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Abstract
Although there have been many key advancements in connecting text and perception, computer-
generated image captions still lack common sense. As a first step towards constraining these per-
ception mechanisms to commonsense judgment, we have developed reasonableness monitors: a
wrapper interface that can explain if the descriptive output of an opaque deep neural network is
plausible. These monitor a standalone system that uses careful dependency tracking, commonsense
knowledge, and conceptual primitives to explain a perceived scene description to be reasonable or
not. If such an explanation cannot be made, it is evidence that something unreasonable has been
perceived. The development of reasonableness monitors is work towards generalizing that vision,
with the intention of developing a system-construction methodology that enhances robustness at
run time by dynamic checking and explaining of the behaviors of scene understanders for reason-
ableness in context.

1. Introduction
Recent advances in deep learning and machine learning have demonstrated improvements in au-
tomated systems which perform tasks such as image labeling and captioning. These systems are
perceptual in the sense that their inputs are raw image sensor data and their outputs are judgments
about the objects in the image, their spatial relations, their movements, and activities in the scene.
Although these systems are often termed “scene understanders,” recent well-documented evidence
of adversarial examples indicates that many of these systems are not actually perceiving and under-
standing scenes using the kinds of commonsense reasoning that people use, but they are performing
image understanding and labeling by exploiting patterns in large data sets that are not generalizable
(Jia & Liang, 2017; Moosavi-Dezfooli et al., 2016; Nguyen et al., 2015; Szegedy et al., 2013).

Over time, autonomous systems such as unmanned aerial vehicles, self-driving cars, or domestic
or industrial robots are adopting these technologies to make more actions and decisions previously
entrusted to humans. Their misperceptions of their environment can present a serious challenge to
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the proper functioning of these systems, as well as a major safety issue. For example, a perception
system embedded in a self-driving car architecture could mistake the identity of one or more objects
in a scene, the background, the location, or the direction of movement or orientation of objects.
Many misperceptions can be conveyed completely by the natural language text of the scene descrip-
tion that is generated, and many scene descriptions, for example, “a mailbox is crossing the street”
or “an elephant is flying through the sky”, can be judged as highly unlikely and nonsensical by a
human without ever seeing an image of the original scene.

One way to address these drawbacks of contemporary data-driven, learning-based perceptual
systems is to take a “society of mind” approach (Minsky, 1988) and view them as part of a larger
system of cooperating autonomous agents. Monitoring systems are agents that can be attached to
existing deployed systems to make them work slightly better by performing a limited augmentation
that detects and addresses rare and unusual misbehaviors. This suggests the potential utility of a
reasonableness monitor, a cognitive system endowed with commonsense knowledge that can form
judgments of the reasonableness of the perceptions of other agents using only the natural language
description of the perception.

In this paper, we present a prototype of a commonsense reasonableness monitoring system. It
takes a natural language sentence as input, infers a reasonableness judgment of the sentence, and
offers as output an explanation of that reasonableness judgment in natural language. The current
system focuses on input sentences describing physical acts and events performed by and on physical
objects that are both animate and inanimate to represent scenes and situations that a perceptual
image understanding or scene understanding system would produce. The prototype system uses a
standard part-of-speech tagger on the input sentence and uses a commonsense knowledge base to
represent the act or event described representing concepts as complex combinations of conceptual
primitives. The system then applies constraints based on the conceptual primitive representation to
determine the reasonableness of the original sentence and to generate a natural language explanation
of the reasonableness judgment.

In the next section, we provide general theory and background on integrating perception and
reasoning in cognitive systems and on building reasonableness monitors in real-world environments.
This motivates an example showing the implementation of our reasonableness monitor prototype in
Section 3. Then in Section 4, we describe our reasonableness monitor architecture more fully, and
motivate the use of a commonsense knowledge base and conceptual primitive decomposition for
enforcing constraints. We describe a set of studies of the reasonableness monitor and in Section 5
show the study results. Section 6 reviews prior and related work in monitoring, commonsense
reasoning, and perceptual algorithm understanding, and in Section 7 we conclude with a discussion
of limitations and future work.

2. Background and Design Choices for Reasonableness Monitors

The integration of perception, recognition, and higher reasoning capability is a hallmark of human
intelligence modeling, from Gestalt psychology (Michotte, 1963) and early machine vision systems
(Roberts, 1963; Ullman, 1989) to cutting-edge standardized models of human cognition (Laird et al.,
2017). These models integrate perception and “pure” object recognition with reasoning and sym-

46



MONITORING SCENE UNDERSTANDERS

bolic manipulation, allowing for both “bottom-up” and “top-down” processing of sensory inputs.
Standard cognitive models suggest that a key part to this integrated process could be components
which take raw perceptions that have been transformed to symbolic representations of recognizable
objects and reason about them. The products of reasoning may be fed back into the recognition,
which may result in confirming or disagreeing with the perception and, where perceptions are fuzzy
or uncertain, it may transform the perceptions to be more in agreement with reasoning processes.

