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Abstract
Autonomous cognitive agents must adapt with changing environments to remain effective and ro-
bust. Expectations about the world enable an agent to identify an anomalous situation and thus
provide the foundation for an appropriate response. While significant work has addressed anoma-
lies or discrepancies in the world, few examples exist that address discrepancies within an agent’s
own cognition by explicitly declaring and reasoning about high-level expectations. Such high-level
expectations allow an agent to identify anomalous mental situations, which in turn enables the agent
to adapt its own knowledge or cognitive processes to complex problems. This paper introduces a
new class of expectations called metacognitive expectations. Our contributions are the following:
(1) a general formalism for these expectations; (2) an implementation of metacognitive expecta-
tions in an agent embodied within a cognitive architecture; and (3) experimental results indicating
that an agent equipped with metacognitive expectations can outperform agents operating without
such structures.

1. Introduction

Over the years, the concept of an expectation has played an important functional role in cognitive
processes such as the monitoring of plan execution (Pettersson, 2005; Schank, 1982) and in manag-
ing comprehension, especially natural language understanding (Schank & Owens, 1987). Expecta-
tions are knowledge artifacts that enable cognitive systems to verify they are operating as intended.
When performing actions, an agent can check its expectations and takes corrective steps when they
are violated. That is, the agent checks if there are discrepancies between its expectations and its
observations of the state of the world. When such discrepancies are detected, different means of
addressing them have been proposed including plan adaptation – modifying the plan to be executed
(Muñoz-Avila & Cox, 2008), learning – acquiring a new piece of knowledge (Ram & Leake, 1995),
and goal reasoning – changing the goals to be pursued and generating new plans to achieve them
(Aha, 2018; Roberts et al., 2018).

For example, consider goal-driven autonomy (GDA), a class of goal reasoning in which an
agent may change its goals or formulate new ones in the face of discrepancies (Cox, 2007; Klenk
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et al., 2013; Muñoz-Avila et al., 2010). Research in this topic has identified different variants of
expectations (Wilson et al., 2014), and even presented a taxonomy of them (Dannenhauer et al.,
2016). Dannenhauer et al. note that some GDA agents compute an expectation based on the effects
of their last executed action. For example, an agent expects that after stacking one block on another,
the lower block will no longer be clear. If this is not true, then something must have gone wrong
(perhaps the top block fell off due to faulty placement). Other GDA agents compute expectations
based on the trajectory (i.e., the actions executed so far). Regardless of these variants, a common
trait is that an agent’s expectation is defined as a function of the observed states and the actions
previously executed. That is, they are defined in terms of the ground level environment consisting
of objects, their relationships, and actions in the world.

In contrast to such ground-level (i.e., cognitive) expectations, in this paper we introduce a new
class of metacognitive expectations that focus on metacognition for an intelligent system. When
cognition reasons about the world (i.e., the ground level) using its cognitive expectations, we con-
sider the process a kind of mental action operating on or with mental objects (e.g., the expectations).
These actions and objects then exist at the object level. Analogously, processes at the metalevel can
use declarative expectations about the object level to benefit metacognition. As such, metacognitive
agents operate at three distinct levels (Cox & Raja, 2011):

• The Ground Level: The world of doing. An agent executes actions and makes observations of
(i.e., perceives) the state of the environment.

• The Object Level (cognition): The world of thinking. The agent reasons about the actions
performed at the ground-level, the physical objects present, the states of those objects, and the
relations between them.

• The Metalevel (metacognition): The world of metareasoning. The agent introspectively reasons
about the cognition performed at the object level.

There has been work on reasoning implicitly with what can be considered metacognitive expecta-
tions. For example, Cimatti et al. (2017) uses the Action Notation Modeling Language to verify the
execution of temporal plans. This verification acts as the expectation. This brings capabilities to (1)
verify if an action is executable given the temporal constraints, (2) check if two actions are mutu-
ally exclusive, and (3) check if a plan is valid. These capabilities imply that the agent is reasoning
about the process. The difference is that our work explicitly represents the object-level expectations
and reasons about them within a separate metacognitive process. In the temporal domain, explicit
metacognitive expectations would require a representation of the procedure verifying the temporal
constraints. This was McCarthy’s (1959, 1987) argument about the importance of declarative rep-
resentations. For us, we have a declarative representation of the agent’s meta-level goals, one that
models processes at the object (cognitive) level. The same analogy can be made with other work that
also includes metacognitive expectations although do not explicitly represent them in a declarative
manner. This includes research on formulation of intentions, which provides a syntax and semantic
representation of the expectations of logical plans (Baral & Gelfond, 2005; Blount et al., 2015). The
logical representation of intent can be used to control robotic tasks Gomez et al. (2018). For further
examples, see the related research in Section 2.
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The primary contributions of this work are (1) the formalization of a declarative notion of
metacognitive expectations, (2) an implementation of this formalization in a cognitive architecture,
and (3) experiments with two domains from the GDA literature demonstrating the effectiveness of
reasoning with expectations at the metalevel. We will use two baselines in our experiment: an agent
with replanning capabilities and a GDA agent.

