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Abstract
Affordance perception refers to the ability of an agent to extract meaning and usefulness of objects
in its environment. Cognitive affordance is a richer notion that extends traditional aspects of object
functionality and action possibilities by incorporating the influence of changing context, social
norms, historical precedence, and uncertainty. This allows for an increased flexibility with which
to reason about affordances in a situated manner. Existing work in cognitive affordances, while
providing the theoretical basis for representation and inference, does not describe how they can
be learned, integrated, and used with a robotic system. In this work, we describe, demonstrate,
and evaluate an integrated robotic architecture that can learn cognitive affordances for objects from
natural language and immediately use this knowledge in dialogue-based learning and instruction.

1. Introduction

Using and manipulating objects in the environment requires a cognitive ability to perceive and eval-
uate their meaning, applicability and usefulness in relation to our own abilities to take action. Such
a relational notion, known as an affordance, links action and behavior possibilities with objects
and features present in the environment, enabling the ability to guide our behavior (Gibson, 1979;
Zech et al., 2017). In robotics and AI, affordances have served as the underlying theory for ac-
tion perception and have been modeled using relational and machine learning techniques such as
Bayesian networks, Markov logic networks, conditional random fields, and reinforcement learning
(Steedman, 2002; Montesano et al., 2007; Ugur et al., 2015; Koppula & Saxena, 2016; Sridharan
& Meadows, 2017). While much of the affordance literature in robotics has focused on object or
environmental affordances, some have considered “social affordances” and offered an approach to
perceiving visual cues offered by social scenarios involving other agents (e.g., raised arm signaling a
high-fiving affordance) (Shu et al., 2016). However, these methods do not allow for socio-contextual
dependency on object affordances.

Sarathy and Scheutz (2016; 2018) proposed a theory of cognitive affordances to address this
problem. Their theory of cognitive affordances uses a probabilistic-logic based approach capable of
inferring affordances in the face of changing contexts, social norms, and epistemic uncertainty, i.e.,
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it accounts for those object affordances influenced by factors beyond perceptual cues on the objects
themselves (“cognitive affordances”). However, the question of how exactly to learn these cognitive
affordances and utilize them on a robot is still open. The problem is especially difficult because
these sorts of socio-contextual dependencies are, for humans, learned through a few exposures or
instructions, and not through numerous trials and errors.

In this paper, we address these open questions directly and propose two novel contributions:
(1) a grounding and integration of cognitive affordance representation within a cognitive robotic
architecture, and (2) an approach to learning these cognitive affordances from natural language
instruction in the presence of epistemic uncertainty. The proposed approach allows for encoding,
learning and immediately actualizing of a broad class of normatively-charged cognitive affordances,
accounting for aspects of objects that the agent can directly perceive (e.g., object features) and
aspects that are not self-evident or directly perceivable from the object itself (e.g., context and
social convention associated with the object, goals of the agent).

We will use a kitchen-helper robot from Sarathy and Scheutz (2018) as our running example,
with the robot learning, from instruction, how to properly grasp a knife when using it and when
handing it over to someone (at the blade). Although the proposed approach is not limited to this
particular example, or even embodied robotic systems for that matter, a concrete example of this sort
will help tie it to past work and explain various aspects of the representation, inference algorithm,
learning approaches and integration with a cognitive robotic architecture, to allow for normative
behavior capabilities.

2. Theoretical Aspects of Cognitive Affordances

We are interested in the class of affordances that possess additional properties and dimensions be-
yond the simple Gibsonian notions (e.g., “sitability of a chair”). As noted earlier, this class of
cognitive affordances is deeply influenced by contextual and normative factors including goals and
intentions, prior knowledge and interpretations, ensemble scene information, mental state, expe-
rience and developmental state, social and moral conventions, and aesthetic considerations among
others. We will build on a recent theoretical model of cognitive affordances proposed by Sarathy and
Scheutz (2016; 2018) that represents affordances as condition-action rules (R) where the left-hand
sides represent perceptual invariants (F ) in the environment together with contextual information
(C), and the right-hand sides represent affordances (A) actualizable by the agent in the situation
(e.g., the rule that one should grab a knife by the handle when using it would be translated by spec-
ifying the grasping parameters as F , the task context of “using a knife” as C and the constrained
grasping location together with other action parameters as A). Affordance rules (R) take the form

r
def
= f ∧ c =⇒

[α,β]
a ,

with f ∈ F , c ∈ C, a ∈ A, r ∈ R, and [α, β] ⊆ [0, 1], where [α, β] is a confidence interval intended
to capture the uncertainty associated with the truth of the affordance rule r such that if α = β = 1
the rule is logically true, while α = 0 and β = 1 assign maximum uncertainty to the rule. Similarly,
each of the variables f and c also have confidence intervals associated with them, and are used for

138



LEARNING COGNITIVE AFFORDANCES

inferring affordances as described in more detail below. Thus, rules can then be applied for a given
feature percept f in given context c to obtain the implied affordance a under uncertainty about f , c,
and the extent to which they imply the presence of a.

Given a set of affordance rules, we can determine the subset of applicable rules by matching their
left-hand sides given the current context and perceivable objects in the environment together with
their confidence intervals, and then determine the confidences on the fused right-hand sides (in case
there are multiple rules with the same right-hand side) based on the inference and fusion algorithm in
Sarathy and Scheutz (2018). We will use the confidence measure λ defined by Nunez et al. (2013) to
determine whether an inferred affordance should be realized and acted upon. For example, we could
check the confidence of each affordance on its uncertainty interval [αi, βi]: if λ(αi, βi) ≤ Λ(c),
where Λ(c) is an confidence threshold, possibly depending on context c, we do not have enough
information to confidently accept the set of inferred affordances and can thus not confidently use
the affordances to guide action. However, even in this case, it might be possible to pass on the most
likely candidates to other parts of the integrated system. Conversely, if λ(αi, βi) > Λ(c), then we
take the inferred affordance to be certain enough to use it for further processing.

