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Abstract
A significant problem for integrating acting and planning is how to maintain consistency between
the planner’s descriptive action models, which abstractly describe what the actions do, and the
actor’s operational models, which tell how to perform the actions with rich control structures for
closed-loop online decision-making. Operational models allow for dealing with a variety of con-
texts and for responding to unexpected outcomes and events in a dynamically changing environ-
ment. To circumvent the consistency problem, we use the actor’s operational models both for acting
and for planning. Our acting-and-planning algorithm, APE, uses hierarchical operational models
inspired from those in the well-known PRS system. But unlike the reactive PRS algorithm, APE
chooses its course of action using a planner that does Monte Carlo sampling over simulated exe-
cutions. Our experiments with this approach show substantial benefits in the success rates of the
acting system, in particular for domains with dead ends.

1. Introduction

The integration of acting and planning is a long standing AI problem discussed by many authors. For
example, Pollack and Horty (1999) argue that, despite progress beyond the restricted assumptions
of classical planning (e.g., handle uncertainty, partial observability, or exogenous events), in most
realistic applications just making plans is not enough. Their argument still holds. Planning, as a
search over predicted state changes, uses descriptive models of actions (what might happen). Acting,
as an adaptation and reaction to an unfolding context, requires operational models of actions (how
to do things) with rich control structures for closed-loop online decision making.

A recent survey shows that most approaches to integrating acting and planning seek to com-
bine descriptive and operational representations, using the former for planning and the latter for
acting (Ingrand & Ghallab, 2017). This has several drawbacks in particular for the development and
consistency verification of the models. For consistency, it is highly desirable to have a single rep-
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resentation for both acting and planning. But if this representation were a descriptive one, it would
not provide sufficient functionality. Instead, the planner must be capable of reasoning directly with
the actor’s operational models.

Furthermore, several analyzes stress the importance of operational models. For example, Den-
nett (1996)’s hierarchy of natural beings refers to his third level as Popperian creatures, which have
models to simulate their own actions before safely carrying them. Most vertebrates appear to be at
least at the Popperian level. It seems clear that these simulation models are operational, since they
are used for acting. However, it is unclear whether the Popperian creatures also use or need abstract
descriptive models. This may even be true for human, in our everyday actions. We devote signif-
icant effort to exhibit descriptive models only for specific actions and purposes, such as planning
and optimization, because our operational models are hidden to us. If a designer needs to develop
operational models for artificial actors, he or she might want to use them for planning as well.

In this paper, we provide an integrated acting-and-planning system, APE (Acting and Planning
Engine). The operational representation language and its acting algorithm are inspired by the well-
known PRS system (Ingrand et al., 1996). The operational model is hierarchical: a collection of
refinement methods offers alternative ways to handle tasks and react to events. Each method has a
body that can be any complex algorithm. In addition to the usual programming constructs, the body
may contain commands (including sensing commands), which are sent to an execution platform in
order to execute them in the real world, and subtasks, which can to be refined recursively. APE’s
acting engine is based on an expressive, general-purpose operational language.

To integrate acting and planning, APE extends the reactive PRS-like acting algorithm to include
a planner, APE-plan. At each point where it must decide how to refine a task, subtask, or event,
APE-plan does Monte Carlo rollouts with a subset of the applicable refinement methods. At each
point where a refinement method contains a command to the execution platform, the module takes
samples of its possible outcomes using a predictive model of what each command will do.

We have implemented APE and APE-plan and we have done preliminary empirical assessments
of them on four domains. Section 2 reviews related work, Section 3 briefly summarizes the opera-
tional model, and Section 4 describes APE and APE-plan. We present our benchmark domains and
experimental results in Section 5. In Section 6, we discuss the results and provide conclusions.

2. Related Work

Acting. APE’s task-refinement capabilities are similar to those in the RAE algorithm described
by Chapter 3 of Ghallab et al. (2016). However, RAE operates purely reactively: if it needs to
choose among several refinement methods that are eligible for a given task or event, it makes the
choice without any attempt to plan ahead. RAE was based on PRS (Ingrand et al., 1996), which was
also purely reactive. Some other related approaches, some of which include refinement capabilities,
include work by Firby (1987), Simmons (1992), Simmons and Apfelbaum (1998), Beetz and Mc-
Dermott (1994), Muscettola et al. (1998), and Myers (1999). While such systems offer expressive
acting environments (e.g., with real time handling primitives), none of them provide the ability to
plan with the operational models used for acting, and thus cannot integrate acting and planning as
we propose here. Most of the mentioned systems do not reason about alternative refinements.
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Finite state automata and Petri nets, e.g., Verma et al. (2005), Wang et al. (1991) have also been
used as representations for acting models but do not incorporate planning. For example, in Bohren
et al. (2011), the ROS execution system SMACH implements an automata-based approach, where
each state of a hierarchical state machine corresponds to the execution of a command. However, the
semantics of constructs available in SMACH is limited to reasoning on goals and states, and there
is no planning.

