. We must
test more single-strategy statistical systems over larger and more widely available data before our
results are persuasive to those who believe, as do many, that deep neural networks are the only
important Al technology and that everything else in the field should be discarded.
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