Some cognitive theories emphasize the strong influence of symbolic processes on perception.
For example, while scientific evidence supports the view that normal perceptual experiences may
rely more on knowledge than modes of sensation (Traynor, 2017), the reality of cognitive penetra-
bility is the subject of significant debate in philosophical circles (Lammers et al., 2017). Winston’s
(2012) “inner” language hypothesis states that the internal language that humans use to construct
complex symbolic descriptions of situations, knowledge, and events enables humans to shape per-
ceptions and marshal perceptual systems in service of understanding and problem solving. A major
part of this work to create a reasonableness monitor is devoted to integrating subsystems to repre-
sent the “inner”, physical, non-linguistic representation and reasoning domains of mental models
(Johnson-Laird, 1983) and imagery (Pearson & Kosslyn, 2015) that are theorized to be distinct from
humans’ “outer” language of familiar lexical items and linguistic forms.

How do we build systems that connect perception with knowledge and reasoning capability to
help ensure developers, debuggers, or designers that their machines are perceiving and acting rea-
sonably? And how do we facilitate the study of these systems in real-world environments? We
might employ a modular approach, connecting existing perceptual systems to reasoning systems
with knowledge about common objects and their interactions. This requires components with par-
ticular characteristics and raises certain general challenges to connecting them together to create
a reasonableness monitor. Here we list factors that we considered in making specific choices in
constructing a reasonableness monitor prototype and connecting it to working perceptual systems:

1. The output of a perceptual system will serve as an input to the reasonableness monitoring sys-
tem. For the prototype reasonableness monitor described in this paper, we targeted image cap-
tioning and scene description systems as representations of machine vision and, more generally,
perception systems that may be used in autonomous vehicles.

2. Perception should abide by the rules of commonsense. This requires a subsystem with a wealth
of structured world knowledge that is indexed in a way such that knowledge that is relevant to
the perception can be found efficiently. The world knowledge can be a commonsense knowl-
edgebase that represents “reasonable”, sensible, or normal perceptions to be compared the per-
ceptual system’s behaviors.

3. Because commonsense knowledgebases typically represent objects and their interactions as
words or phrases in natural language, and available perceptual systems are trained to produce
language symbols as recognition outputs, natural language can be used as the interface between
them. This may require subsystems that parse or process natural language in some way when it
serves as an interface between these or other components.

4. However, we believe that a major challenge with using natural language as an interface is lin-
guistic variation—the fact that there are myriad different ways to express the same concept in
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Figure 1. Parse tree and anchor point bindings for the input example, “A mailbox crossing the street”.

“outer” language (Walker, 2010). This may also affect knowledge bases and semantic networks
when their content is expressed in natural language terms. This underscores the need for inner
language ontology encodings of data and knowledge.

5. We need a reasoning system to construct a model of the perception in the inner language by
drawing on knowledge about the perceived objects and rules or constraints about their typical in-
teractions. It makes a reasonableness judgment by identifying confluences between perception
and reason or by identifying divergences in the form of rule conflicts and constraint violations.

6. Because engineers, system designers, and scientists must be able to interact with the monitor
and understand its output, the system should be able to explain and verify what it has done by
describing the core reasons and support for a reasonableness judgment. The reasoner either
finds that all constraints are met and it displays the premises supporting those constraints, or it
explains the contradictory premises.

In the next section, we show how to evaluate the output of a machine perception algorithm—a
natural language description—for reasonableness. We put this description into a reasonableness
monitor, which transforms the description into a set of conceptual primitive frames, builds evidence
by efficiently searching for relevant knowledge from ConceptNet, and explains the judgment.

3. Reasonableness Judgments: An Example

In this section we provide a step-by-step example of how our prototype system processes an in-
put perception description, “the mailbox crossed the street,” determines it to be unreasonable, and
outputs an explanation of its judgment of unreasonableness.

The input of the reasonableness monitor is a perceived scene description sentence that contains
(at least) a subject and verb. The system performs a part-of-speech tagging of the input which is
shown in Figure 1. Currently we use the Python NLTK part-of-speech tagger (Bird et al., 2009) and
a regular expression parser to find the noun phrase, verb phrase, objects, and prepositional phrases.

3.1 Anchoring

The system queries a commonsense knowledge base for knowledge related to the concepts in the
parsed sentence. It uses this knowledge to construct a frame around an abstracted conceptual prim-
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mailbox MOVE mailbox
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POS ConceptNet CD Constraint
Word Tag Anchor Role Violations

mailbox NN ‘object’ actor not animate
crossed VBD ‘move’ MOVE N/A
street NN ‘object’ object none

Figure 2. (Left) A Conceptual Dependency diagram representing the statement “The mailbox crossed the
street.” MOVE is the CD act primitive, double arrows point from MOVE to the actor, and single arrows
marked “o” and “D” indicate the object and the directional case respectively. (Right) The part-of-speech
tags, anchors, and roles in the primitive act frame for words in the input statement. Violations of constraints
are determined based on the ConceptNet anchor and the role of the word in the conceptual decomposition.

itive which we will use to apply reasonableness constraints. In our prototype system we use Con-
ceptNet (Speer & Havasi, 2013), a freely-available semantic network and commonsense knowledge
base, to construct a frame representing a primitive act using the subject, object, and verb of the
parsed sentence. The system constructs Trans-frames (Minsky, 1988) in Conceptual Dependency,
or CD (Schank, 1972), which represent concepts as combinations of language-free conceptual prim-
itives for an inner language ontology. This represents acts, events, spatial relationships, and changes
of state using a small number of abstract primitives. The primitives we use are explained in the fol-
lowing subsections.

