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Abstract 
A wide range of potential dialogue applications involve collaborative problem solving between 
humans and complex automated reasoning systems, but most existing dialogue system models use 
very simple dialogue models not expressive enough to capture such behavior. Existing models can 
only be employed for very simple tasks (e.g., making a reservation, querying bus schedules). We 
describe a model of dialogue explicitly based on a model of collaborative problem solving that can 
support quite complex task-based reasoning. The key contribution is a domain-independent 
collaborative problem-solving model that allows the user to interact with complex automated 
reasoning capabilities, including existing legacy systems, relatively easily. We describe this model 
and present a case study of the system running in a complex domain involving building and 
evaluating quantitative models of world processes (e.g., agriculture, economics, food security). 

1.  Introduction 

Most current dialogue systems support only simple tasks that can be encoded in a state-based 
dialogue model, as in Williams et al. (2016) and the Dialogue State Tracking Challenge.1 
Approaches to dialogue modeling based on the information state (Cooper, 1997), such as 
TrindiKit (Larsson & Traum, 2000), its open-source successor trindikit.py (Ljunglöf, 2009), and 
OpenDial (Lison & Kennington, 2016), still support only very simple task and domain models. 
These are not expressive enough to support mixed-initiative dialogue systems with complex back-
end reasoning systems.  

Early theoretical work on SharedPlans (Grosz & Kraus, 1996; Lochbaum et al., 1990) and 
plan-based dialogue systems (e.g., Allen & Perrault, 1980; Litman & Allen, 1987) laid good 
foundations for more general systems. These defined the various communication acts that can be 
performed in terms of their effects on the dialogue participants’ beliefs and goals. Perhaps the 
best-developed formalism is described by Cohen and Levesque (1990). Gabaldon et al. (2014) 
present an elaboration of such models within the ICARUS cognitive architecture. Allen et al. 
(2002) developed the concept of interpreting dialogue within an explicit model of collaborative 
problem solving (CPS), but while it inspired a number of subsequent systems, the CPS model has 
never been implemented in a direct way.  

 
 
1 https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge 
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RavenClaw (Bohus & Rudnicky, 2009) supports a plan-based dialogue management frame-
work that has been used in a number of dialogue systems. While its dialogue engine is task inde-
pendent and includes a number of generic conversational skills, its behavior, from language 
interpretation to response generation, is driven by task-specific dialogue trees (the plans); these 
can describe only simple tasks and must be implemented anew for every application. The Disco 
system (Rich & Sidner, 2012) provides a more general framework tied to a plan-based represent-
tation of the task. It requires specifying the domain plans as hierarchical task networks that are 
developed for the particular application. While these plan-based approaches allow more com-
plexity in dialogues, they do not support conversations that involve collaborative interaction with 
complex back-end reasoners, such as planning and simulation engines, or complex software for 
data analysis. 

The key contribution of our approach is that it uses a domain-independent model of collabo-
rative problem solving and language understanding to support interaction, allowing independently 
developed complex reasoning components to implement the task. The first steps towards this are 
described in Galescu et al. (2018), which introduced a domain-independent model of collabora-
tive problem-solving acts and a framework for deriving such acts based on domain-independent 
language understanding, intention recognition, and interaction with a domain-specific behavioral 
agent that manages the back-end reasoning capabilities and is built from scratch for each 
application. They reported a generic dialogue shell that can be used to produce a complete 
dialogue system with this framework. 

This paper describes a further elaboration of this model in which the behavioral agent itself is 
also domain independent and captures an abstract model of collaborative problem solving that is 
easily instantiated with domain-specific reasoning components that can perform tasks such as 
planning, simulation, and causal analysis. While this behavioral agent is domain independent, it is 
still task dependent in that it is general across applications where the dialogue involves problem 
solving. We demonstrate this model in a complex domain, namely collaborative building, 
running, and evaluating models of world processes for purposes of making predictions and 
planning interventions, which we call world modeling. 

1.1  Collaborative Problem Solving 

When agents are engaged in solving problems together, they must communicate to agree on what 
goals to pursue, what steps to take to achieve those goals, negotiate roles, resources, and more. To 
underscore its collaborative aspect, this type of joint activity has been called Collaborative 
Problem Solving (CPS). Modeling the type of dialogues agents are engaged in during CPS must, 
therefore, take into account the nature of the joint activity itself. In the early 2000s, Allen and 
colleagues described a preliminary plan-based CPS model of dialogue based on an analysis of an 
agent’s collaborative behavior at various levels: 

• An individual problem-solving level, where each agent manages its own problem-solving 
state, and plans and executes individual actions;  

• A collaborative problem-solving level, which models and manages the joint or collaborative 
problem-solving state (shared goals, resources, situations); 

• An interaction level, where individual agents negotiate changes in joint problem-solving state;  
• A communication level, where speech acts realize the interaction level acts. 