From a systems standpoint, in order to process cognitive affordances, several functional units
were proposed by Sarathy and Scheutz (2018). During inference, the functional units are meant to
search through all available affordance rules of the form specified above in the agent’s long term
memory and populate a working memory with the relevant rules. Once the rules are in the working
memory, the system can use these rules as the basis for perception and inference. An example
cognitive affordance rule instantiation in this past work had the form

r
def
= hasSharpEdge(O) ∧ domain(X, kitchen) =⇒

[0.8,1]
cutWith(X,O) .

While this work presented some crucial early theoretical foundations for using and performing in-
ference with cognitive affordances, it was missing two key components. First, the past work did
not suggest how these rules could could be grounded in a robotic system. For example, Sarathy
& Scheutz (2018) state that the results from affordance inference are “passed to the robot’s action
management system,” but they do not discuss how exactly this interaction might work and how an
action management system might be able to use this information in connection with its own action
repetoire and action knowledge. Thus, an open question is how can an agent use cutWith(X,O),
and what exactly do the predicates and variables in the logical representation mean in a robotic
architecture. In this paper, we describe such a grounding for an exemplary architecture and pro-
vide a grounded rule representation consistent with the cognitive affordance theory, but also tightly
integrated with the robot’s actuation and perceptual systems. In doing so, we will also need to re-
visit and modify the above-mentioned cognitive affordance rule example to tie the predicates in the
rule representation to perceptual and action knowledge actually available in the system as well as
contextual knowledge associated with the task the agent is performing.

Moreover, while Sarathy and Scheutz have outlined an approach for performing inference with
cognitive affordance rules, it is still an open problem as to how these rules might be learned. Here,
we propose a solution based on learning from instruction, which at times, might be the only option
available to an agent, for example, in situations where the agent does not have enough time to
observe or if the agent is not able to collect enough observational data. Recent work by Scheutz
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et al. (2017) discusses an approach for learning percepts and actions from instruction. Here, we
propose extending this approach for learning not only perceptual and action predicates, but the rules
themselves. By combining these ideas from past work, we provide a novel approach for learning
normatively-guided affordances from natural language.

3. Grounding and Learning

To choose and manipulate everyday objects in socially-appropriate and context-dependent ways, we
claim that any cognitive system will require mechanisms for learning, representing and immediately
applying arbitrary socio-contextual rules associated with these objects. While the cognitive affor-
dance theory provides a suitable rule representation, the rules must be grounded within the cognitive
system (Section 3.1). Action management components must be able to guide perceptual and action
components to check if a rule applies, and then apply the rule by constraining action choices and
parameters, all under conditions of epistemic uncertainty (Section 3.3). Moreover, much of these
social norms are conveyed via natural language. Thus, the natural language components must be
equipped to parse speech into the grounded rule representations (Section 3.2).

3.1 Enabling Affordance Processing in a Cognitive Robotic Architecture

To integrate affordance processing into a cognitive robotic architecture, we developed a separate
component for maintaining the affordance rules and the inference algorithm for DIARC, an example
architecture (Scheutz et al., 2007). In addition we updated several components of the architecture
to be able to handle the new types of information enabled by the new affordance component. This
grounding within the architecture gives the affordance reasoning mechanisms described in Section 2
a concrete medium through which new rules can be added dynamically based on an agent’s interac-
tions with its environment. This extends the functionality and utility of the theoretical model which
previously was limited to a fixed set of abstract rules.

We selected DIARC over other cognitive architectures, such as SOAR (Laird et al., 1987) and
ACT-R (Anderson et al., 2004), because of its integration of social behaviors, and specifically its
natural language understanding and production capabilities, which allow for more natural human-
robot interaction, as well as the ability to lean new concepts through natural language (Scheutz
et al., 2017). None of the current architectures (including DIARC) are currently able to represent
and reason about cognitive affordances.

So regardless of the choice of architecture, an affordance component of the type described here
could be desirable to enable affordance processing and enhanced social interaction capabilities.
Whichever architecture is chosen, the affordance component will still need to be connected to other
high and low level components in order to influence perception and action.

Figure 1 depicts the integration of the AFFORDANCE component (AFF in the figure) in DIARC.
The subcomponents of AFFORDANCE work closely with sensory and perceptual systems (e.g., vi-
sion) and other components in the architecture to coordinate perceptual and action processing. AF-
FORDANCE is connected to the GOAL MANAGER (GM/AM) component and, during execution of
actions, GOAL MANAGER sends affordance requests to AFFORDANCE. These requests provide in-
formation about the current action to be performed and the context. AFFORDANCE returns the
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Figure 1. Diagram of the extended DIARC architecture, with the AFFORDANCE (AFF) component high-
lighted. Other relevant components are SPEECH RECOGNITION (ASR), NATURAL LANGUAGE UNDER-
STANDING (NLU), DIALOGUE MANAGER (DLG), NATURAL LANGUAGE GENERATION (NLG), SPEECH
SYNTHESIS (SS), BELIEF MODEL (BEL), MOTION CONTROL (MOTION), VISION, and GOAL MAN-
AGER/ACTION MANAGER (GM/AM). During operation, AFF receives semantic information, uses GM/AM
to direct VISION to look for environmental features relevant to social norms, and then guides MOTION via GM
to perform a socially-appropriate action.

specific perceptual features that must be found in the environment. This allows GOAL MANAGER

to direct the attention of low-level perceptual modules like VISION to search in a focused manner,
only looking for perceptual features relevant to the applicable rules in AFFORDANCE. The presence
or absence of these perceptual features (along with information about perceptual uncertainty) is
passed back to AFFORDANCE, which performs uncertain logical inference (logical AND and modus
ponens) on the rules.