To build a conceptualization corresponding to the input, the system first determines which prim-
itive best represents the act described in the sentence. This process uses the commonsense knowl-
edge in ConceptNet, which represents its knowledge as a graph with concepts as nodes and relations
between concepts as edges. Certain concept nodes in ConceptNet are selected to be anchors—the
best representatives of the non-linguistic primitives of Conceptual Dependency. The system deter-
mines which primitive to use to construct the conceptualization transframe by querying ConceptNet
to determine if there is an edge relation between the verb and the anchor for that primitive. In this
case, there is an edge in ConceptNet between “cross”, which was tagged as the verb in the input, and
“move”, the system’s anchor node for the PTRANS and MOVE primitives of Conceptual Depen-
dency. PTRANS (short for Physical TRANSfer) denotes events where an object, thing, or substance
changes location, while MOVE represents events where an animate object moves a part of its body.
Our system merges these two primitives as MOVE-PTRANS, which we abbreviate to MOVE.

It then instantiates a MOVE primitive act frame, which has slots for an actor, object, and a di-
rection case. In this case, both the actor slot and the object slot are filled by the subject of the input
sentence, and the direction case by the object of the sentence. This results in the CD conceptualiza-
tion shown in Figure 2.

3.2 Applying Conceptual Primitive Constraints

Now that the system has a populated primitive conceptualization frame, it can determine violations
of the frames constraints by its constituents. First, the MOVE primitive requires that the actor role
must be filled by an “animate” object that can make other objects move or change location. Here the
actor role is filled by “mailbox”. To determine whether it satisfies or violates the constraint on the
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actor role, the system attempts to anchor the mailbox concept to one in ConceptNet to determine if
it is an animate object. In this case there is a path through ConceptNet’s graph between “mailbox”
and “object”, the anchor for inanimate objects, and no path between “mailbox” and “animal”, the
anchor for animate objects, so it determines that “mailbox” is inanimate and flags a violation of the
actor constraints for the MOVE act.

The system then turns to the object role. MOVE requires that the object role must be filled by
a physical object, thing, substance, or person. The object role may be animate or inanimate, but it
must also be an object that is non-stationary and can be moved. In this case the object role is also
filled by “mailbox”. Because the mailbox concept is anchored to “object” in ConceptNet, it satisfies
the constraint on the object role. Finally, the direction role for MOVE is constrained to represent
a direction in reference to a physical object or a physical location. In this case, the word “street”
is anchored to “object”, so no constraint is violated. Although the verb in the sentence is “cross”,
which implies moving towards the street, on it, and then past it, the system reduces “crossing” to a
single MOVE act.

3.3 Providing Explanations of Reasonableness and Unreasonableness

Based on the violation of the actor constraint on the MOVE frame, and because no other information
was present in the sentence to recover from this violation (e.g. by introducing a concept other than
“mailbox’ to serve as the actor role), the system concludes that the statement is unreasonable. It
then uses the concepts in the original sentence along with the anchor points, frame roles, and role
violations to construct a detailed natural language explanation of its judgment of unreasonableness.
It generates these sentences:

A mailbox is an object or thing that cannot move on its own.
So it is unreasonable for a mailbox to cross the street.

These respectively give the specific violation of the actor constraint by the mailbox, and state that
the original input sentence was unreasonable.

4. Reasonableness Monitor Architecture

Reasonableness monitors are wrappers around the subsystems or components of a machine that
check their behavior for reasonableness. They build an explanation of a problem (or reasonable
state) by examining the premises supporting the observation of a contradiction (or consistency).
Monitors search through a knowledge base for premises and generate explanations of inconsisten-
cies. The premises are used as evidence for explaining inconsistent (or consistent) information.

4.1 Input Parsing

The input of the reasonableness monitor is a perceived scene description that contains, at a mini-
mum, a subject or actor of the sentence and a verb. The monitor first parses the description and
find the relevant concepts and primitives. The Python NLTK part-of-speech (POS) tagger tags each
element of the input, after which a regular expression parser maps these POS tags to specific noun,
verb, and object phrases.
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4.2 ConceptNet and Conceptual Primitive Decomposition

The kinds of image and video scene descriptions that are important for a reasonableness monitor
to handle involve dynamic acts and events—people and objects moving and interacting with other
people and objects against a background or at a particular location. Each monitor has its own
knowledge base: a set of behaviors that are considered to be reasonable. For monitoring in this
context, ConceptNet 5, a semantic network and commonsense knowledge base (Speer & Havasi,
2013, 2012), is used as a knowledge base of reasonableness. We chose ConceptNet because it
is freely available and has several million commonsense knowledge assertions about people and
everyday objects, activities, and events.

However, like most such knowledge bases, ConceptNet contains mainly “positive” assertions
and little “negative” knowledge (Minsky, 1994) that could be used to deduce unreasonableness. It
also does not have a facility for generating a structure that combines concepts into representations
of acts or events to facilitate reasoning about them through knowledge. Finally, while ConceptNet
contains such knowledge in a semantic form, it does not conform to a strict ontological hierarchy.