Behavior trees (Colledanchise, 2017; Colledanchise & Ögren, 2017) are a technique for acting
using a hierarchical representation that is a generalization of a decision tree. In most cases the
behavior tree is not generated by the system, but is provided by a human author. However, Lim et al.
(2010) and Perez et al. (2011) describe some techniques have also been developed for automated
learning of behavior trees. Behavior trees impose several restrictions on the structure of the tree
and properties of its nodes. Our operational representation is more general and allows any valid
programming construct to be the body of refinement methods.

Planning. The PropicePlan (Despouys & Ingrand, 1999) and SeRPE (Ghallab et al., 2016) plan-
ning algorithms use PRS’s and RAE’s refinement methods. However, instead of using command
simulations, they model commands as classical planning actions. Since this assumes that the en-
vironment is deterministic, fully observable, and static, it limits the usefulness of PropicePlan and
SeRPE, as most acting environments in which one would want to use PRS and RAE do not satisfy
those assumptions.

Another related technique is planning with hierarchical task networks or HTNs (Nau et al.,
1999), in which tasks can be refined with different methods, where a method’s body is a simple
collection of subtasks rather than our rich control constructs. HTN planners use classical planning
actions rather than command simulations. This enables HTN planning algorithms to be significantly
simpler than ours, but it also makes them unsuited for integration with an acting system such as
PropicePlan, RAE, or APE.

Many papers on probabilistic planning and Monte Carlo tree search refer to simulated execution
and sampling outcomes of action models (e.g., Feldman & Domshlak, 2013; Feldman & Domshlak,
2014; Kocsis & Szepesvári, 2006; James et al., 2017; Teichteil-Königsbuch et al., 2008; Yoon
et al., 2007; and Yoon et al., 2008). These use a probabilistic MDP framework with a descriptive
action model (generally an explicit probability distribution), without the notions of hierarchy and
refinement methods. Although most of the papers refer to online planning, this activity consists of
applying the planning actions within the MDP model, rather than real-world acting. There is thus
no notion of integration of acting and planning, nor of how to maintain consistency between the
planner’s descriptive models and the actor’s operational models.

Integrated Acting and Planning. Bucchiarone et al. (2013) propose a hierarchical representa-
tion framework for composing Web services. This includes abstract actions and it can interleave
acting and planning, but it focuses on distributed processes, which are represented as state transition
systems, and does not allow for refinement methods.

Cashmore et al. (2015) describe a system called ROSPlan that integrates planning with the ROS
architecture. They model tasks in PDDL2.1 and use a classical planner to generate solution using
descriptive models instead of using operational models directly for planning. Langley et al. (2017)
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describe a system that integrates planning with monitoring and execution over goal-based utilities.
Their approach supports durative operators with numeric effects, but it does not handle hierarchical
decomposition, conditional effects, or nondeterministic outcomes.

Ingham et al. (2001)’s Reactive Model-based Programming Language (RMPL) is an object-
oriented language that allows a domain to be structured through an object hierarchy with subclasses
and multiple inheritance. It combines a system model with a control model using state-based, pro-
cedural control and temporal representations. The system model specifies nominal as well as failure
state transitions with hierarchical constraints. The control model uses standard reactive program-
ming constructs. RMPL programs are transformed into the temporal plan networks (TPNs) (Kim
et al., 2001) which are an extension of simple temporal networks with symbolic constraints and
decision nodes. Temporal reasoning consists of finding a path (i.e., a plan) in the TPN that meets
the constraints. The execution of generated plans allows for online choices (Conrad et al., 2009).
Effinger et al. (2010) extends TPNs with error recovery, temporal flexibility, and conditional execu-
tion based on the state of the world. Primitive tasks are specified with distributions of their likely
durations. A probabilistic sampling algorithm finds an execution guaranteed to succeed with a given
probability. Probabilistic TPNs are introduced in Santana and Williams (2014) with the notions of
weak and strong consistency. Levin and Williams (2014) add the notion of uncertainty to TPNs
for contingent decisions taken by the environment or another agent. The acting system adapts the
execution to observations and predictions based on the plan. RMPL and subsequent developments
have been illustrated with a service robot which observes and assists a human. It is a quite compre-
hensive CSP-based approach for temporal planning and acting; it provides refinement, instantiation,
time, nondeterminism and plan repair. Our approach does not handle time; it focuses instead on
decomposition into communicating asynchronous components.

3. Operational Models

Our formalism for operational models of actions is based on the one described by Chapter 3 of Ghal-
lab et al. (2016). Its primary elements are tasks, events, commands, refinement methods, and state
variables. Some of the state variables are observable, i.e., the execution platform will automatically
keep them up-to-date through sensing operations. Let us consider some examples.