In dialogue-driven tasks, GOAL MANAGER receives language-based goals via the natural lan-
guage pipeline (ASR → NLU → DLG), while the BELIEF (BEL) component is the recipient of
language-based knowledge. BELIEF maintains a history of all declarative knowledge passing through
the architecture and is capable of performing various logically-driven knowledge-representation and
inference tasks. Thus, it serves as a convenient holding area for cognitive affordance information
that has been partially processed through the natural-language pipeline, which can then be retrieved
and processed by AFFORDANCE.

Integrating AFFORDANCE into DIARC, or any cognitive architecture for that matter, requires
more than simply depositing it into the system. Various other components (GOAL MANAGER, VI-
SION, BELIEF MODEL, etc.) must also be modified so they can provide the additional capabilities
required for cognitive affordance processing. For example, the natural-language pipeline must be
updated to allow for the recognition and understanding of affordance-related words (“cutting”, “sit-
ting”, “enclosing” etc.), and GOAL MANAGER must be updated to recognize these semantic rep-
resentations and consult AFFORDANCE at the appropriate points in action selection and execution.
In the next sections, we will discuss in more detail the specific architectural modifications and the
resulting functionality that enables these new operations.
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As an additional benefit, these modifications provide the architecture with the ability to under-
stand references to objects by their affordance (e.g., a knife as not just an object with some visual
property, but as an “object used for cutting”). An affordance-enabled cognitive robotic architecture
also allows an agent to account for context, and helps constrain and guide behavior. Actions need
no longer be performed the same way each time, but can vary depending on context. For example, a
kitchen helper robot may grab a knife differently if the context of the grab is that the robot will use
it to cut something, as opposed to the robot grabbing it so it can be handed to a human. Or it might
carry plates of food differently in the context of serving them versus the context of busing a table.

3.2 Learning Affordance Rules from Instruction

As mentioned earlier, we will use as our guiding example the two instructions “a knife is often
used for cutting” and “to pickup a knife grab it by the handle”. These are presented to a robot that
does not know about a functional affordance of a knife (“cutting”) that is epistemically uncertain
(“often”) or that its grasp affordance (“pick up”) is context sensitive (“by the handle”).

We previously outlined how the affordance model described in Section 2 can be integrated into
a cognitive robotic architecture to expand the capabilities of the robot. This integration also gives
that model a mechanism through which new rules can be added on the fly, letting it better adapt
to and represent real-world scenarios. In order to do this, various DIARC components must be
extended. Natural language utterances that contain cognitive affordance rules must be converted
to general-purpose facts stored in BELIEF and then used by AFFORDANCE to generate the rules
described in Section 2, which can then ultimately be used to perform uncertain logical inference.
With these extensions to existing DIARC components, we are able to leverage DIARC’s mechanisms
for learning through instruction (e.g., Scheutz et al., 2017) to enable learning new affordance rules
about concepts the agent already understands, as well as completely novel concepts that have been
learned on the fly.

The role of the Natural Language Understanding component is converting the text form of spo-
ken utterances into a semantic form which can be understood (used) by the other components within
DIARC. We extended this component through the addition of new parsing and pragmatic inference
rules which enable the generation of new semantic forms.

In order to learn from natural language instructions, a cognitive robotic architecture must be able
to ground the content of the utterances containing the instructions in terms that it can understand.
AFFORDANCE understands affordance rule descriptions that are represented in the predicate form,

implies(antecedents, consequents, confidence) ,

where the predicate’s arguments represent the antecedents, consequents, and confidence interval of
an affordance rule. The natural-language processing components of DIARC (ASR, NLU, and DM in
Figure 1) convert spoken language into a predicate of this form and assert it into BELIEF.

When an utterance is spoken to the agent, the SPEECH RECOGNITION (ASR) component converts
the acoustic speech signals to text. The NATURAL LANGUAGE UNDERSTANDING (NLU) component
receives the utterance in text form from the speech recognition component and performs two steps
of processing. The first step parses the text into a form that can be used by the rest of the system. The
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Table 1. A subset of the relevant rules used by the NATURAL LANGUAGE UNDERSTANDING component.

Label Syntax Semantics
to (S/C)/C λxλy.implies(x, y, high)
pickup C/NP λx.pickUp(?ACTOR, x)
a NP/N λx.x
knife N knife
grasp C/NP λx.grasp(?ACTOR, x)
the NP/N λx.x
by (NP/NP)\NP λxλy.partOf(x, y)
handle N handle

second performs pragmatic inference to add a notion of the speaker’s intent to the representation of
the utterance (Scheutz et al., 2013).

In the parsing step, the natural-language understanding component uses a parser to determine
the syntactic structure and the semantic interpretation of the utterance. The parser used in this
configuration of DIARC is an extended incremental version of the Combinatory Categorial Grammar
parser from Dzifcak et al. (2009), described in more depth by Scheutz et al. (2017). It contains a
dictionary of parsing rules each composed of three parts: a lexical entry, a syntactic definition, and
a semantic definition in lambda calculus. An example set of rules can be found in Table 1. These
rules are a subset of the complete set of rules used by the system. They are selected because of their
relevance to the empirical demonstration in Section 4.

An example of a cognitive affordance rule spoken in natural language and its accompanying
semantics are

“To pickup a knife grab it by the handle” .

STATEMENT (Sam,self ,implies(pickUp(self , knife),
graspObject(self , partOf (handle, knife)), high)) .

Here, “Sam” is the name of the human (and trusted source) speaking to the robot. This representa-
tion denotes a statement from Sam to the agent, whose semantics are the implies predicate above.