Our approach to solving these problems is to add inner language ontology structures by pro-
cessing the input texts into abstract role frames representing animate and inanimate objects and
their interactions in the scene. The role frames are combined with knowledge from ConceptNet
about the concepts placed in each role and used to apply constraints on reasonableness. We chose
to construct role frames using primitives of Schank’s (1972) Conceptual Dependency (CD) because
the primitives are abstract and because they are intended to represent physical acts in a universal,
language-free conceptual base. The CD primitives are also small in number and we needed only six
“physical” ones in our prototype system.

4.3 Conceptual Primitive Frames

Conceptual Dependency offers constraints based on the ways that conceptualizations are formed
from the conceptual primitive, and the conceptual “cases”, which include the actor, the object, and
direction cases. In this section we provide descriptions of the six “physical” CD primitives and their
constraints on reasonableness. Here, a “thing” can refer to an object, substance, person, animal, or
vehicle, and may be either an animate actor or inanimate.

• PTRANS represents the event of a thing changing location from one place to another. This act
typically has an object case, representing the thing which moved or was moved, an actor case
representing the actor which performed or caused the movement, and a direction case indicating
the start and end point of the movement.

• MOVE represents the event of a thing moving a part of its body or part of itself. This act
has an object case, representing the body part that was moved, an actor case representing the
actor which performed the MOVE, and a direction case indicating the start and end point of the
movement.

• PROPEL represents the event of a thing applying a force to another thing, or a moving thing
striking or impacting another thing. This act typically has an object case, representing the
object which was struck or has a force applied to it, an actor case representing the actor which
performed or caused the PROPEL, and a direction case indicating the direction of the force.

51



L. H. GILPIN, J. C. MACBETH, AND E. FLORENTINE

• INGEST represents the event of a thing moving, being forced, or forcing itself to go from the
outside to the inside of another thing. The act has an object case, representing the thing which
moved or was moved to the inside of another thing, an actor case representing the actor which
performed or caused the movement, and a direction case indicating the start and end point of
the movement. Often the end point of an INGEST is a part of the body of the actor. Eating,
for example, is an INGEST of something where the end point of the object’s movement is the
mouth or stomach of the actor.

• EXPEL represents the event of a thing moving, being forced, or forcing itself to go from the
inside to the outside of another thing. The act has an object case, representing the thing which
moved or was moved from inside to the outside of another thing, an actor case representing the
actor which performed or caused the movement, and a direction case indicating the start and
end point of the movement. Often the start point of an EXPEL is a part of the body of the actor.
If a surgeon removes a bullet, a tumor, or a parasite from another person’s body, however, the
surgeon is the actor, but the start point of the movement of the object is a body part of another
individual.

• GRASP represents the event of a thing grasping or becoming attached to another thing. This act
has an object case, representing the thing which is being grasped, and an actor case representing
the actor which performed the grasping.

The PTRANS and MOVE primitives are very similar because they involve movement from one
place to another: for PTRANS an entire thing changes location, while for MOVE an animate thing
only shifts part of its body. In building our prototype system we found it difficult to find ConceptNet
anchors that let us determine whether a verb should instantiate a PTRANS or MOVE. Because of
this, we chose to combine them into a single primitive, which we call MOVE-PTRANS. For the
remainder of this paper, any use of MOVE refers to the MOVE-PTRANS primitive.

4.4 Building Conceptual Primitive Frames

A major part of our reasonableness monitor processes the natural language input to construct a
Conceptual Dependency transframe using knowledge present in ConceptNet about the verb of the
sentence. It then applies reasonableness constraints to the concepts that take on roles in the CD
transframe. To perform these functions we devised a system of anchor points: nodes in the Con-
ceptNet semantic network that we have assigned to serve as broad categorizations that represent
primitive acts and the constraints on concepts that take on roles in a CD transframe.

4.4.1 Anchor Points for Primitive Acts

As a first step to building a transframe that best corresponds to the event expressed in the input, the
system should determine which primitive to use. It does this by searching for paths between the
verb and the anchor points in ConceptNet. Table 1 shows the anchor points used for selecting the
conceptual primitive act based on the verb. A concern with this method is that ConceptNet nodes
are identified by words and phrases in “outer” natural language, while CD primitives are meant to
be inner-language conceptual representations; care was taken to choose anchor points to be best
representatives of of the conceptual primitive, and some primitives used multiple anchor points.
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Table 1. Five Conceptual Dependency (CD) “physical” primitives and the ConceptNet anchor points that bind
them to incoming verbs.

CD Primitive Anchor Point(s)

INGEST eat, drink, ingest
EXPEL expel
GRASP grasp, grab

MOVE-PTRANS move, action, go
PROPEL propel, hit

For example, for the MOVE primitive, “move” and “action” are used as verb-to-primitive an-
chors. The specific name of the conceptual primitive is not always used, and sometimes we used
certain words as anchor points because they were better represented in ConceptNet. For example,
the verb “ingest” has very few edges in the network, so instead we use “eat”, “drink”, and other
words with similar meanings for the INGEST anchor points. Table 1 presents a table of the anchor
points for each primitive.

Our system queries ConceptNet using the stemmed and lemmatized form of the verb, searching
for paths from the verb to the anchor point representatives of the primitives. The verb is anchored to
the closest anchor point in terms of IsA hops in ConceptNet’s semantic network. The system then
instantiates a CD transframe of the corresponding primitive to represent the event.