Example 1. Suppose several robots (UAVs and UGVs) are exploring a partially known terrain,
performing operations such as data gathering, processing, screening and monitoring. Let

• R = {g1, g2, a1, a2} be the set of robots,

• L = {base, z1, z2, z3, z4} be the set of locations,

• survey(r, l) be a command performed by robot r in location l that surveys l and collects data,

• loc(r) ∈ L and data(r) ∈ [0, 100] be observable state variables that contain the robot r’s
current location and the amount of data it has collected.

Let explore(r, l) be a task for robot r ∈ R to reach location l ∈ L and perform the command
survey(r, l). In order to survey, the robot needs some equipment that might either be available or
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Table 1. A refinement method for the explore task.

m1-explore(r, l)
task: explore(r, l)

body: get-Equipment(r, ‘survey’)
moveTo(r, l)
if loc(r) = l then:

Execute command survey(r, l)
if data(r) = 100 then:

depositData(r)
return success

else return failure

in use by another robot. Robot r should collect the equipment, then move to the location l and
execute the command survey(r, l). Each robot can carry only a limited amount of data. Once its
data storage is full, it can either go and deposit data to the base, or transfer it to an UAV via the
task depositData(r). A refinement method to do this is shown in Table 1.

Inside the refinement method m1-explore, get-Equipment(r, ‘survey’), moveTo(r, l) and de-
positData(r) are subtasks which must be further refined via suitable refinement methods. Only
UAVs have the ability to fly. So there can be different possible refinement methods for the task
moveTo(r, l) based on whether r can fly or not.

Each robot must hold a limited amount of charge and is rechargeable. Depending on what
locations it needs to survey, it might need to recharge by going to the base where the charger is
located. Different ways of doing this can be captured by multiple refinement methods for the task
doActivities(r, locList). Two of them are shown in Table 2.

Note that a refinement method for a task t specifies how to perform t, i.e., it gives a procedure
for accomplishing t by performing subtasks, commands and state variable assignments. This pro-
cedure can include any of the usual programming constructs, e.g., if-then-else, loops and so forth.
Let us give the robot a method for reacting to an event.

Example 2. Suppose that a space alien is spotted in one of the locations l ∈ L of Example 1 and a
robot has to react to it by stopping its current activity and going to l. Let us represent this with an
event alienSpotted(l). We also need an additional state variable, alien-handling(r)∈{T, F}, which
indicates whether the robot r is engaged in handling an alien. A refinement method for this event
is shown on Table 3. It can succeed if robot r is not already engaged in negotiating with another
alien. After negotiations are over, the methods changes the value of alien-handling(r) to F.

This example illustrates tasks, events, and refinement methods.
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Table 2. Two refinement methods for the task doActivities(r, locList).

m1-doActivities(r, locList)
task: doActivities(r, locList)

body: for l in locList do:
explore(r, l)

moveTo(r, ‘base’)
if loc(r) = ‘base’:

recharge(r)
else return failure
return success

m2-doActivities(r, locList)
task: doActivities(r, locList)

body: for l in locList do:
explore(r, l)
moveTo(r, ‘base’)
if loc(r) = ‘base’:

recharge(r)
else return failure

return success

4. APE and APE-plan

APE (Acting and Planning Engine) shown in Table 4, is based loosely on the RAE (Refinement
Acting Engine) algorithm in Ghallab et al. (2016, Chapter 3). The first inner loop (line 1) reads
each new job (a task or event) that comes in from an external source such as the user or the execution
platform, as opposed to the subtasks generated by APE’s refinement methods. For each such job τ ,
APE creates a refinement stack analogous to a computer program’s execution stack. Agenda is the
set of all current refinement stacks.

In the second inner loop (line 4 of APE), for each refinement stack in Agenda, APE progresses
the topmost stack element by one step. The stack element includes (among other things) a task
or event τ and the method instance m that APE has chosen to use for τ . The body of m is a
program; progressing the stack element (the Progress subroutine) means executing the next step
in this program. This may involve monitoring the status of a currently executing command (line
1 of Progress), following a control structure such as a loop or if-then-else (line 2 of Progress),
executing an assignment statement, sending a command to the execution platform, or handling a
subtask τ ′ by pushing a new stack element onto the stack (line 7 of Progress). A method succeeds
in accomplishing a task when it returns without failure.