2. Related Research
Much computational research exists in the artificial intelligence community on the topic of metacog-
nitive systems (see Cox, 2005, for a review), but little of this work focuses on the role of expec-
tations. Contrastingly, most of the AI work on expectations relates primarily to knowledge about
the world and agents behavior within the world. When an agent encounters a discrepancy, it may
perform replanning, modifying the remaining (i.e., not yet executed) steps of the plan (Hammond,
1990; Cushing & Kambhampati, 2005). For example, the agent might observe the current state of
the world and generate a new plan that achieves the goals from the current state. Some agents aim
to make a more careful modification of the remaining plan by taking into account issues such as
estimates to complete the plan (Fox et al., 2006). Regardless of how the plan repair is done, in
replanning the goals remain the same. In our work metacognitive agents may change the goals that
the agent is pursuing.

In contrast to agents performing plan repair, GDA agents may change their goals (Cox, 2013;
Muñoz-Avila et al., 2010; Molineaux et al., 2010). For example, consider an agent controlling a
vessel carrying some valuable cargo to a certain port. If the agent detects a sonar contact that may
likely be an enemy submarine, it may change its goals to head back to the starting port or head to
an alternative port thereby circumventing the potential threat and changing its goals in the process.
GDA agents select new goals by performing a cognitive cycle in which they detect the discrepancy
at the ground level, generate an explanation for the discrepancy and possibly formulate new goals
as a result of that discrepancy. GDA subsumes plan repair because the agent might generate the
same goal as before in which case the agent generates a new plan from the current state to achieve
this goal. In our work, agents can trigger a process generating new goals at the cognitive level akin
to most GDA agents. But in addition, our agents run a cycle external to the cognitive level (i.e.,
metacognition) that supervises the execution of the GDA process. This cycle may trigger changes
in the execution at the cognitive level as a result of discrepancies observed at the cognitive level
and thereby generate meta-level goals (i.e., those to achieve particular internal states of the agent as
opposed to states of the world).

An earlier framework that shares many characteristics of metacognitive expectations is the
Meta-AQUA story understanding and learning system (Cox, 1996; Ram & Cox, 1994). However, it
operates with implicit metacognitive expectations as opposed to explicit declarative structures. The
system would expect its explanations to be correct; when they were wrong (or when no explanation
was generated), it would examine a trace of its reasoning to do blame assignment on the object
level; and finally it would perform a repair to its knowledge based upon that explanation. Like-
wise many systems have a capacity to perform metareasoning or model metacognition (e.g., Singh,
2005; Stroulia & Goel, 1995) but have implicit or procedural metacognitive expectations. In our
work, these expectations are explicit declarative knowledge artifacts, as we will formalize later.
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Figure 1. The cognitive action-perception cycle for the object level in MIDCA with meta-level cycle ab-
stracted (adapted from Dannenhauer & Cox, 2018). The six major cognitive processes are perceive, interpret,
evaluate, intend, plan, and act.

Finally, analysis has shown that expectations drive cognition (Schank, 1982) and influence emo-
tion (Langley, 2017). Furthermore, cognitive psychology research has long demonstrated the po-
tential benefit and general characteristics of reasoning about mental state and mechanisms (Flavell,
1979; Flavell & Wellman, 1977). Humans have and exploit expectations concerning their own men-
tal state (Dunlosky et al., 2013). In compelling examples of this capacity, game show contestants
can often decide before they retrieve a memory item whether or not they know answers to given
questions and demonstrate this by striking buzzers before their competitors do. Psychologists have
examined this phenomena and found it to be a robust effect (Reder & Ritter, 1992). More recently
research has shown that even very young students can assess how well they have learned material,
can predict memory and problem-solving performance, and can use such metacognitive expecta-
tions to choose learning and study strategies (Dunlosky, 2013; Dunlosky et al., 2013).

3. Metacognition: Reasoning about Cognition

If cognition is characterized by a system’s structured knowledge about rich, complex environments,
then metacognition is characterized by the system’s knowledge of itself and its own cognitive ma-
chinery. This section introduces a metacognitive architecture called MIDCA within which we have
developed the idea of a metacognitive expectation. We then elaborate this idea formally and discuss
its function computationally.
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Figure 2. The metacognitive cycle for the meta-level in MIDCA with six analogous processes: monitor, in-
terpret, evaluate, intend, plan, and control.