4.4.2 Anchor Points for CD Transframe Roles

Once the conceptual primitive frame is instantiated, a different set of anchor points is used on the
concepts filling the actor, object and direction roles of the frame to determine if they satisfy or
violate the frame’s constraints. Using the definitions of each CD primitive frame, we can set unique
constraints for the subject and object of our sentence.

The reasonableness monitor uses six anchor points for these roles: person, plant, animal, object,
vehicle, and weather. We chose these anchor points for two reasons. First, they fit our use case for
autonomous vehicles. Second, more significantly, each anchor point is broad enough to include a
variety of items, but just restrictive enough so that each anchor point has different properties that
allow it to perform certain actions. For example, an animal can move on its own, and thus it can
serve as the actor role in a MOVE-PTRANS CD transframe, but an object cannot move on its own,
unless it is a vehicle. We assume that vehicles are controlled by humans and therefore they can
move, so we also have an anchor point so that cars or other automobiles will not be categorized as
objects, but as vehicles specifically.

4.5 Primitive Act Constraints

For the “physical” primitives described above, all primitive acts are subject to constraints that can
be applied to the actor, object, and direction cases of the frame to determine reasonableness. For
each of these primitives:
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Table 2. List of ConceptNet anchor points used for actor and object roles in the CD transframe, and constraints
on where a concept may reasonably serve in the role. The Actor Constraints column lists the primitives for
which a concept bound to the anchor point may serve in the actor role, while the Object Constraints column
lists the primitives for which such concepts may serve in the object role. “None” appears in cases where
a concept bound to the anchor point may never appear in the role. Constraints for the direction case are
described in the text and do not appear here.

Anchor Point Actor Constraints Object Constraints

person EXPEL, GRASP, INGEST, MOVE, PROPEL GRASP, MOVE, PROPEL
animal EXPEL, GRASP, INGEST, MOVE, PROPEL GRASP, INGEST, MOVE, PROPEL
plant none GRASP, INGEST, MOVE, PROPEL
object GRASP GRASP, INGEST, MOVE, PROPEL
place none none

weather PROPEL none
confusion PROPEL none

vehicle EXPEL, GRASP, INGEST, MOVE, PROPEL MOVE, PROPEL

• The actor must be an “animate” object or thing capable of:
◦ Making other objects move (in the case of MOVE, INGEST, EXPEL);
◦ Moving or applying a force in order to GRASP another object (in the case of GRASP);
◦ Applying forces to other objects (in the case of PROPEL);

• The object must be a physical object, thing, substance, or person;
• The direction case should represent a direction in reference to a physical object or a physical

location or place.

Table 2 shows the complete constraints for actor and object cases of the CD primitives. Based on
its definition, each primitive imposes constraints on the types of anchor points that the subject and
object can be categorized as. In order for the statement to be reasonable, both the subject and the
object must share an edge with one of their respective permitted anchor points. If either of them do
not share any edge with the permitted anchor points, there is a contradiction and the statement is
deemed unreasonable.

In the earlier example, “a mailbox crosses the street”, “mailbox” violated the constraint that an
actor for MOVE be animate. Taking another example, for the statement “A man pushes the wind,”
the system creates a PROPEL event, and “man” will be categorized as a person anchor point, which
fits the subject constraint. However, no edge exists between any of the permitted anchor points and
the object, “wind”, because wind is not a thing (a person, animal, vehicle, or object). Therefore, the
statement will be deemed unreasonable.

Compound Frames: It is also possible for the reasonableness monitor to construct a Conceptual
Dependency transform using multiple primitives. For example, in an example like “Lisa kicked the
ball,” there are two primitive acts. In the first act, Lisa applies a force (PROPEL). In the second,
the ball is moved (MOVE-PTRANS). Although the system cannot automatically decompose this
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Table 3. A analysis of the causes of the 18 misclassifications on the 100 test cases.

Classify as:
Reasonable Unreasonable

Label as:
Reasonable Parser: 2

ConceptNet: 8

Unreasonable Parser: 2
ConceptNet: 6

sentence into compound frames, we can force select verbs to be compound by default (instead of
using ConceptNet or anchor points), so that kick decomposes into a PROPEL and MOVE-PTRANS.
We describe the explanations that the system generates from these decompositions in Section 5.2.

4.6 Establishing Context

The context of a sentence can change its reasonability. For example, weather may alter the reason-
ability of a statement, as it can easily change the CD primitive chosen. Consider the example from
Section 3, “A mailbox crossed the street”. This was deemed unreasonable since “cross” is a MOVE-
PTRANS type and a mailbox is an object, which conflicts with the former’s actor constraints. If
instead the input were “A mailbox crossed the street in a hurricane,” then the statement becomes
more reasonable. An outside force, such as a hurricane, can move objects, which corresponds
to the definition of PROPEL. Therefore, the CD primitive frame becomes a PROPEL rather than
MOVE-PTRANS. Since the mailbox satisfies the constraints for the former, the statement would be
classified as reasonable.