In line 3 of APE, line 6 of Progress, and line 2 of Retry, APE chooses a method instance m for
τ . In order to make an informed choice of m, each of these lines is preceded by a call to a planner,
APE-plan, that returns a plan for accomplishing τ . The returned plan, T , will begin with a method
instance m to use for τ . If m contains subtasks, then T must include methods for accomplishing
them (and so forth recursively), so T is a tree with m at the root. Once APE has selected m, it
ignores the rest of T . Thus in line 4 of Progress, where m has a subtask τ ′, APE does not use the
method that T used for τ ′. Instead, in line 5 of Progress, APE calls APE-plan to get a new plan T ′

for τ ′. This is analogous to how a game-playing program might call an alpha-beta game-tree search
at every move.1

1. Ghallab et al. (2016) describe a “lazy lookahead” in which an actor keeps using its current plan until an unexpected
outcome or event makes the plan incorrect and a “concurrent lookahead” in which the acting and planning proce-
dures run concurrently. We implemented these for APE, but in our experimental domains they did not make much
difference in performance.
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Table 3. A refinement method for the event handleAlien(r, l).

m-handleAlien(r, l)
event: alienSpotted(l)
body: if alien-handling(r) = F then:

alien-handling(r)← T
moveToAlien(r, l)
Execute command negotiate(r, l)
alien-handling(r)← F
return success

else return failure

The pseudocode of APE-plan is a modified version of the APE pseudocode that incorporates
five modifications:

1. Each call to APE-plan returns a refinement tree T whose root node contains a method instance
m to use for τ . The children of this node include a refinement tree or terminal node for each
subtask or command, respectively, that APE-plan produced during a Monte Carlo rollout of m.

2. In line 2 of APE, line 5 of Progress, and line 1 of Retry, APE-plan calls itself recursively on a
setM ′ ⊆M that contains the first bmembers ofM a list of method instances ordered according
to some domain-specific preference order (with M ′ = M if |M | < b), where b is a parameter
for the search breadth. This produces a set of refinement trees. If the set is nonempty, then
APE-plan chooses one that optimizes cost, time, or any other user-specified objective function.
If the set is empty, then APE-plan returns the first method instance from M ′ if |M ′| >= 1;
otherwise it returns failed.

3. Each call to Retry is replaced with an expression that just returns failed. While APE needs to
retry in the real world with respect to the real actual state, APE-plan considers that a failure is
simply a dead end for that particular sequence of choices.

4. In line 3 of Progress (the case where step is a command), instead of sending step to the actor’s
execution platform, APE-plan invokes a predictive model of what the execution platform would
do. Such a predictive model may be any piece of code capable of making such a prediction e.g.,
a deterministic, nondeterministic, or probabilistic state-transition model or a simulator of some
kind. Since different calls to the predictive model may produce different results, APE-plan calls
it b′ times, where b′ is a parameter for the sample breadth. From the b′ trial runs, APE-plan gets
an estimate of step’s expected time, cost, and probability of leading to success.

5. Finally, APE-plan has a search depth d. When APE calls APE-plan, it continues planning either
to completion or to depth d, whichever comes earlier. Such a parameter can be useful in real-
time environments where there may not be enough time to plan all the way to completion.

Above, we have described the algorithm of our actor, APE, and our planner, APE-plan. The full
pseudocode of APE-plan is given the Appendix.
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Table 4. The pseudocode for APE (Acting and Planning Engine).

APE( ):
Agenda← empty list
while True do

1 for each new task or event τ in the input
stream do
s← current state
M ← {applicable method instances

for τ in state s}
2 T ← APE-plan(M, s, τ)

if T = failed then
output(“failed to address”, τ )

else
3 m← the method instance at the

top of T
stack← a new, empty refinement

stack
push (τ,m, nil, ∅) onto stack
insert stack into Agenda

4 for each stack ∈ Agenda do
Progress(stack)
if stack is empty then

5 remove it from Agenda

Retry(stack):
(τ,m, step, tried)← pop(stack)
add m to tried // list of method

instances already tried
s← current state
M ← {applicable method instances for
τ in state s}

1 T ← APE-plan(M \ tried, s, τ)
if T 6= failed then

2 m′ ← the method instance at the top
of T

push (τ,m′,nil, tried) onto stack
else

if stack is empty then
output(“failed to accomplish”,
τ )

remove stack from Agenda
else

Retry(stack)

Progress(stack):
(τ,m, step, tried)← top(stack) // step is the current step of m, i.e., if
if step 6= nil then // we have started executing m, then step is

1 if type(step) = command then // running on the execution platform
case execution-status(step):

still-running: return
failed: Retry(stack); return
successful: pass // continue to next line

if there are no more steps in m then
pop(stack); return;

2 step← next step of m after accounting for the effects of control statements (loops,
if-then-else, etc.)

case type(step):
assignment: update s according to step; return;

3 command: send step to the execution platform; return;
task: pass // continue to next line

4 τ ′ ← step; s← current state ; M ′ ← {applicable method instances for τ ′ in state s};
5 T ′ ← APE-plan(M ′, s, τ ′)

if T ′ = failed then Retry(stack); return;end
6 m′ ← the method instance at the top of T ′

7 push (τ ′,m′,nil, ∅) onto stack
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5. Experimental Evaluation

In this section, we describe our test domains and experiments. Section 5.1 summarizes the proper-
ties of these domains, which include sensing, agent collaboration, dead ends, dynamic events and
concurrent tasks. We present an analysis of our results in Section 5.2 in terms of three different
performance metrics: efficiency, retry ratio, and success ratio.