3.1 The MIDCA Metacognitive Architecture

The Metacognitive Integrated Dual-Cycle Architecture (MIDCA) (Cox et al., 2016; Paisner et al.,
2014) is a three-level architecture composed of a ground level (where actions and perceptions occur),
an object level (where problem-solving and comprehension processes exist), and a metalevel (where
monitoring and control of the object-level exists). The current implementation incorporates the
SHOP2 hierarchical network planner (Nau et al., 2003) and a custom-made heuristic planner (Bonet
& Geffner, 2001). In addition to simulation of standard planning domains, it also includes a ROS
interface to physical robots (e.g., a Baxter humanoid robot; rethinkrobotics.com/baxter)
and the Gazebo physics simulator (see gazebosim.org).

As shown in Figure 1, object-level problem-solving is composed of intend, plan, and act phases,
whereas comprehension consists of perceive, interpret, and goal-evaluation phases. The intend
phase chooses a subset of the goal agenda Ĝ as the current goal gc. The plan phase generates a
sequence of action steps πk to achieve the goal, and the act phase executes each action αi in turn.
The perceive phase takes a percept and extracts a predicate state sj ; the interpret phase takes the
state and induces a model hypothesis or generates a new goal given a discrepancy; and the evaluate
phase detects whether the current goal is true in the state, and if so, removes it from the agenda.

At the object level, the cycle achieves goals that change the environment. At the metalevel, a
metacognition cycle achieves goals that change the object level (see Figure 2). That is, the metacog-
nitive “perception” components introspectively monitor the processes and mental state changes in
cognition. Monitoring occurs by reasoning over traces of object-level behavior (e.g., decision mak-
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ing and inferences). The “action” component consists of a metalevel controller that mediates rea-
soning over an abstract representation of the object-level cognition. It can manage the activity at the
object level by changing the object-level goals, by changing the process executing a phase (e.g., by
selecting between planners for the plan phase), or by changing MIDCA’s domain knowledge (e.g.,
SHOP action models). The basis for such control decisions are MIDCA’s metacogitive expectations.

3.2 Formalizing Metacognitive Expectations

The AI planning community relies on the notion of a state transition system Σ = (S,A, γ) for
representing planning problems and for reasoning about future situations. In Σ, S is the set of
states that the agent can visit, A is the collection of actions that the agent can take, and γ is the
state transition function γ : S × A → S. In its most basic sense, Σ encodes set of immediate
expectations implied by the γ function. That is, from some current state, si, an agent expects the
action α to result in a state γ(si, α) = si+1.

3.2.1 Self-models, Mental States, and Mental Actions

Here we define an agent’s self-model (i.e., a model of the cognitive level), Ω, in an analogous
manner to Σ. Let Ω = (SM , AM , ω) where SM is a set of all possible mental states, AM is the set
of mental actions, and ω is a cognitive transition function defined as ω : SM × AM → SM . Now
in a very simple sense we can think of a metacognitive expectation to be implied by ω. Given a
mental state, sMi ∈ SM , and mental action, αM ∈ A, the agent can expect the subsequent mental
state ω(sMi , α

M ) = SM
i+1 to hold. However, many kinds of expectations exist besides the character

of the next state in a sequence. Below we will provide some details that highlight their diversity and
usefulness in complex situations.

An individual mental state is a vector of variables, (v1, ..., vn). These variables are dependent on
the agent; in MIDCA we use a separate variable for each of the following datums: Selected Goals,
Pending Goals, Current Plan, World State, Discrepancies, Explanations, Actions. Thus, our mental
state is represented as a vector of length n = 7 as (gc, Ĝ, π,MΨ, D,E, αi). We make no constraints
on the type of data for a mental state variable.

A mental action may perform reads or updates to variables in a mental state. MIDCA employs
the following mental actions: Perceive, Detect Discrepancies, Explanation, Goal Insertion (this
updates the set of goals Ĝ to be achieved), Evaluate (i.e., checks to see if the state MΨ entails the
current goal gc, and if so, removes it from Ĝ), Intend (i.e., selects a new gc from Ĝ), Plan (i.e., calls
a planner to generate a plan π to achieve gc), and Act (i.e., executes the next step αi from π, where
1 ≤ i ≤ |π|).

A mental trace, τ , is a sequence of mental states and mental actions interleaved. Specifically
τ = 〈sM0 , αM

1 , sM1 , αM
2 , .., αM

n , s
M
n 〉 where sM0 , .., sMn ∈ SM and αM

1 , ..., αM
n ∈ AM . When the se-

quence of mental actions is fixed (as is the case in the current version of MIDCA), a trace may
be represented as only the mental states τ = 〈sM0 , sM1 , ..., sMn 〉. However, for the purpose of
demonstrating the importance of the interaction of mental actions and mental states, we will use
the representation of interleaved mental actions and mental states when describing metacognitive
expectations.
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Table 1. Metacognitive expectations for the mental actions of explain, plan, and intend.

ID
Expectation Header
Informal Description
Formal Description

EXM
D→E

EXM (sMi , Explanation, s
M
i+1)

When the agent encounters a discrepancy, then the agent will generate an explanation
for this discrepancy
If vdiscrepancies 6= ∅ in sMi and vexplanations 6= ∅ in sMi+1, return true, otherwise
return false.