The system also checks for prepositional phrases as added context for establishing reasonable-
ness. When the sentence is parsed, prepositional phrases are identified and stored as contexts which
are additional evidence in the CD primitive structure. In a case like “in a hurricane”, the noun
phrase within the prepositional phrase is bound to another anchor point, in this case “hurricane”.
There are also anchor points for extreme conditions that are hard coded, where ConceptNet is not
used, such as hurricanes, earthquakes, tornadoes, and floods. Then, in the reasonableness checking
phase, the monitor also examines this context to determine if the additional context can ameliorate
a previously unreasonable description.

One important part of contextual knowledge we added was capitalized names. In this system,
we assume that capitalized names belong to people, so they are automatically assigned the person
anchor point. We wanted to be sure that capitalized names would automatically be characterized as
people, instead of searching through ConceptNet for a poorly populated name.

5. Experimental Studies

To evaluate the framework that we have described, we carried out experiments to answer two re-
search questions:

1. Can the monitoring system judge whether a perceived description is reasonable or not?
2. Can the monitoring system explain why a perceived description is reasonable or not?
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Table 4. A set of examples showing the single primitive decomposition, compound decomposition, anchor
points, and reasonability judgment. Reasonability judgment is consistent whether the decomposition is single
or compound. Note that MOVE is still a MOVE-PTRANS hybrid.

Statement Single Compound Subject Object Reason
Primitive Primitive Anchor Anchor -able

Monkey throws an apple PROPEL GRASP, PROPEL, MOVE animal object Yes
A flower hits an apple PROPEL GRASP, PROPEL, MOVE plant object No

A tree hits a car in a storm PROPEL PROPEL, MOVE weather plant Yes
A car leaks gas EXPEL EXPEL person None Yes

A man breathes out EXPEL EXPEL person None Yes
A man eats food INGEST INGEST person object Yes

A giraffe eats leaves INGEST INGEST animal plant Yes
A boat eats a plant INGEST INGEST vehicle plant No

We evaluated the framework by constructing a test data set and two studies. We also provide a
breakdown of the failure case in Table 3 and analyze the results.

5.1 Data Set

We constructed a test set and performed two studies to evaluate the monitoring system for its judg-
ment of, and its explanation of, reasonableness. The data set was inspired by visual scenes typically
encountered in outdoor driving environments, and contains texts of both reasonable and unreason-
able scene descriptions. We chose descriptions generated in a driving environment because of the
focus on understanding the objects and perceived actions. For this study, we steered away from im-
age captioning system outputs because they are usually reasonable; they are generated and trained
on captions written by humans who are looking at real (and therefore, reasonable) images.

The purpose of this data set is not to test whether caption understanding algorithms can precisely
represent an image, but instead, to test the robustness of machine perception generally. For that
reason, we constructed our own data set of perception descriptions instead of using an existing data
set. Out of the 100 examples, 50 were clearly unreasonable (e.g. our previous example of a mailbox
crossing the street) and the other half were clearly reasonable (e.g. a man eats food). Each example
is composed of an average of 4.47 words.

The examples used 57 unique words, including 14 verbs, 35 nouns, and eight articles, auxiliary
verbs, and prepositions. Some 23 of the 100 sentences had prepositional phrases. We varied the
subject, object, and verb choices to test how well our system categorizes the concepts and reasoning,
and also to see how well ConceptNet categorizes the concepts into anchor points and primitives.
This also let us test whether typical concepts are in ConceptNet, and whether they are connected
to the anchor points through a path in the network. We constructed the test set without any prior
knowledge of how the terms would be represented.

5.2 Results Summary

We demonstrate two contributions of the system. First is the ability to deem a statement as reason-
able or unreasonable. On our test set of 100 examples, the reasonableness monitor performed with
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Table 5. Comparison of explanation descriptions for single primitive decompositions.

A dog crossed the street. A wall crossed the street. A mailbox crossed the street during an earth-
quake.

Reasonable Unreasonable Reasonable

A(n) dog is an animal and ani-
mals can move. So it is reason-
able for a dog to cross the street.

A(n) wall is an object or thing
that cannot move on its own. So
it is unreasonable for a wall to
cross the street.

Although a mailbox cannot move on its own,
an earthquake can propel a stationary object to
move. So it is reasonable for a mailbox to cross
the street during an earthquake.

82% accuracy. Most errors were due to binding the incorrect anchor point at the ConceptNet level
as demonstrated in Table 3. The second contribution is the ability to construct human-readable ex-
planations that motivate and support the reasonable or unreasonable claim. These explanations are
also represented as symbolic triples, which could plausibly be re-input into a scene understander to
re-evaluate in the case of an unreasonable classification.

Study One. First, we consider reasonableness judgments for primitive and compound decomposi-
tions. On our hand-curated test set, most errors were due to badly defined labels of the IsA relation
in ConceptNet. For instance, in the second example in Table 4, a direct ConceptNet search bound
“flower” to the person anchor point instead of plant, which led to an incorrect reasonableness
judgment. This is because there are fewer links between flower and person than flower and plant via
the IsA relation in ConceptNet. This motivating example shows the necessity for anchor points, and
the importance of well-defined relations in a semantic, commonsense knowledge base. We repeated
the single primitive study shown in Table 4, which demonstrated that with compound primitives can
come up with the same reasonability judgments, with better descriptions.