5.1 Domains

We have implemented and tested our framework on four domains. We designed them in such a
way that they model the common issues that are encountered while integrating acting and planning.
Broadly, there are two groups, domains with dead ends and ones without them. A domain with dead
ends means that it is possible for the agent to reach a state from which it cannot recover. Without
dead ends, a purely reactive system like APE is sufficient for achieving the tasks, but not efficiently.
One of our domains illustrates sensing (or information gathering) actions, three involve (centrally
controlled) collaboration among actors. All domains have dynamic events and concurrent tasks (see
Table 5).

The Explorable Environment domain extends the UAVs and UGVs setting of Example 1 with
some additional tasks and refinement methods. The agents explore a partially known terrain and
perform different operations, such as, survey, monitor, gather data or, sample soil. In order to
perform a particular operation, it may need some special equipment. Robots can carry a limited
amount of charge and data. This domain has dead ends because a robot may run out of charge in an
isolated location.

The Chargeable Robot domain includes several robots that move around to collect objects of
interest. The robots can hold a limited amount of charge and are rechargeable. To move from one
location to another, they use Dijkstra’s shortest path algorithm. The robots do not know where
objects are unless a sensing action is performed in the object’s location and they must search for an
object before collecting it. The robot may or may not carry the charger with it. As in Example 2,
the environment is dynamic due to emergency events. A task reaches a dead end when a robot has
run out of charge when it is far away from the charger.

The Spring Door domain has several robots trying to move objects from one room to another in
an environment with both spring doors and ordinary doors. Spring doors close themselves unless
they are held. A robot cannot carry an object and hold a door simultaneously. Thus, whenever it
wants to move through a spring door, it must ask for help from another robot. Any robot that is free
can act as the helper. The environment is dynamic because the the type of door is unknown to the
robot, but there are no dead ends.

The Industrial Plant domain involves an industrial workshop environment, as in the RoboCup
Logistics League competition. There are several fixed machines for painting, assembly, wrapping,
and packing. As new orders for assembly, paint, and the like arrive, carrier robots transport the
necessary objects to the required machine’s location. An order can be complex, such as painting
two objects, assembling them, and packing the resulting object. Once the order is done, the final
product is delivered to the output buffer. The environment is dynamic because the machines may be
damaged and need repair before being used again, but there are no dead ends.
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Table 5. Properties of the four domains.

Domain Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks

Chargeable Robot X X X – X
Explorable Environment X X – X X

Spring Door X – – X X
Industrial Plant X – – X X

These four domains have different properties, as summarized in Table 5. The Chargeable Robot
domain includes a model for the sensing action where the robot can sense a location and identify
objects in that location. Spring Door domain models a situation where robots need to collaborate
with each other. They can ask for help from each other. The Explorable Environment models
a combination of robots with different capabilities (UGVs and UAVs), whereas in the other three
domains all robots have same capabilities. It also models collaboration like the Spring Door domain.
In the Industrial Plant domain, the allocation of tasks among the robots is hidden from the user.
The user just specifies their orders; the delegation of the subtasks (movement of objects to the
required locations) is handled inside the refinement methods. The Chargeable Robot domain and
the Explorable Environment domain have dead ends, whereas the Spring Door domain and the
Industrial Plant do not have them.

5.2 Experiments and Analysis

The objective of our experiments was to examine how APE’s performance depends on the amount
of planning that we told it to do. For this purpose, we created a suite of test problems, each of
which included one to four jobs to accomplish, with each job inserted into APE’s input stream at
a randomly chosen time point. In the Chargeable Robot domain, Explorable Environment domain,
Spring Door domain, and Industrial Plant domain, our test suites consisted of 60, 54, 60, and 84
problems, with the numbers of jobs to accomplish being 114, 126, 84, and 276, respectively. The
experiments each used simulated versions of the four environments that ran on a 2.6 GHz Intel Core
i5 processor.

The amount of planning done by APE-plan depends on its search breadth b, sample breadth b′,
and search depth d. We used b′ = 1 (one outcome for each command), and d = ∞ (planning
always proceeded to completion), and five different search breadths, b = 0, 1, 2, 3, 4. Since APE
tries b alternative refinement methods for each task or subtask, the number of alternative plans
examined is exponential in b. As a special case, b = 0 means running APE in a purely reactive way
with no planning at all. The objective function for the experiments was the number of commands
included in the plan.