EXM
I→P

EXM (sMi , P lan, s
M
i+1)

When the agent commits to a goal, then the agent will generate a non-empty plan for
that goal.
If vselectedgoals 6= ∅ in sMi and vcurrentplan 6= ∅ in sMi+1, return true, otherwise return
false.

EXM
Eval→I

EXM (sMi , Intend, s
M
i+1)

When the agent no longer has any selected goals and has remaining pending goals, the
agent will commit to achieving one or more goals.
If vselectedgoals = ∅ in sMi and vpendinggoals 6= ∅ in sMi and vselectedgoals 6= ∅ in
sMi+1, return true, otherwise return false.

We define a metacognitive expectation over a single mental action as EXM (sMi , α
M
i , s

M
i+1), for

a segment of a mental trace τ , where the length of the segment is always three: prior mental state,
sMi , mental action, αM

i , and subsequent mental state, sMi+1. Since a mental action can read the value
of a mental state and update that variable given its original value, the mental state before and after a
mental action are relevant to the expectation (thus the τ segment length of three). The metacognitive
expectation is a Boolean function, EXM : (sMi , α

M
i , s

M
i+1) → {>,⊥}. If the output is true, the

expectation is met. Otherwise, the expectation is not met.

3.2.2 An Example Metacognitive Expectation

We now give an example of a metacognitive expectation, EXM
D→E , that represents the notion that

when the agent encounters a discrepancy, then it will generate an explanation for this discrepancy,
as shown in Table 1. Formally this is expressed as: EXM (sMi , Explanation, sMi+1), a function
that checks vexplanations 6= ∅ in sMi+1 whenever vdiscrepancies 6= ∅ in sMi .

For example, at the object level when MIDCA detects a discrepancy between the expected
outcome of an action and the observed state of the world, then an explanation for this object-level
discrepancy must be generated. In the NBeacons domain, if the agent executes the action to move
east and the architecture observes that the agent remains in the same place, it might generate as an
explanation that the agent is stuck and generate a new goal to become ¬stuck. In our experiments,
at some point during execution, strong winds will affect the agent’s move-east action, causing it
to move four cells to the east instead of one (the agent is pushed an extra three tiles). When this
happens, MIDCA cannot generate any plausible explanation for this discrepancy at the object level
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Table 2. The ω procedure that creates a mental trace τ . It takes as parameters the name of a process process
and a list of arguments args.

1: global τ
2: procedure ω(process, args)
3: process.in← args . Process input
4: process.out← apply(process, args) . Application of process to input
5: if now(t) then
6: process.time← t . Set process time
7: τ ← τ ◦ 〈process.self process.out〉 . Set trace to 〈...sMi−1α

M
i s

M
i 〉

8: return(process.out) . Process output

because it is lacking relevant knowledge (perhaps the developer could not foresee wind). This
triggers a discrepancy with the metacognitive expectation because no explanation at the ground-
level was generated.

The previous example is only one of many metacognitive expectations that would be useful to an
agent. Table 1 includes two other metacognitive expectations for the mental actions Plan and Intend.
The more mental actions an agent has at the cognitive layer, the more metacognitive expectations
will be needed. In the next section we describe the MIDCA procedure and indicate how the system
deals with this discrepancy of metacognitive expectations.

3.3 Reasoning with Metacognitive Expectations

In the MIDCA architecture, mental traces are automatically generated when cognitive processes
are executed at the object level. Table 2 illustrates the procedure ω for capturing mental states and
process execution. We assume here that the application of any cognitive process to an input state
will output a result sM in the appropriate format (i.e., a 7-tuple mental state). The input, output
and time of invocation are recorded in self-referential object form for the process (Lines 3-6). The
function now(t) in Line 5 is a temporal predicate as defined in active logic (Anderson et al., 2008),
a kind of step logic. The process and then the output state are subsequently appended to the mental
trace τ . Finally Line 8 returns the output to complete the procedure.

Table 3 describes the basic high-level flow of control for the architecture. MIDCA initializes
the internal state (Lines 3-4) and starts a cognitive cycle (Line 7). The mental trace τ is initialized
to the sequence having the initial mental state sM0 (Line 6). The values of sM0 are empty because no
perception has occurred and thus no knowledge of the world yet exists.

After initialization of the basic cognitive state (Line 9 of Algorithm 2), cognition performs
one phase (determined by Lines 9-12) of its action-perception cycle (i.e., executes the switch-case
control structure in Lines 13-31) and then invokes metacognition (Line 32). Each clause in the
switch returns a mental state as defined in the previous section but modifies only selective elements
in the state. A> in any element’s position indicates that the value remains unchanged. For example
on line 15, perceive extracts a predicate state, sj , from a percept ~p observed from the environment,
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Table 3. The MIDCA procedure is indirectly recursive. Cognition calls metacognition which then calls cog-
nition. Many of the symbols used correspond to those of Figures 1 and 2. Note that each invocation of ω
returns a cognitive 7-tuple. For brevity, > indicates an unchanging element.