Study Two. Next, we give explanation examples. Take these three observations: “A dog crossed
the street”, “A wall crossed the street”, and “A mailbox crossed the street during an earthquake”.
These are determined to be reasonable, unreasonable, and reasonable respectively. The generated
explanations provide evidence in Table 5.

However, the object role in a MOVE primitive is not limited to animate objects that move
themselves. Inanimate objects can also be propelled by concepts with strong forces, like hurricanes
or earthquakes. If we add this kind of information, in the form of a prepositional phrase, then it is
taken as context and the monitor detects a reasonable state. To demonstrate the benefits of compound
primitive decompositions, we show a side-by-side comparison of a compound decomposition and
a single decomposition. The monitor builds a series of constraints (when there is an unreasonable
state, as illustrated in Table 6) or support (for a reasonable state, as shown in Table 7) for each case.

5.3 Discussion and Implications

When this system was originally being developed, the idea was to explain blatantly unreasonable
flaws in perception; for instance, if you saw an elephant in the sky, that perception is obviously
unreasonable. However, if you saw an elephant in the sky but the focus or context was in the
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Table 6. Comparison of single primitive and compound primitive decomposition explanations for the unrea-
sonable description “A flower hits an apple”.

Single Primitive Compound Primitive

Primitive PROPEL GRASP, PROPEL MOVE-PTRANS

Explanation A flower is an object or thing that cannot
propel an object. So it is unreasonable for a
flower to hit an apple.

A flower does not have the ability to grasp an object
and a flower is an object or thing that cannot propel
an object. Further, an apple cannot move on its own.
So it is unreasonable for a flower to hit an apple.

clouds or in the fog, then this different “world view” could explain away the narrow, unreasonable
situation. This realization led to the idea of different contexts and a new knowledge representation:
“confusion” anchor points, where the sole purpose of this mechanism was to add context-dependent
knowledge that could explain away or additively confuse perceptions.

The key idea here is that monitoring should not be invasive; it should provide an additional set
of quick “checks” to ensure more reliability and safety. Automobiles and their autonomous coun-
terparts are engineering marvels and work quite well most of the time. The idea of reasonableness
monitoring is to make them work better by removing blatantly unreasonable situations that can have
bad consequences. But monitoring can also be used to alert humans operators, overseers, and users
that machines need human guidance. For example, if a reasonableness monitor detects an unreason-
able situation, the monitor could signify that a human operator needs to take control, or that a user
needs to verify the perceived scene. In safety-critical and mission-critical tasks, this can ameliorate
false positives and false negatives by developing better benchmarks for challenging decisions.

If such a system were deployed in an autonomous machine, it could alert a safety-supervisor or
safety-driver to validate its possibly unreasonable perception. In machine learning, a reasonableness
monitor could be part of the training and evaluation process of perceptual systems. Modern complex
systems work well in practice, but they cannot provide insights into their behaviors, especially their
errors. A nice consequence of reasonableness monitors is that they identify problematic evidence
and inferences when contradictions occur. The overarching goal is to use monitoring (1) to explain
errors after the fact for better diagnostics and (2) to use the problematic evidence to make better
decisions next time. For the latter, we want to feed the evidence from a monitor back into an
existing system, resulting in better decisions, decreased errors, and increased reliability.

6. Related Work

One goal of our monitoring system is to create safe, trustworthy autonomous systems. An au-
tonomous machine can be thought of as a “multi-agent system,” composed of smaller subsystems
and parts. Minsky (1988) used the term “agent” to describe any component, subsystem, or part of
a cognitive process that is simple enough to understand (Singh, 2012). Since no single problem-
solving method will always work, Minsky suggested that we also need to know about pitfalls and
corner cases. He encouraged the use of negative expertise in the form of censor and suppressor
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agents (Minsky, 1994). He explained that negative knowledge and examples are important to create
intelligent systems, and even suggested that a way to implement negative knowledge is to divide a
complex system into parts that can monitor each other, similar to our framework.

One way to divide a complex system into parts is to use composite representations and frames,
which are well-studied in natural language processing. Schank (1972) introduced Conceptual De-
pendency theory and its conceptual primitives for natural language understanding. Similar work in
computational semantics (Jackendoff, 1983) shows that it is necessary to represent these kinds of
conceptual structures or thoughts and not simply study language in isolation. Wilks and Fass (1992)
and Wierzbicka (1996) describe other types of compositional primitive decompositions. Borchardt
(1994) reports another decomposition method based on a theory of ten primitives that describe tran-
sition space change.

Commonsense knowledge bases are a key tool for developing systems that understand natu-
ral language descriptions and produce explanations. Although CYC is regarded as the world’s
longest-lived artificial intelligence project (Lenat et al., 1990), with a comprehensive ontology and
knowledge base including basic concepts and “commonsense rules,” there have been significant
challenges to using CYC for NLP (Mahesh et al., 1996). Speer and Havasi (2013) demonstrate the
usage of ConceptNet5, a freely-available semantic network of commonsense knowledge. Research
on SenticNet (Cambria et al., 2018) was inspired by decomposition theories (Schank, 1972), and
links ConceptNet concepts to conceptual primitives that help generalize them to overcome linguistic
variation. Another way to overcome aspects of linguistic variation is to learn it, using a deep neural
network.