Hypothesis 1. Increasing the value of APE’s search breadth will improve its performance on three
different metrics: success ratio, retry ratio, and speed to success, with greater improvement in
domains with dead ends.
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(a) (b)

Figure 1. Success ratio (number of successful jobs /total number of jobs) for different values of search breadth
b for (a) domains having dead ends (Chargeable Robot and Explorable Environment) and (b) domains having
no dead ends (Spring Door and Industrial Plant). CR = Chargeable Robot, EE = Explorable Environment,
SD = Spring Door, IP = Industrial Plant.

Success ratio. Figure 1 plots success ratio, the proportion of jobs that APE successfully accom-
plished in each domain. For the two domains with dead ends (Chargeable Robot and Explorable
Environment), the ratio generally increases as the search breadth b increases. In the Chargeable
Robot domain domain, the success ratio makes a big jump from b = 1 to b = 2 and then remains
nearly the same for b = 2, 3, 4. This is because, for most of the tasks, the second method in the pref-
erence ordering (decided by the domains’ author) turned out to be the best one, so higher value of b
did not help much. In contrast, in the Explorable Environment domain, the success ratio continued
to improve substantially for b = 3 and b = 4.

In the domains with no dead ends, the search breadth did not make much difference in the
success ratio. In the Industrial Plant domain, it made almost no difference at all. In the Spring Door
domain, the success ratio even decreased slightly from b = 1 to b = 4 because methods appearing
earlier (in the preference ordering) are better suited to handle the events, whereas methods appearing
later produce plans that are shorter but less robust to unexpected events. These experiments support
the hypothesis that planning is beneficial in domains where the actor may get stuck in dead ends.

Retry ratio. Figure 2 plots results for a second measure retry ratio, or the number of times that APE
had to call the Retry procedure divided by the total number of jobs to accomplish. Recall that the
Retry procedure is called when there is a failure in the method instance m that APE chose for some
task τ (see Algorithm 4). Retry works by trying to use another applicable method instance for τ that
it has not tried already. Although this is similar backtracking, a critical difference is that, since the
method m has already been partially executed, it has changed the current state, and in real-world
execution (unlike planning) there is no way to backtrack to a previous state. In many application
domains it is important to minimize the total number of retries, since recovery from failure may
incur unbudgeted amounts of time and expense.

In all four domains, the retry ratio decreased slightly from b = 0 (purely reactive APE) to b = 1,
and it generally decreased as b increased. This is because higher values of bmade APE-plan examine
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(a) (b)

Figure 2. Retry ratio (number of retries / total number of jobs) for different values of search breadth b for
(a) domains having dead ends (Chargeable Robot and Explorable Environment) and (b) domains having no
dead ends (Spring Door and Industrial Plant). CR = Chargeable Robot, EE = Explorable Environment, SD =
Spring Door, IP = Industrial Plant.

a larger number of alternative plans before choosing one, thus increasing the chance that it finds a
better method for each task. In the Chargeable Robot domain, the large decrease in retry ratio from
b = 1 to b = 2 corresponds to the increase in success ratio observed in Figure 1. The same is true
for the Explorable Environment domain at b = 2 and b = 4. Since the retry ratio decreases with
increasing b in all four domains, this means that the integration of acting and planning in APE is
important in order to reduce the number of retries.

Speed to success. An acting-and-planning system’s performance cannot be measured only with
respect to the time to plan; it must also include the total amount of time required for both planning
and acting, which we refer to as time to success. Acting is in general much more expensive, re-
source demanding, and time consuming than planning, and unexpected outcomes and events may
necessitate additional acting and planning. For a successful job the time to success is finite, but for a
failed job it is infinite. To average the outcomes, we use the reciprocal amount, the speed to success,
which we define as:

ν =

{
0 if the job is not successful ,
α/(tp + ta + nctc) if the job is successful ,

where α is a scaling factor, tp and ta are APE-plan’s and APE’s total computation time, nc is the
number of commands sent to the execution platform, and tc the average amount of time needed to
perform a command. In our experiments we used tc = 250 seconds and we used α = 10, 000 to
avoid very small numbers.

The higher the average value of ν, the better the performance. Figure 3 shows how the average
value of ν depends on b. In the domains with dead ends (Chargeable Robot and Explorable Environ-
ment), there is a huge improvement in ν from b = 1 (where ν is nearly 0) to b = 2. This corresponds
to more successful jobs in less time. As we increase b further, we only see slight change in ν for
all the domains, even though the success ratio and retry ratio improve (Figures 1 and 2). This is
because of the extra time overhead of running APE-plan with higher search breadth.
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(a) (b)

Figure 3. Speed to success ν averaged over all of the jobs, for different values of search breadth b for (a)
domains having dead ends (Chargeable Robot and Explorable Environment and (b) domains having no dead
ends (Spring Door domain and Industrial Plant domain). CR = Chargeable Robot, EE = Explorable Environ-
ment, SD = Spring Door, IP = Industrial Plant.