1: global τ
2: procedure MIDCA(Ψ)
3: gc ← ∅; Ĝ← ∅;π ← 〈〉;MΨ ← ∅;D ← ∅;E ← ∅;α← ∅ . Initialize 7 obj-level vars
4: sM0 ← (gc, Ĝ, π,MΨ, D,E, α) . Initial mental state
5: cycle← 〈perceive, interpret, eval, intend, plan, act〉 . Cognitive cycle
6: τ ← 〈sM0 〉 . Initialize trace with initial mental state
7: cognition(MΨ, π, cycle, 1) . Start thinking
8: procedure COGNITION(MΨ, π, procs, i)
9: gMc ← ∅; ĜM ← ∅; πM ← 〈〉; DM ← ∅;EM ← ∅ . Initialize 5 metalevel vars

10: if procs = 〈〉 then procs← cycle . Cycle reset
11: next← head(procs)
12: procs← tail(procs)

13: switch next do . Perform next cognitive phase
14: case perceive
15: sMi = (>,>,>,MΨ ∪ sj ,>,>,>)← ω (perceive, (~p(Ψ)))
16: case interpret
17: sMi = (>,>,>,>, D,>,>)← ω (detect, (sj , π))
18: if D 6= ∅ then procs← explain|procs . Explain added to the head of procs
19: case explain
20: procs← insertion|procs . Insertion added to procs
21: sMi = (>,>,>,MΨ ∪ E,>, E,>)← ω (explain, (D,π))
22: case insertion
23: sMi = (>, Ĝ,>,>,>,>,>)← ω (goal-insertion, (E, π))
24: case eval
25: sMi = (>, Ĝ,>,MΨ,>,>,>)← ω (evaluate, (D,E, gc))
26: case intend
27: sMi = (gc,>,>,>,>,>,>)← ω (intend, (Ĝ, π))
28: case plan
29: sMi = (>,>, π,>,>,>,>)← ω (plan, (MΨ, gc, π))
30: case act
31: sMi = (>,>, tail(π),MΨ ∪ α− ∪ α+,>,>, α)← ω (act, (head(π)))
32: metacognition(MΨ, s

M
i , π, procs, i) . Metacognitive cycle over trace of phase

33: procedure METACOGNITION(MΨ,MΩ, π, procs, i)
34: DM , EM , ĜM ← meta-interpret(monitor (MΨ, π, τ), πM ,MΩ) . Monitor then interpret
35: MΩ, Ĝ

M ← meta-evaluate(DM , EM , gMc ) . Then evaluate
36: if ĜM = ∅ then cognition(MΨ, π, procs, i+ 1) . When agenda empty, continue cognition
37: else
38: gMc ← meta-intend (ĜM , πM ) . Intend then plan and finally
39: metacognition (MΨ,MΩ, (controller( meta-plan (MΩ, g

M , πM ), procs, i)) ) . control
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Ψ. It assigns the value of the fourth element of the state (i.e., the model of the environment, MΨ)
the union of the result (sj) with MΨ. The remaining six elements are not effected.

If a metacognitive expectation failure occurs (on Line 34, DM will not be empty), it attempts
to repair itself by creating a meta-level goal and adding it to the meta-level goal agenda, ĜM ;
otherwise, it calls cognition to continue (on line 36). Interpretation at the metalevel is performed
as a three-step process, as is the case with the object-level analogue. However, it is performed in a
single call on line 34, setting a discrepancy DM if one exists from any metacognitive expectation,
explaining DM , and then formulating one or more new goals ĜM if necessary to change the object
level. Line 35 performs evaluation on any goal from previous metalevel cycles, and then Line 36
checks to see if new meta-level goals were formulated. If so, it performs goal selection with intend
(Line 38), plans for the goal at Line 39 and executes the plan with the metalevel controller also on
Line 39. Metacognition is called again to perform evaluation on the results (all on Line 39).

Note the parallel control structure between the cognitive and metacognitive cycles (c.f., Figures
1 and 2). Each includes a comprehension sequence of 〈perceive/monitor, interpret, evaluate〉
and a problem-solving sequence of 〈intend, plan, act/control〉. In contrast, the former uses ω to
record a trace whereas the latter does not. Yet functionally they are very similar. The cognitive
level interprets the percepts from the external environment; whereas, the metalevel interprets the
current trace of the internal object level. Interpretation is actually composed of a GDA three-step
process. It detects discrepancies, explains them, and uses the explanation to generate potential new
goals to resolve the discrepancy. This is implemented by having interpret add explain to the head
of the processes to be executed (Line 18) after calling detect (Line 17). Explanation then prepends
goal-insertion to the procedure sequence (Line 20) and calls explain (Line 21).