The parsing step produces a notion of the meaning of the spoken utterance. The pragmatic
inference step uses that meaning and a set of inference rules to determine the speaker’s intention.
The pragmatic inference system used in our configuration of DIARC is described in work by Scheutz
et al. (2013). In the case of our working example the semantic representation generated in the
parsing step matches the left-hand side of

STATEMENT (A,B ,X ) =⇒ wantBelieve(A,B ,X ),

which is a general rule for utterances of the type STATEMENT, and can be interpreted as “when a
person tells an agent something it wants the agent to believe it”. The resulting DIARC representation
produced by the NATURAL LANGUAGE UNDERSTANDING component is the predicate

wantBelieve(Sam,self ,implies(pickUp(self , knife),
graspObject(self , partOf (handle, knife)), high)) .
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This semantic representation from NATURAL LANGUAGE UNDERSTANDING is received by the
DIALOGUE MANAGER, whose role is to respond appropriately to utterances from other agents. In
the case of our example, DIALOGUE MANAGER recognizes that Sam wants the agent to believe a
predicate. It checks if Sam is a trusted source of information and, if so, asserts the predicate into
BELIEF. Upon confirmation that the information has been successfully stored, the module submits
a goal to GOAL MANAGER to verbally acknowledge understanding.

Once the information from the utterance has been asserted into BELIEF it is accessible to AF-
FORDANCE. Epistemically, an utterance is a piece of evidence received by the agent in support of
the truth of the affordance rule it represents. Thus, we use the confidence directly to represent the
degree of support for the rule.1 The confidence value may be used to capture the inherent uncertainty
in the utterance (e.g., when qualifiers such as “sometimes” or “maybe” are used), the trust placed
in the interlocutor (e.g., a rule taught by a superior or boss may hold more water), the uncertainty
in speech detection mechanisms, or some combination of these factors. The linguistic placeholder
“high” represents a preset confidence (0.95). That value is used because the speaker is a priori
known to be trustworthy by the agent, but nothing in our system requires this particular, method of
assigning confidence values.

Functional affordances can be learned in the same way as the action affordance that we described
above. For example, the utterance “A knife is sometimes used for cutting” would be translated to
the DIARC predicate representation implies(knife, cutting ,mediumLow) and then deposited into
the BELIEF model.

Scheutz et al. (2017) describes how DIARC agents can learn new concepts on the fly through
natural language instruction. When the agent encounters an unknown word it is able to infer its
syntax and semantics based on the parser’s knowledge about the syntax and semantics. In the case
of utterances related to cognitive affordance inference rules, the syntax and semantics of previously
unknown antecedents or consequents can be inferred by recognizing the pattern of the rest of the
utterance. Novel consequents or antecedents introduced this way can be recognized in subsequent
utterances and their representation in the set of rules in AFFORDANCE will be consistent. This
enables the agent to understand cognitive affordance rules with previously unknown consequents
and antecedents, which provides the agent the ability to continuously adapt its knowledge base.

To clarify, it is worth noting that the architecture proposed by Scheutz et al. was limited to
learning concepts that have direct perceptual correlates (speech signals or visual attributes) and was
not able to learn and utilize nonperceptual or cognitive concepts (like cognitive affordances). These
involve nonperceivable attributes (contexts), and relationships between agent capabilities (actions)
and perceptual entities (visual features) tied together in compact natural language utterances. In
the next section, we describe how an agent having learned cognitive affordance rules can apply this
knowledge immediately in a command-based task.

1. The “confidence” here is different from the confidence measure λ discussed in Section 2. λ is a singular measure
of the degree of uncertainty for an uncertainty interval (somewhat akin to the width of the interval) typically used in
conjunction with Dempster-Shafer theory of uncertainty. We can use λ when executing affordance-based commands
(Section 3.3) and deciding which action to perform when there are multiple choices. However, the confidence value
mentioned here is used to directly represent the degree of support for rule, i.e., it represents the single-valued precision
assigned to the rule when received as evidence via an utterance.
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Figure 2. Left: knife; Right: Grasp candidates across the knife. Cognitive affordances can serve as a norma-
tive constraint when selecting one of the many grasp possibilities.

3.3 Executing Affordance-Based Commands

There are numerous examples of DIARC and other cognitive robotic architectures enabling robots to
engage in task-based dialogues where a human instructs a robot to perform tasks using commands
given in natural language. The integration of AFFORDANCE into such architectures allows for in-
corporation of affordance information when discussing a task. This supports more natural dialogue
and gives the human and robot more flexibility in the objects they discuss.

Returning to our running example of using a knife, consider a human uttering a command to
the robot: “Pass me something used for cutting.” Currently, DIARC would fail because the GOAL

MANAGER would not be able to handle pairing a known action of “passing” with a nonspecific
object reference “something” and a functional affordance concept of “cutting.” Moreover, even a
more specific request of “pass me a knife” would often fail, because there is no guarantee that the
robot will choose to pass the knife by grasping the blade (the normatively appropriate option), as
opposed to the handle, which has similar – if not better – grasp possibilities. As shown in Figure
2, taken from Scheutz et al. (2017), there are many available grasp candidates distributed all across
the knife on the handle and on the blade.

In order to understand the command, the information contained in it needs to be grounded within
the system. We start with the system knowing nothing about knives or how to pass them. We use
the features of DIARC described in Scheutz et al. (2017) to teach the system what a knife is and how
to pass something. At this point, the robot knows that an observed 3D point cloud is a “knife” and
that certain subsets of this point cloud constitute “handle” and “blade”. Using the object grasping
mechanism described in Ten Pas and Platt (2014), it is capable of generating candidate grasp points
(from the geometry of the point cloud) and then scoring these grasp points to determine which
ones are likely to succeed. We use a four-layer deep convolutional neural network to make grasp
predictions based on projections of antipodal grasp points contained between fingers.