In summary, for domains with dead ends, planning with APE-plan outperforms the purely reac-
tive version of APE. The same results occur in the domains without dead ends, but there the effect
is less pronounced thanks to the domain specific heuristics in our experiments, which chooses good
refinement methods early on.

6. Concluding Remarks

We have proposed a novel system APE that integrates acting and planning using the actor’s opera-
tional models. Our experimentation address multiple aspects of realistic domains, including dynam-
icity and the need for run-time sensing, information gathering, collaboration, and concurrent tasks
(see Table 5). We have shown the difference in performance on domains with and without dead
ends on three different metrics: success ratio, retry ratio, and speed to success. We saw that acting
purely reactively in the domains with dead ends can be costly and dangerous. The homogenous and
sound integration of acting and planning provided by APE produces benefit in domains with dead
ends, which is reflected through a higher success ratio. In most cases, this measure increases with
the search breadth of APE-plan. In the case of safely explorable domains, APE manages to have a
similar ratio of success for all breadths.

Our second measure, the retry ratio, counts the number of retries of the same task done by APE
before succeeding. Many retries is undesirable, since this has a high cost. We have shown that
both in domains with dead ends and without, the retry ratio diminishes considerably with APE-plan,
demonstrating its benefits even in safely explorable domains. Finally, we have devised a novel and
practical way to measure the performance of APE and similar systems. While systems that both act
and plan are usually evaluated only on their planning functionality, we devised a speed to success
measure to assess the overall time to plan and act, including failures. This takes into account the fact
that executing commands in the real world usually takes much longer than computation. We have
shown that, in general, the integration of APE-plan reduces time significantly in the case of domains
with dead ends, but we found no such decrease in performance for safely explorable domains.
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Despite these encouraging results, there remains a need for additional research. When im-
plementing APE-plan, we encountered problems involving APE-plan’s search breadth and sample
breadth parameters, b and b′:

• The motivation for b is that there may be multiple method instances that are candidates for
accomplishing a task τ . To find one that works as desired, it may be necessary to try several and
b tells APE-plan how many to try. If τ occurs in the body of some method, m, then APE-plan
should backtrack b times to the point in m’s body where τ occurs and resume execution using a
different candidate.

• The motivation for b′ is that a command c may have multiple possible outcomes, which may
vary probabilistically or depend on unknown conditions in the external environment, and APE
may need to do different things depending on the outcome. Thus, it should sample multiple
outcomes and generate plans for each one, with b′ telling how many times to do so. If c appears
in the body of a method instancem, then the system should backtrack b′ times to the point where
c occurs, sample c’s outcome, and resume execution.

In both situations, it is necessary to backtrack and resume execution at a specific point in the body
of a method m. That would be easy if APE-plan were an HTN planner like SHOP, because m’s
body would be a list of tasks that could be manipulated in the way desired. However, in APE-
plan, m’s body is Python code and backtracking to a specific point in m means backtracking over
its execution. To make this possible, we would need to implement a modified Python interpreter
running inside APE-plan. We made efforts to this end, but it turned out to be very difficult.

As a workaround for the search-breadth problem, our implementation of APE-plan tries b of
the candidate method instances and chooses one that looks locally optimal for accomplishing τ , i.e.,
without regard to how this might affect what plan is needed for any subsequent tasks. Thus, although
APE-plan’s plan may be locally optimal, it generally will not be globally optimal. Since APE does
not have a way to ensure the outcome of a command, we needed a different workaround for the
sample-breadth problem. Our implementation requires b′ = 1, i.e., it only samples one command
outcome, namely the most probable one. If a command c has other less-probable outcomes, then
APE-plan will not consider how to handle them.

Despite the above limitations, APE still performed well in our experiments. One reason is that,
even if it sometimes makes errors, it is much better than having no planner at all. Another reason is
that the system runs online. APE only uses a small part of the plan that APE-plan returns and calls it
again from the next state of the world. If this state differs from that predicted, the next call will plan
for the new state. Thus, APE is more resilient than it would be if APE-plan were operating offline.
On the other hand, it is possible to produce better plans than the ones APE-plan produces, and
these difficulties have prompted us to rethink how planning should occur in an environment where
outcomes may be uncertain, information may be imperfect or incomplete, and the situation may
change dynamically. We have designed a new system that does not have the deficiencies described
above and we have begun implementation and testing. Our work-in-progress on that algorithm is
presented in Patra et al. (2019).
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Table 6. The pseudocode of APE-plan and APE-plan-task, a subroutine of APE-plan, which is the planner
used by APE.