We now reconsider the example at the end of the previous section. Recall that MIDCA fails to
generate an explanation at the object level because permanent changes in the wind conditions cause
the agent to always be pushed an additional three cells whenever it moves east. Since no explanation
is generated at the object level, it causes a discrepancy of a metacognitive expectation. In this case
Line 34 will evaluate τ , which will contain a sequence of the form (sMi , Explanation, s

M
i+1) with

vexplanations = ∅ in sMi+1 and vdiscrepancies 6= ∅ in sMi . This will detect the discrepancy and
generate a new goal ĜM . Therefore, the condition in Line 36 fails and the else code in Lines 38-39
is performed. Line 38 selects the new goal, gM , to fix the domain theory (the new goal is generated
during meta-interpret on Line 34 and is a member of the resulting ĜM ). Line 39 generates a plan
to modify the domain description (now the effects of the move east will correctly indicate that it
will be pushed three additional cells to the right); the controller makes this change in the domain
description (also Line 39) and the process is re-started.

4. Experimental Study

This section presents experiments with domains from the goal reasoning literature demonstrating
the effectiveness of reasoning with metacognitive expectations. We performed an ablation study of
three agent types in both the NBeacons and Aggressive Arsonist domains. The experimental results
show that an agent with the metacognitive expectation for the mental action explanation is able to
successfully trigger metacognition which then resolves a failure of the agent’s planning operators.
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Figure 3. An NBeacons example scenario. The symbol a represents the agent, integers between 0 and 9 are
the locations of beacons, and ∼ represents a sand pit.

4.1 Test Domains and Experimental Manipulations

The motivation behind using the NBeacons and Aggressive Arsonist domains (Dannenhauer, 2017)
for these experiments is to test robust agents in environments that change over time. The particular
kind of changes in which we are interested are those that an agent designer may not have predicted,
and, as such, these domains are suitable.

4.1.1 NBeacons

NBeacons is a modification of the Marsworld domain used in Dannenhauer and Muñoz-Avila
(2015). The domain is unbounded, with an area of interest to the agent that is a square grid of
100 tiles (shown in the center of Figure 3). Scattered among the area of interest are a total of 10
beacons and 20 sand pits. Beacons and sand pits cannot be in the same tile. Beacons are deactivated
until the agent, which must be on the same tile as the beacon, performs an activate-beacon action.
Other actions available to the agent include navigation (move east, west, north, south) and push
actions (to free an agent that has fallen into a sand pit). There are five push actions an agent must
execute before it will become free to move. Figure 3 shows a part of an NBeacons domain and is
centered around the area of interest. Wind may push the agent outside the area of interest, in which
case the agent must navigate back.

The primary difference of NBeacons compared to Marsworld is the addition of wind. After a
period of time, wind blows causing the agent to be instantaneously pushed extra tiles whenever it
attempts to move in a specific direction. If the agent would be pushed through any tiles containing

241



D. DANNENHAUER, M. T. COX, AND H. MUÑOZ-AVILA

sand pits, the agent will become stuck in the sand pit. In our experiments, wind begins to take
effect after 500 ticks at a strength of three (pushing the agent three extra tiles) and then increases
to a strength of four after 1500 ticks. Wind causes the effects of the agent’s move action to be
permanently altered for the rest of its execution. Due to wind, an agent will find itself in a location
other than what it expected, sometimes ending up in a sand pit. Wind always blows in one direction.
Without wind, an agent never ends up in a sand pit because it will plan around them. All agents
acting in the NBeacons domain perform heuristic planning with the heuristic being straight-line
distance. Agents are given goals to activate specific beacons. Beacons are deactivated after they are
activated to ensure an agent always has an available goal.

4.1.2 Aggressive Arsonist

The second domain, Aggressive Arsonist, is a modification of the arsonist domain first used in
Maynord et al. (2013). It is a blocks world domain with an unseen arsonist lighting blocks on fire.
The agent is tasked with randomly generated goals to build towers of height four. In the original
Arsonist domain, fire reduces the score the agent gets for completing each goal (here we do not
measure score, only goal achievement). When an agent detects fire, they generate goals to put out
the fire before returning to block stacking. Each tick of the environment (i.e., every time the agent
takes an action) there is 20% chance the arsonist will light a block on fire.

The primary difference between Aggressive Arsonist and the original Arsonist domain is that
after 400 ticks in Aggressive Arsonist, the domain changes and the arsonist becomes more aggres-
sive. Now every time the arsonist lights a block on fire he/she will instead light two adjacent blocks
on fire. The type of fire is stronger, such that the agent can only douse the fires by putting out the
bottom fire first (otherwise the bottom fire keeps the block above it lit). Figure 4 shows a scenario
with two blocks on fire, where the bottom block keeps the top block aflame.