Our methodology is also a first step towards interpreting deep neural networks by constraining
the output to common sense. Zhang and Zhu (2018) outlined six techniques for interpreting deep
convolutional neural networks for vision understanding. However, these methods are quite invasive;
they require knowledge of all the components, and are driven towards understanding the focus of
these opaque algorithms, rather that providing additional, meaningful knowledge.

Reasonableness monitoring systems provide supportive knowledge of an error or stable state
by providing an explanation. Reasonableness monitors are a system-methodology to identify and
explain anomalies in perception, using common-sense knowledge to determine the reasonableness
of perception-derived scene descriptions (Gilpin, 2018). This work was extended to validate scene
descriptions from an immersive virtual reality environment (Gilpin et al., 2018). By contrast, in the
current paper, we show how using conceptual primitive decomposition with a monitoring system
can provide succinct, convincing explanations of unreasonable (or reasonable) perceived scenes.

7. Conclusion

The reasonableness monitor system presented in this paper is designed to give autonomous per-
ception systems commonsense by detecting the most important premises regarding a contradiction,
thereby determining the reasonability of the perception. The system is targeted to monitor and
evaluate the performance of scene understanding and machine vision systems by testing them and
examining their inputs and outputs. The system is built around a commonsense knowledge base
with millions of facts collected through crowdsourcing and other human effort. We also strength-
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Table 7. Comparison of single primitive and compound primitive decomposition explanations for the reason-
able description “A girl kicked the ball.”

Single Primitive Compound Primitive

Primitive PROPEL PROPEL, MOVE-PTRANS

Explanation A girl is a person that can apply a force
on their own. Further, a ball is a physical
object, thing or substance that can be pro-
pelled. So it is reasonable for a girl to kick
the ball.

A girl is a person that can apply a force on their
own. Further, a ball is a physical object, thing or
substance that can be propelled. A ball is an ob-
ject or thing that can be moved by kicking. So it is
reasonable for a girl to kick the ball.

ened the explanations of this system through the use of conceptual primitives, which provide an
inner language representation, allowing the system to apply reasonableness constraints and over-
come occasional erroneous assertions in the crowdsourced knowledge base. Additionally, we added
a testing framework and expanded the system to work in more complex scenarios. Ultimately, the
reasonableness monitor can help autonomous vehicles justify their perceptions.

As autonomous vehicles become more prevalent, they need methods to explain their actions.
Since these vehicles will soon be piloted (Drive.ai, 2018), there should be a system that can dynam-
ically check the reasonableness of the machines’ actions, with limited augmentation to the deployed
system. In order to combat modern engineering problems, it is important that we view autonomous
machines as “multi-agent systems”: systems of interconnected components, subsystems, and parts
working together towards a common goal. We must disentangle these complex systems into sub-
systems and parts that will be simple enough to understand (Singh, 2012). Further, it is important to
consider redundancy in autonomous machines. There is no simple solution that will always work,
so we must be constantly introspective and monitor for negative examples and corner cases.

Although the monitoring prototype we have presented works well on a majority of our examples
(over 80%), it has some limitations; mainly with the organization of the commonsense knowledge
base. One limitation, as noted earlier, is that not all the IsA relations are well defined in Concept-
Net. For example, nodes representing common food items that were once animals, like hamburgers,
contain an IsA link to animal. Therefore, the example of “A hamburger crossing the street” is char-
acterized as being reasonable since “a hamburger is an animal that can move on its own.” Another
limitation is the parser, which has trouble recognizing verbs that can also be nouns. Future work
will explore using other tools such as the START Parser, which has been used in question answering
and story understanding (Morales et al., 2016; Winston, 2014).

Another next step is to test this system on machine-generated image captions from a data set
such as Microsoft’s Common Objects in Context (COCO) database (Lin et al., 2014). One challenge
is that these captions are not necessary unreasonable in the sense that our monitor expects: they
often describe reasonable visual scenes, but are incorrect because the description is not related to
the input image. Another area of future work would use the monitor to incorporate feedback into the
underlying perceptual system. Once a machine’s behavior has been evaluated, how can we feed this
evidence back into the system? Reasonableness monitors should make learning processes better; by
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feeding in reasonableness judgments as training data or as another type of test or validation method.
This feedback mechanism could also serve to evaluate the system by measuring improvement.

Our system is designed to determine reasonableness among existing computer vision system
predictions and results. However, in the future, we hope to extend this to full system design, as a
way to constrain all sensors and subsystems in an autonomous vehicle to a sense of reasonableness.
There are two components necessary to extend this system to other agents. One is a “commonsense
knowledge base” in terms of the level of abstraction of the subsystem. For example, the braking
component will need a series of “normal” or “reasonable” braking patterns, probably in terms of sig-
nals. Similarly, higher level components, like the route planner, will need higher-level descriptions
of reasonability, like the appropriate steps of “reasonable” right turns or traffic patterns in symbolic
language. The second component is a set of inner language primitives. For the high-level planner,
this may be symbolic actions, while for the braking components, it could be brake engagements.
Using these two components, we can generalize a system construction for an autonomous vehicle,
with limited augmentation to the working system. This will ensure safer decisions, by constraining
the system to reasonableness for each component.
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