Using the approach described in Section 3.2, we assume that a human has taught the robot
cognitive affordance rules about a knife in three utterances as follows:

“A knife is used for cutting”,

“To pickup a knife grab the knife by the handle”,

“To pass a knife grab the knife by the blade.”
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As described earlier, the BELIEF component produces five predicates:

implies(knife, cutting , high),
implies(pickUp(self , knife)), graspObject(self , partOf (handle, knife)), high,
implies(pass(self , knife), graspObject(self , partOf (blade, knife)), high).

Now that the system understands how to pass knives in the context of cutting, we can instruct it to
do so using the natural language mechanisms described earlier:

1. Utterance: “pass me something used for cutting”

2. Parse: INSTRUCT (Sam, self , pass(self , usedFor(something, cutting)))

3. Relevant Pragmatic Rule:

INSTRUCT (A,B ,X ) =⇒ want(A,X )

4. DIARC Semantic Representation:

want(Sam, pass(self , usedFor(something , cutting)))

5. Submitted Goal Predicate:

pass(self , usedFor(something , cutting))

Upon goal submission GOAL MANAGER executes the action script associated with the goal. An
action script is hierarchically organized with actions and subactions, with bottom-level actions rep-
resenting commands issued to the action component (MOTION CONTROL). The hierarchy for the
“pass” action is shown in Figure 3. Executing an action script of this form involves performing
a preorder traversal of its tree. At each node, we carry out three operations for applying learned
affordances, in addition to the operation related to the action itself.

First, an affordance request is sent to AFFORDANCE to getFeatures(), which involves assimi-
lating newly learned affordance rules, identifying relevant affordance rules, and returning perceptual
invariants (F) from the antecedents. AFFORDANCE queries BELIEF for any new implies(X,Y, Z)
predicates learned since its last call, then maps the arguments into the perceptual invariants (F),
contextual items (C), and affordances (A) in the affordance model. Here, we assume that context
itself is a higher-order action and therefore is captured as a functor name in the DIARC semantic
representation of the utterance. Thus, “pass” is the action context in implies(pass(self , knife),
graspObject(self , partOf (handle, knife)), high). We recognize that context is not always know-
able or definable in advance but, in this situation, contextual information is explicitly provided in
the utterance and is therefore available for the system to use. In other instances, the context may be
implicit and the agent may need to infer it; the approach does not preclude such inference because
the affordance model is general enough to capture contextual predictions regardless of how they are
obtained, but we leave it for future work. The perceptual invariant (F) is available in the argument
to the action context and thus, for example, “knife” is a perceptual invariant to be added to the rule.
The affordance information (A) is available from consequents where the “graspObject” predicate is
flattened. This process leads to three affordance rules in our motivating example,
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Figure 3. Key affordance-related operations during action execution using an exemplary pass action script.
For every node in the action tree four operations are performed: extracting perceptual features and contextual
items from the relevant affordance rules, running a visual search to determine whether these features exist
in the agent’s environment, performing inference with the rules and observations to obtain constraints on
actions, and performing the action with inferred constraints.

r1
def
= knife(K ) =⇒

[0.95,1]
findObject(cutting , knife(K )) ,

r2
def
= knife(K )∧ context(C = pickup) =⇒

[0.95,1]
graspObject(knife(K), handle(P ), partOf (P,K)) ,

r3
def
= knife(K ) ∧ context(C = pass) =⇒

[0.95,1]
graspObject(knife(K), blade(P ), partOf (P,K)) .

Once the rules have been updated to include new additions from BELIEF, AFFORDANCE selects
the rules relevant to the current situation. We do not provide an in-depth comparison of various
rule-selection approaches, but we take a straightforward approach that selects those rules relevant
to the current action (i.e., the current active node in the action tree) and affordance. We select rules
with consequents containing functor names that match the current action. This is possible since the
syntax and semantics of the affordance predicates match the grounded representations of actions in
GOAL MANAGER and MOTION CONTROL. In addition to the current action, we use goal predicate
information (including affordance) obtained from the current command to further prune the rules if
necessary. AFFORDANCE obtains this information by querying BELIEF for usedFor(X ,Y ).

During the “find” action, the only match is rule r1 and thus the only rule that is selected is
associated with functional affordance of the knife. The output from getFeatures() is then sent as a
search request by GOAL MANAGER to VISION to locate them in the agent’s visual field of view. For
example, the perceptual invariant (knife(K )) obtained in the “find” action is then sent back to GOAL

MANAGER, which then initiates a visual search to look for a knife. Upon finding a match, VISION

provides a detection confidence for the object it has identified as being a knife and AFFORDANCE

uses this confidence to perform inference to determine if the deduced action “find” is above a certain
confidence threshold. If so, the object identified as a knife is selected for further processing.

If a representative visual object is identified, then a second request is made to the affordance
component to getAffordance(), during which affordance inference is performed and the best ac-
tion or object constraint is returned. The constraints are then used in connection with the motion
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commands and sent to MOTION CONTROL. Thus, instead of the general command to grasp a knife,
which could result in the agent selecting one amongst a countless number of high-scoring grasp
candidates on the knife, the agent may be constrained to only selecting those on the handle.

At the next node (grasp), this process is repeated, but now there are two rules associated with
grasp. However, only one is associated with the context of “pass.” Thus, inference is performed
on this one rule and the constraints knife(K ), blade(P), partOf (P ,K ) is returned and used for
identifying grasp points on the blade of the knife. The agent can then correctly (from a normative
standpoint) pass the knife by the blade.