4.1.3 Agent Types: Replanning (baseline), GDA, Meta + GDA

All three agents, in both domains, are implemented using the MIDCA Cognitive Architecture, albeit
with ablated components. The baseline agent, a replanning only agent, checks to see if the goal was
reached at the end of execution of its plan, and if not, replans. The second agent, a goal driven au-
tonomy agent, uses expectations to determine when a discrepancy of the world occurs, followed by
explanation, and finally goal formulation. Expectations use a state comparison approach described
in Dannenhauer & Muñoz-Avila (2015) and used in Molineaux et al. (2010). Explanation is imple-
mented as a mapping from discrepancies to goals. Thus, our GDA agent in the NBeacons domain
generates a goal to become free after it explains that the agent is stuck in a sand pit. When the GDA
agent finds it has been blown off course (but not in a sand pit), it inserts the same beacon-activation
goal it previously had, which triggers immediate planning in the agent’s new state.

The third agent contains the GDA mechanism of the previous agent (GDA at the cognitive level)
along with metacognition enabling it to reason with metacognitive expectations. These metacogni-
tive expectations include the expectation EXM

D→E (see Table 1) mentioned in the example earlier:
an agent detecting a discrepancy should also have generated an explanation. When the cognitive
GDA component, Explanation, fails to produce an explanation after observing the discrepancy (in
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Figure 4. Aggressive Arsonist example scenario. Blocks B_ and C_ are on fire. The fire on block C_ keeps
B_ on fire so that an agent that tries to extinguish B_ will fail because C_ is on fire.

NBeacons the discrepancy is being in an unexpected location, in Aggressive Arsonist the discrep-
ancy is failing to put out a fire when there is a fire underneath the block) the metacognitive expecta-
tion is triggered and the agent generates a goal to update its domain model. Since the focus of this
paper is on modeling metacognitive expectations and using them to detect anomalies of cognition,
we do not go into detail regarding operator learning.

Research in learning action models for planning domains has a long history (Čertickỳ, 2014;
Wang, 1995, 1996; Yang et al., 2007). The basic premise of these works is to extrapolate the effects
of the operator by reasoning on the difference in the state before and after an action is applied. The
challenge here is that when multiple actions occur that are instances of the same operator, there can
be multiple plausible effects that could be assigned to that operator. Analogously, when observing
the states immediately preceding actions that are instances of this operator, there can be multiple
plausible preconditions for it. Authors have explored different ways to deal with this problem. For
example, Yang et al. (2007) models the problem of learning preconditions and effects of operators
as a constraint satisfaction problem. From the input traces it automatically extracts constraints
indicating plausible preconditions and effects for each occurrence of an action, which is an instance
of the same operator. An example constraint is “atom p is a precondition of operator op”. These
constraints are weighted by the number occurrences; for example, if p occurs 100 times in the traces
in a state immediately preceding actions that are instances of op, the constraint is assigned a weight
of 100. Other constraints are added to prune the preconditions and effects. One such example is
the constraint: “if p is a precondition of op, then p cannot be an effect of op”; analogously “if p is
an effect of op, then p cannot be a precondition of op”. These constraints are given to a MAXSAT
solver, which returns a set of constraints that are satisfied. From these the preconditions and effects
of operators are extracted. In our work, an action is updated given the distance the agent was pushed
by the wind (NBeacons) and using the failed action putoutfire (Aggressive Arsonist). Unlike the
other two ablated agents, the metacognitive one is able to update its model for the action affected
by wind (i.e., when wind is blowing east, the move-east action is updated in NBeacons).
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Figure 5. Average execution cost as a function of goal achieved in the NBeacons domain.

Our hypothesis is that the agent equipped with metacognitive expectations will achieve the low-
est execution cost compared to the GDA agent and the replanning agent. We expect that the GDA
agent will immediately respond to discrepancies, while the replanning agent will wait for its current
invalid plan to run out. The metacognitive agent will detect an explanation failure of its compo-
nents and update the effects of its actions to take into account the changes in the domain (wind
in NBeacons, stronger fires Aggressive Arsonist). For example, the GDA agent will be blown un-
expectedly into sand pits while the metacognitive agent will avoid them once it has learned from
previous encounters with the wind.

4.2 Empirical Results

The empirical results from both experimental domains are averaged over ten scenarios and shown
in Figures 5 and 6. In NBeacons, each scenario is generated by randomly placing the beacons and
the sand pits with the agent starting in the center (see Figure 3 for an example). Each agent is given
the same ordered list of goals to achieve. The abscissa (x axis) of these figures is the cumulative
number of goals achieved, and the ordinate (y axis) is the cumulative execution cost. Execution cost
is measured by the number of actions executed, where each action has a unit cost.