APE-plan (M, s, τ):
n← new tree node
label(n)← τ
T0 ← tree with only one node n
(T, v)←
APE-plan-task(s, T0, n,M, 0)

if v 6= failure then
return (T, v)

else
B ← { Applicable method
instances for τ in M ordered
according to a preference
ordering }

if B 6= ∅ then
n← Create new node
label(n)← B[1]
T ← tree with only one node
n as the root

return (T, 0)

else
return null, failure

APE-plan-task (s, T, n,M, dcurr):
τ ← label(n)
B ← { Applicable method instances for
τ in M ordered according to a
preference ordering }

if |B| < b then
B′ ← B

else
B′ ← B[1...b]
U, V ← empty dictionaries

for each m ∈ B′ do
label(n)← m
U [m], V [m]←
APE-plan-method(s, T, n,M, dcurr+
1)
mopt ← arg-optimalm{V [m]}

return (U [mopt], V [mopt])

7. Appendix: Description of APE-plan

The main procedure of APE-plan is shown in Table 6. The parameters b, b′ and d are global variables
and denote the search breadth, sample breadth, and search depth, respectively. The system receives
as input a task τ to be addressed, a set of methods M , and a current state s, for which it returns a
refinement tree T for τ . It starts by creating a refinement tree with a single node n labeled τ and
calls a sub routine APE-plan-task, which builds a complete refinement tree for n.

The APE-plan-command subroutine first calls SampleCommandOutcomes, which samples b′

outcomes of the command com in the current state s. Samples are taken from a probability dis-
tribution specified by the domain’s designer.The module returns a set consisting of three tuples of
the form (s′, v, p), where s′ is a predicted state after performing command com, and where v and
p are the cost and probabilities of reaching that state estimated from sampling. We need the next
state s′ to build the remaining portion of the refinement tree T starting from the state s′. The cost v
contributes to the expected value of T with probability p. After getting this list of three tuples from
SampleCommandOutcomes, APE-plan-command calls on NextStep.
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Table 7. The pseudocode for APE-plan-method. *pt = APE-plan-task, pc = APE-plan-command.

APE-plan-method (s, T, n,M, dcurr):
m← label(n)
if dcurr = d then

s′, cost′ ← HeuristicEstimate(s,m)
n′, d′ ← NextStep (s′, T, n, dcurr)

else
step← first step in m
n′ ← new tree node;
label(n′)← step

Add n′ as a child of n
d′ ← dcurr; cost′ ← 0; s′ ← s

case type(label(n′)):
task: T ′, v′ ← pt*(s′, T, n′,M, d′)
command:

T ′, v′ ← pc*(s′, T, n′,M, d′)
end: T ′ ← T ; v′ ← 0

return (T ′, v′ + cost′)

APE-plan-command (s, T, n,M, dcurr):
c← label(n)
res← SampleCommandOutcomes (s, c)
value← 0
for (s′, v, p) in res do

n′, d′ ← NextStep (s′, T, n, dcurr)
case type(label(n′)):
task: Ts′ , vs′ ← pt*(s′, T, n′,M, dcurr)
command:
Ts′ , vs′ ← pc*(s′, T, n′,M, dcurr)
end: Ts′ ← T ; vs′ ← 0
value← value+ (p ∗ (v + vs′))

return T, value

NextStep (s, T, n, dcurr):
dnext ← dcurr
while True do

nold ← n
n← parent(nold) in T
m← label(n)
step← next step in m after
label(nold) depending on s

if step is not the last step of m then
nnext ← new tree node
label(nnext)← step; break

else
dnext ← dnext − 1
if dnext = 0 then

nnext ← new tree node
label(nnext)← end; break

else
continue

return nnext, dnext

SampleCommandOutcomes (s, com):
S ← φ
Cost,Count← empty dictionaries
repeat

s′← Sample(s, com)
S ← S ∪ {s′}
if s′ in Count then

Count[s′]← 1
Cost[s′]← costs,m[i](s

′)

else
Count[s′]← Count[s′] + 1

until b′ samples are taken
normalize(Count)
res← φ
for s′ ∈ S do

res←
res ∪ {(s′,Cost[s′],Count[s′])}

return res
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The NextStep subroutine shown in Figure 7 takes as input the current refinement tree T and
node n being explored. If n refers to some task or command in the middle of a refinement method
m, then NextStep creates a new node labeled with the next step inside of m, the depth of nnext being
the same as n. Otherwise, if n is the last step of m, it continues to loop and travel towards the
root of the refinement tree until it finds the root or a method that has not been fully simulated. The
function returns end when T is completely refined or a node labeled with the next step in T . The
label depends on the current state s and the depth of T . After APE-plan-command gets a new node
n′ and its depth from NextStep, it calls either APE-plan-command or APE-plan-task, depending on
the label of n′. The routine does this for every s′ in res and estimates a value for T from these runs.
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