This model was refined in a series of publications, and several prototype systems, starting from 
the TRIPS system (Allen et al., 2000), have been developed within this framework (Allen et al., 
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2002; Blaylock & Allen, 2005; Allen et al., 2007; Ferguson & Allen, 2007). While the CPS 
model provided the theoretical foundations, in practice, each of these systems involved the use of 
a domain-specific CPS model built specifically for the application and encoded domain-specific 
heuristics in order to support intention recognition.  

One of the main goals of our current work has been to enable linguistic interpretation and 
high-level intention recognition to be performed independently of the domain-specific problem-
solving mechanisms. The domain-specific CPS would then specialize the higher-level intentions 
into concrete problem-solving actions and verify that such actions make sense in the domain 
context. As a consequence, in this model the back-end problem solvers would be relatively 
insulated from the need to worry about linguistic issues of sentence understanding, discourse, and 
dialogue management. 

Galescu et al. (2018) describe a generic dialogue shell based on the CPS model that provides 
general language understanding and dialogue management capabilities. This dialogue shell has 
been used in a range of other systems, including a mixed-initiative system for planning and 
execution in a blocks world (Perera et al., 2017), learning about structures in blocks world (Perera 
et al., 2018), an assistant to a biologist for building, visualizing, running, and modifying complex 
biological causal models (Gyori et al., 2017), helping a human composer create and edit music 
scores (Quick & Morrison, 2017), and playing cooperative games (Kim et al., 2018). Each one of 
these systems uses very different forms of domain-specific reasoning, but all use the same 
interface to the generic dialogue shell. In this paper, we focus on pushing this model one step 
further by providing a generic behavioral agent performing the collaborative problem solving that 
could be used in different domains. This model is intended to support any application that that 
involves interpreting and analyzing situations, predicting outcomes, and planning possible 
interventions. We illustrate this model by showing its use in one very general setting, namely 
world modeling, where the system collaborates with the user to model various world processes, as 
described in the next section. 

1.2  Case Study Domain: World Modeling 

The state of the art in world modeling involves an extremely labor-intensive process, requiring 
person-years of effort by highly trained modelers in order to construct models and run 
experiments for analysis of complex problems such as food security, migration, and land use. The 
bulk of this effort does not actually involve constructing new quantitative models; rather, it is 
focused first on determining how a scenario corresponds to a configuration of quantitative 
modeling engines (including identifying or approximating the required data and parameter values 
needed), and then on the mechanics of running models over a set of scenario variations. For 
example, in building the Australian National Outlook (Hattfield-Dodds et al., 2015), over 50% of 
the effort was spent manually running simulations over multiple scenarios (e.g., manual linking of 
models, adjustment of parameters). 

The existing state of the art requires human analysts to do the bulk of the work, identifying 
the capabilities of each modeling engine, selecting the relevant ones, examining historical data to 
determine possible ranges of values, harmonizing the data for input and connecting the output of 
some engines to other engines, possibly via some transformation, and configuring the whole 
network of modeling engines to perform the desired analyses. Often, solving a problem requires 
running a subset of models and caching the results in large data sets that are then accessed by the 
next stage of modeling. As a result, it is not feasible to construct such analyses in a timely manner 
to support the evaluation of options on ongoing problems critical to global security. 
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The long-term goal of the world modeling project is to develop a dialogue system that can 
provide analysts with a rich suite of tools with which they can quickly set up models to answer 
new questions, identify the necessary data, make the required assumptions, and then run complex 
experiments varying key parameters. This paper uses as the case study the first prototype of this 
system, called CWMS (Collaborative World Modeling System, pronounced “kooms”). In 
CWMS, the user and the system collaboratively explore different world modeling scenarios. The 
two communicate via dialogue in natural language and GUIs (e.g., visualization tools) to itera-
tively plan and refine simulation experiments together. 

2.  Dialogue Systems Based on Collaborative Problem Solving  

A collaborative conversational agent must understand a user’s utterances, that is, obtain a 
representation of the meaning of the utterance, recognize its intention, and then reason with this 
intention to decide what to do and/or say next. In addition, the system must convert its own 
intentions into language and communicate them to the user. 