NBeacons Results. After 500 actions, wind begins blowing east with a strength of three (the
agent will be pushed an additional three tiles), followed with another increase in wind to four (the
agent will be pushed an additional four tiles) after 1,500 actions. Prior to wind, the performance
of all the agents is the same because they are able to plan around all sand pits. However, once
wind is introduced, the agents may be blown into a sand pit and execute a series of push actions
to free themselves, thus raising execution costs. As shown in Figure 5, all agents exhibit similar
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Figure 6. Average execution cost as a function of goals achieved in the Aggressive Arsonist domain. The
colored crosses on the graph indicate the last goal achieved in each run before failing.

performance for the first 75 goals, which takes an execution cost of about 800 actions. Wind is
introduced after 500 actions, but it takes time to see the benefit because it affects only some actions.1

Aggressive Arsonist Results. Each run starts with all blocks on the ground and no fires. After 300
actions, the arsonist becomes aggressive, and lights stronger fires which cause two adjacent blocks
to burn (see Figure 4 for an example). Unlike NBeacons, shortly after this change in the domain,
the replanning and GDA agents fail because they are unable to put out fires. The last goal achieved
before failing is shown as an × in Figure 6 with the lines representing the average performance
over all ten scenarios. The replanning and GDA agents fail to continue to achieve goals, because
they repeatedly fail to put out a fire on a block that has another burning block underneath it. One
interesting result is that the GDA agent tends to fail faster than the replanning agent, because it
responds to fire immediately. The replanning agent only responds to fire after it achieves its current
goal, and so will continue stacking blocks even if lower blocks have caught on fire (while fire
prevents stacking operators, it does not affect goal conditions).

Discussion. In these results for both domains, only the metacognitive agent identifies the expla-
nation failure at the GDA level and performs operator learning (in the same fashion as NBeacons).
In the Agressive Arsonist domain, the metacognitive agent learns two new operators for putting out
fire (one that handles the case of a block on the ground, the other that handles the case of a block
stacked on another block). By learning these new operators, the agent is able to put out the fires and
continue operating.

1. When the wind blows east, only move-east is affected, so goals that do not require navigating east will see no impact.
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As the agents continue to operate in both domains, we see that even when the effects of a single
action change in the environment, metacognition improves performance over the replanning and
the GDA agents by identifying a cognitive failure and addressing a limitation in the agent’s own
knowledge. These results indicate that metacognitive expectations (1) are domain-independent:
the same metacognitive expectation was used in different domains and (2) lead to both improved
performance (as in NBeacons) and the resolution of incapacitating failures that would otherwise
prevent the agent from continuing to achieve its goals (as in Aggressive Arsonist). Finally, our
hypothesis that an agent with metacognitive expectations would outperform a replanning agent and
GDA agent was met and is supported by both experiments.

5. Conclusion

This work extends the existing research on anticipatory approaches to intelligent agents within the
MIDCA cognitive architecture, which uses expectations to focus problem solving on salient as-
pects of a problem. We introduced metacognitive expectations, a novel class of expectations that
applies the approach to the problem-solving cycle itself rather than, as in typical GDA research,
just the environment and actions executed within it. Using dynamic domains that change sig-
nificantly over time, NBeacons and Aggressive Arsonist, we reported empirical results showing
the benefit of reasoning with metacognitive expectations. These metacognitive expectations are
domain-independent; in our experiments with both the NBeacons and Aggressive Arsonist domains,
a failure to explain a change in the environment triggered a discrepancy to the same metacognitive
expectation, showing the generality of this approach.

We emphasize that the contribution here is the ability to detect a problem has occurred at the
cognitive level, independent of the agent’s environment. When these problems are addressed there
is a measurable effect on the agent’s overall performance. While we have introduced the notion
of metacognitive expectations, we feel there is much remaining work to create introspective agents
robust to changing environments that are capable of evaluating their own processes. An immediate
area for future work is to broaden the scope of capabilities at the metalevel. Specifically, we are
modifying plan operators. We would like to expand the system’s capabilities to modify other com-
ponents such as the explanation component of cognition. The diagnosis that follows the discrepancy
generated from EXM

D→E may determine a solution is needed in the explanation component instead
of the plan operators. The generality of metacognitive expectations such as EXM

D→E is that they
identify problems regardless of the solution type. We leave diagnosing the cause of an anomaly
identified from these metacognitive expectations as an area for future work.

As a last thought, we speculate that for a given set of mental actions a cognitive agent pos-
sesses, there is a set of metacognitive expectations the agent can employ that applies to any domain.
We have introduced three such expectations (Table 1) and demonstrated empirically that an agent
equipped with just one metacognitive expectation, namely EXM

D→E , can identify cognitive-level
failures that, once fixed, lead to increases in overall agent performance. The metacognitive expec-
tations described here are non-exhaustive. We would like to expand these to include agents with
different mental actions. Furthermore, some metacognitive expectations may span more than one
mental action. Finally, besides enabling the agent with self-monitoring of the cognitive layer, these
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expectations can serve as a debugging tool for developers of cognitive agents. While a developer
is expected to create the mental actions and knowledge for the agent, metacognitive expectations
and other metacognitive processes, to be developed in the future, will provide an extra layer of
robustness for free.
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