4. Evaluation

We take a two-step approach to evaluating the affordance-enabled cognitive robotic architecture.
First, we evaluate whether the system exhibits correct behavior (i.e., is it taking the correct actions
when instructed with a cognitive affordance-based natural language command?). We do so through
an extended simulation, in which the entire architecture was tested without external noise or sensor
fluctuations that typically occur in real-world settings. Clearly, real-world runs of the system are
important and show how the architecture can perform, not just in simulation, but on an embodied
robot in which real-time constraints apply. So, in our second step of the evaluation we tested the
architecture on a PR2 robot and provide an uncut video. We describe each step of the evaluation in
this section.

4.1 Simulation Experiment and Empirical Demonstration

We first tested the correctness of the approach in an extended simulation involving several household
objects and over two dozen rules. As noted earlier, the goal was to be able to test the approach in a
simulation without perceptual and sensory noise experienced in the real world in order to focus on
evaluating the correctness of the underlying algorithms.

For the experiment, we considered eight household objects, each composed of two parts: knife
(handle, blade), spatula (handle, blade), spoon (handle, bowl), shoe (upper, sole), hammer (handle,
head), glass (bowl, stem), mug (handle, barrel), and screwdriver (handle, shaft). We considered five
different affordances in the spirit of those used in computer-vision data sets associated with affor-
dance detection (Myers et al., 2015; Varadarajan, 2015): containing, cutting, pounding, rolling, and
poking. We restricted the agent’s action repertoire to the actions pass, pickUp, and pointTo. Un-
like pass and pickUp, pointTo involves finding but no grasping. With these objects and actions, we
generated 15 different commands (five affordances for each of three actions) of the form “[action]
something used for [affordance]” (e.g., point to something used for pounding).

We are interested in learning functional affordances and action affordances that contain a nota-
tion of confidence. To capture this, we used four terms to represent different degrees of confidence –
occasionally, sometimes, often, and generally – which we then mapped to specific numerical values
(Kerdjoudj & Curé, 2015). Thus, given eight objects, five affordances, four uncertainties, and three
actions, we can generate 288 possible affordance rules, comprising 160 functional affordance rules
and 128 action affordance rules.
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Table 2. Ground truth rules in Scenario A, with Scenario B obtained by reversing the list of each affordance.
Point confidences in parentheses.

Affordance Generally Often Sometimes Occasionally
(0.95) (0.75) (0.5) (0.25)

containing [mug, glass] spoon shoe
cutting knife screwdriver [spatula,spoon]
pounding hammer shoe spatula mug
rolling glass screwdriver
poking screwdriver knife

In any given learning scenario, the agent is taught a set of rules chosen from these 288 possible
rules, thus generating 2288 different possible trajectories. Also, since we have eight objects, we
can generate 256 possible scenes involving these objects that, when combined with the 15 possible
commands, gives 3840 different problem situations (scene-command combinations). Testing the
architecture across all possible learning scenarios (3840×2288) and problem situations is infeasible.

Instead, we evaluated the system by (1) choosing a random subset of our evaluation space, and
(2) establishing some general performance expectation for the system in this space. We limited our
evaluation space by randomly choosing ten different scenes and testing the agent’s performance for
all 15 commands. With regards to the selection of rules, we arbitrarily chose two different rule
sets representing two different normative standards and provided some expectations for how the
agent should act based on these two distinct learning scenarios. In Scenario A, for each of the five
affordances, we generated a list of objects (ranked highest to lowest confidence) that possess this
affordance. In Scenario B, we reversed the ranking of objects. For example, in Scenario A, a mug is
top-ranked object for the containing affordance while a shoe is a bottom ranked (but still feasible)
object. In Scenario B, the shoe is top-ranked and the mug is bottom ranked. These two scenarios
represent our ground truth rules, which have the values shown in Table 2.

We used Table 2 to derive functional affordance rules of the form “[object] is [uncertainty] used
for [affordance]” (e.g., “a spatula is sometimes used for pounding”). For action affordances, we
generated 16 rules corresponding to physical grasp affordance rules in the pass and pickup context
for all eight objects, with a single confidence setting of “generally.” For example, “To pass a shoe,
generally grab the shoe by the sole.” Of the 288 rules initially stated, many are somewhat nonsensi-
cal by our own normative or practical standards (e.g., a mug being used for cutting). However, the
robot did not know this, and we therefore expected it to perform the necessary affordance inference
without this additional commonsense knowledge.

We performed multiple trials during which we generated various tabletop scenes using combi-
nations of the eight objects. We tested both learning sets of affordance rules, and acting on sets of
commands using the proposed architecture. We evaluated the performance of the system by check-
ing if four principles held true in all trials: (1) if all the objects are in the scene, then the robot must
select the top-ranked object for the required affordance; (2) if the top-ranked object is not available,
then the robot must select the next lower ranked object; (3) if there is more than one top-ranked
object with equal measures of confidence, then the robot may select either; and (4) if there are
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Table 3. High-level syntax of understandable utterances, in JSpeech Grammar Format (JSGF).

Utterance Templates
<statement> a <object> is [<qualifier>] <implies> <use> | to <goal> a <object> [<qualifier>]

<primitive> <object> <mod> <part>
<command> [now | okay | first | then] (<goal> | <primitive>) something <implies> <use> |

<primitive> <object> <mod> <part>

Grounded Concepts
<qualifier> sometimes | often | generally | always

<object> mug | knife | wine glass | spatula | spoon | shoe | screwdriver | rock
<implies> used for

<primitive> grab | grasp
<goal> pass | pickup | point to
<mod> by the
<part> red | green | blue
<use> cutting | containing | pounding | rolling

no objects available with the required affordance, the robot must tolerate the failure condition and
provide a suitable response.

We ran the experiment across ten randomly generated scenes of varying sizes, including one
with all the objects. During each run, we taught the 32 above-mentioned rules in each of Scenario
A and B, then we presented a randomly generated scene and issued each of the 15 commands in
sequence. We ensured that sets of scenes in combination with the commands covered the above-
mentioned four performance expectations. Table 3 shows the general form of the two types of
affordance-related utterances (Utterance Templates) our system can handle and the component parts
of those templates that can be expanded as needed for the system’s applications (Grounded Con-
cepts), provided they can be grounded in the architecture. It is important to note that these utterance
types are not the only language DIARC can understand: they are added functionality that coexists
with prior functionality.

In this evaluation, we are interested in whether the integrated system correctly learned the rules
from natural language expressions and then immediately applied this knowledge correctly to select
the best action. The two learning scenarios described above provide a ground truth of sorts, as the
objects are ranked from best to worst in each scenario. It is important to note here that we are not
interested in evaluating robustness of the underlying low-level perceptual and action systems them-
selves. Accordingly, we avoid sensor noise and motion imperfections by running this experiment
as a simulation and focus exclusively on evaluating the proposed architecture with AFFORDANCE.
Moreover, the rule uncertainties were set to four distinct and separated values to ensure that the
ground truth rule sets themselves were not noisy, i.e., without overlapping uncertainty intervals.
Since we are evaluating a normative system, we lose the ability to clearly establish a ground truth if
the underlying rules themselves were noisy. For example, if the uncertainties of a knife and screw-
driver as objects used for cutting are very close to one another and overlapping, then which object is
a better object becomes a more difficult question and without a clear answer supported in the ground
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truth. Thus, given a clear ground truth and no sensory noise, the architecture should learn the rules
and act correctly all of the time.

As expected, we obtained a 100% success rate with the robot inferring the correct functional
affordance and choosing the correct object (for all actions) and choosing the correct grasp locations
(for pass and pickup). We observed this success rate across all scenes measured. As one example,
when all the objects were presented, the robot chose the mug when asked to select an object with
the containing affordance. Likewise, the robot correctly identified top-ranked objects for each of the
four affordances. This meant that, for Scenario B, the robot correctly identified the shoe as being
the best candidate with a containing affordance.

Our simulation further suggests that any performance below 100% must be due to sensor noise.
If the agent is unable to correctly detect that an object on the table is in fact a knife, when asked for
something used for cutting, then the agent is less likely to find this object as a suitable candidate -
affordance inference will yield an uncertainty that might be below a threshold confidence measure
described earlier.

In addition to the simulation, we further provide an empirical demonstration of a DIARC agent
with a fully integrated module for cognitive affordance reasoning in a task-driven dialogue involving
multiple human interlocutors. In this demonstration, we show the system’s ability to learn new
cognitive affordance rules on the fly and to reason about these newly learned rules. A video of this
demonstration is located at http://tiny.cc/affordanceNL2018. We use the motivating example utterance
“Pass me something used for cutting” spoken from a human to robot running cognitive affordance-
enabled DIARC.

4.2 Commands with Implicit Affordances

Thus far, we have presented examples where the requested affordance was explicitly stated, such
as “pass me something used for pounding.” However, the approach presented in this paper is not
limited to such cases and is capable of handling cases where the requested affordance is not explicit.
For example, a command “pound the nail” contains an implicit request for a tool that can do the
pounding. In some sense, the command might actually be suggesting “pound the nail with something
used for pounding,” without saying so explicitly. As before, the robot is taught the normative
affordance rule that a hammer can be used for pounding. But, in order for the robot to be able
to make use of this affordance rule, it must already have an action script that describes how it
should perform the pounding action. Much like the action script depicted as a tree in Figure 3, we
consider an example action script for pound that is composed of a pickup action. It also contains a
moveAbove(nail) action and a series of repeated raise and lower actions to generate the pounding
motion. The pickup subaction, in turn, contains find , grasp and moveTo(up) subsubactions. The
pound action can be made more complex, containing visual actions of sensing the depth of the nail
and identifying when to stop pounding.

In addition to this action description, the action script needs additional knowledge to han-
dle cases when the action is called with a tool explicitly mentioned (e.g., pound the nail with
the hammer) and when the action is called with the tool affordance implicitly suggested (e.g.,
pound the nail). In the implicit case, the highest level pound action must be able to supply a
usedFor(something, pounding) argument to the child pickup action. Thus, the pound action
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must first review the arguments of the goal predicate pound(self , nail) received and parsed from
the command utterance and then provide the arguments self and usedFor(something, pounding)
to the the pickup action. It is possible that the implicit command “pound the nail” was intended to
be interpreted as “pound the nail with the hammer”. In this case, the action script would need to
consider other factors (e.g., the intent of the speaker) in order to determine what exactly was left
unsaid – i.e., was it that the speaker intended for the agent to use a specific tool, namely the hammer
or any tool with a pounding affordance.

With this translation, the rest of command execution proceeds as described in the previous
sections. This example shows that, with suitable modifications to the action script, we can handle
commands that contain affordance information explicitly as well as implicitly. It is important to
reiterate a key assumption: that the robot is already equipped with the above-mentioned pound
action script. Learning these action scripts (from natural language or however else) as well as
determining interpretations of unsaid action arguments is beyond the scope of this paper and the
subject of ongoing work.

5. Discussion

The above walkthrough and simulation show how a set of new social norms, previously unknown to
the agent, can be acquired, in one-shot, from natural language instruction. The process of learning an
implication rule of the form described is generalizable to other rules as long as the agent is familiar
with the entities being described; for instance, the agent already knows what a knife, handle, and
blade mean. Critically, the new knowledge of the social norm encoded as an affordance rule is now
available for inference by any and all subsystems in the cognitive robotic architecture. As shown in
the evaluation, these rules can be put to immediate use for follow-up requests from a human. These
are, to our knowledge, the first demonstrations of an agent learning an unknown affordance norm
from natural language instruction and then performing an action sequence conforming with the rule
that it just learned. Moreover, an affordance norm of this sort may be beneficial not just to an action
subsystem of an architecture, but to planning and other subsystems. A general rule-based structure,
coupled with an inference mechanism presented here, allows these other subsystem to query and
access these affordance norms, as well.

Note that the above demonstration also shows that the instructions and actions do not have to
pertain to a particular set of sensors or actuators and do not depend on a particular robotic plat-
form. Rather, the same inference and learning mechanisms can be carried out in other agents with
different action capabilities. It is also important to note that the approach is not limited to the par-
ticular examples demonstrated; being implementations of a general framework for reasoning about
affordances to guide normative behavior, they are only limited by the agent’s knowledge of natural
language and by its sensory and actuation capabilities. For example, a Nao robot may not possess
adequate gripper capabilities to grab a knife, but will still be able to reason about the normative
aspects of other action capabilities like pointing and can still learn from instructions about these
normative aspects of these actions.

Finally, to demonstrate the extent of learning, we note that current state of the art vision systems
can identify and label objects and object features with a high level of accuracy. Thus, an agent can
potentially become familiar with names and descriptions for thousands of objects. Along the same
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lines, agents can be trained through existing methods to build a substantial vocabulary and grammar
allowing for an infinite possible set of descriptors for perceptual invariants, contexts, and actions.
Hence, it is not possible, nor does it make sense, to evaluate the system exhaustively by generating
every possible combination of rules and checking whether the agent can learn them. The strength of
our system is that, no matter what set of rules we give it, it can learn and reason about affordances
provided it has the sensory information to ground them.

6. Related Work

While affordances have been studied for decades in psychology and philosophy, few computational
approaches have been presented for modeling them in normative contexts, and none for learning
them from natural language, which is an important open problem in affordance-related research in
robotics (Zech et al., 2017). We believe that our approach represents a significant advance over
existing ones. Research in cognitive robotics and AI more generally originated from philosophical
and psychological theories and diverged in two directions: statistical and ontological. The statis-
tical approaches have modified and implemented these general theories in specific domains using
mathematical formalisms to represent and compute affordances (Steedman, 2002; Montesano et al.,
2007; Aleotti et al., 2014; Chan et al., 2015; Ugur et al., 2015; Koppula & Saxena, 2016). The
affordances were modeled as a statistical relationship between an object, actions performed on the
object, and the effects of those actions (i.e., success or failure). Some preliminary work has ex-
tended this approach by incorporating “environment” as a fourth entity, thereby providing some
degree of situatedness and context (Kammer et al., 2011). The ontological approaches have focused
on developing a detailed knowledge base of conceptual, functional, and part properties of objects,
and used a combination of detection and query-matching algorithms to pinpoint the affordances for
objects (Varadarajan, 2015). However, neither approach has considered the influence of social or
normative (and nonperceptual) factors in affordance determination.

More recently, Shu et al. (2016) presented a framework for reasoning about “social affordances”
and provided a system that can act in social scenarios. However, the underlying affordance model is
largely devoid of contextual or normative reasoning, (non-perceivable aspects of affordances) and
is focused just on physical geometries of objects (perceivable aspects) in these scenarios, in this
case skeletal geometries. Other work in robotics has explored mechanisms for detecting context
and social contextual perception at both an individual level (O’Connor & Riek, 2015; Nigam &
Riek, 2015; Parashar et al., 2015), as well as in group-level activities (Okal & Arras, 2014). How-
ever, these approaches do not provide a generalized model or integration of normative affordance
perception of objects in a robotic architecture.

Thus, more generally, despite these past efforts, the task of computationally modeling affor-
dances faces many challenges that have not been overcome in the previous work. These past efforts
do not allow for reasoning about normative affordances and, from an architectural standpoint, most
affordance processing is subsumed by sensory processing (e.g., vision) or higher-level cognition
(e.g., planning), which does not allow for an effective interaction between top-down and bottom-up
processing of information. Moreover, none of the current approaches show how affordances can be
learned from natural language.
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7. Conclusions and Future Work

The expressive framework of cognitive affordances treats such relations as normative condition-
action rules. In a sense, it extends the traditional Gibsonian notion of an affordance as a relation
between an object and an action to include other nonperceptual aspects that influence action selec-
tion such as context, intentions, and social conventions. In this paper, we provide two contributions:
(1) a grounding and integration of this theoretical framework within a robotic architecture, and (2)
an approach to learning cognitive affordances from natural language instruction. To accomplish this
task, we extended recent work in instruction-based one-shot learning to parse and learn cognitive
affordance rules. The predicates and terms that constitute the rules contain perceptual and action
concepts that are grounded within the DIARC cognitive robotic architecture. For each action that
the robot must carry out, we proposed several operations that obtain sensory information from the
perceptual system, perform inference over relevant affordance rules that impose constraints, and
execute the constrained action. We evaluated the approach through an extended simulation and
real-world runs of the robotic architecture as implemented on a PR2 robot. Critically, we showed
that not only can an agent learn normative behavior from instruction, but it can immediately apply
this newly acquired knowledge to the task at hand. To our knowledge this is the first conceptual
and robotic demonstration of an agent learning an unknown affordance norm from natural language
instruction and performing an action sequence conforming to the rule it just learned. We believe that
these capabilities are necessary to let agents work effectively with humans and to dynamically learn
tasks in ways that respect prevailing social norms. The approach presented in this paper does not
currently incorporate commonsense knowledge about objects and their similarity to similar objects.
Thus, the affordance rules that are learned from natural language are limited to the particular object
explicitly taught. One direction for future work is to explore how to induce new cognitive affordance
rules using such commonsense knowledge. For example, we would like the system to know and use
the fact that both knives and screwdrivers are tools with pointed ends that must be handled carefully.
When we teach the robot how to safely pass a knife, it should subsequently induce a comparable
rule for the screwdriver.
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