Figure 1 shows a conceptual diagram of our generic dialogue system. This follows the 
common separation of a conversational agent’s functionality into interpretation, behavior, and 
generation, but where the separation lines are is critical for realizing the idea of isolating domain-
independent from domain-specific processing. From the user's utterance the TRIPS parser (Allen 
& Teng, 2017; Allen et al., 2018) constructs a logical form, which is a domain-independent se-
mantic representation. The logical forms are further processed into surface speech acts, including 
social conversational acts, by considering the discourse context and performing language-based 
intention recognition. Different surface forms are also normalized (see Section 4 for more 
details). The CPS manager is responsible for managing the collaborative problem-solving state 
(e.g., managing the proposals, acceptances, and rejections) required to reach agreement (mutual 
goals and beliefs). It converts the basic communicative acts into possible abstract communicative 
intentions. These intentions then are further evaluated with respect to the actual problem-solving 
state, so they are not fully interpreted until they are accepted by the behavioral agent. This agent 
is responsible for operationalizing the communicative intentions into actions (e.g., planning, 
acting on the world, updating its knowledge of the situation). An autonomous behavioral agent 
might be able to plan and act on its own, but neither the behavioral agent nor the user can 
unilaterally decide on the status of collaborative goals without a commitment from the other 
party. The two-way negotiation between the CPS manager and the behavioral agent includes 
communicating the behavioral agent’s attitude towards shared goals, which the CPS manager will 

 

Figure 1. The abstract architecture showing domain and task general components (green), domain general 
components for problem-solving tasks (orange), and domain specific components (pink). 
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use to generate communicative acts for language generation (such as accepting or rejecting a goal 
or proposing a new one) and update the collaborative state.  

A more detailed view of the behavioral agent and back-end reasoners in the CWMS system is 
shown in Figure 2. As discussed above, the parsing, discourse interpretation, and collaborative 
problem-solving manager are mostly domain- and task-independent, but may use some domain-
specific knowledge sources. The behavioral agent is task specific (i.e., analyzing situations and 
evaluating courses of action), though domain independent. In other words, it encodes general 
problem-solving behaviors such as planning, evaluating hypotheses, and acquiring and displaying 
information. It is designed to be able to work with any combination of domain-specific simulation 
and reasoning engines, shown in pink. Each simulation/reasoning module, as it comes online, 
sends a message registering its requirements (input) and capabilities (output). From these 
specifications, the planner will develop one or more viable plans linking the different modules to 
reach the desired simulation goal by feeding the outputs of particular modules (possibly with data 
transformations) as inputs to other modules. 

We incorporated five domain specific simulation modules into our initial system:  

1. DSSAT (Decision Support System for Agrotechnology Transfer; Jones et al., 2003): A point-
based crop-modeling system with detailed models for over 40 crops. 

2. pSIMS (parallel System for integrating Impact Models and Sectors; Elliott et al., 2014): A 
framework for massively parallel climate-impact simulations and global grid-based crop 
modeling, using as the underlying crop-modeling engine DSSAT (and others). 

 

Figure 2. The context for the CWMS behavioral agent showing components that are generic (green), task 
specific but domain general (orange), and task and domain specific (pink). 
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3. ABN (Agent Based Network; Marchand et al., 2016): An agent-based out-of-equilibrium 
food-shock model that computes changes in import, export, consumption, and reserves due to 
an injected shock to a country's crop production. 

4. TWIST (Schewe et al., 2017): A short-term equilibrium model for computing market prices 
based on producer-side and consumer-side reserves, supply, demand, production, and 
consumption. 

5. IMPACT (International Model for Policy Analysis of Agricultural Commodities and Trade; 
Robinson et al., 2015): A partial equilibrium multi-market economic model for analyzing 
long-term scenarios (30 years) involving agriculture, trade, and food security.  

Table 1 shows an actual dialogue with the current system, which we will use to explore the 
system operation in the rest of the paper. As one can see, it starts with the user suggesting a goal 
(1), which the system accepts and refines (2), after which it suggests an initial course of action 
(4). To support this interaction, the system reasoned that malnourishment is an indicator of food 
insecurity and also that it is a value computable by one of the reasoning engines. The system then 
constructs a plan to run a reasoning engine that can compute expected childhood malnutrition 
rates, using baseline information such as expected availability of food. The answer computed is 
given in (6). The user then expresses a desire to elaborate the scenario based on predictions that 
the coming year will include an El Niño event. The system recognizes the intention to run a new 
analysis with this new assumption.  

To estimate the amount of change, CWMS must construct a plan to estimate the change in 
crop yields given an El Niño year. A key problem in prediction is that the future weather and 
other factors are unknown. Thus, the system constructs a plan to estimate the effect of an El Niño 
year by interpolating results from simulations of 30 past years, weighting each result based on 
how much it was an El Niño year and its distance. Once the change in crop yield is computed, 
this change can then be fed through an economic model to compute the effect on food avail-
ability, which is then fed through a food security model that computes malnourishment rates.  

The user follows up on the analysis with an open-ended question about what could be done to 
mitigate the effect of the El Niño event. CWMS does not have a specific answer. It does know a 
strategy to help the user explore causal connections, however, so in response it generates a causal 
graph and generates utterance (12). Using this information, the user asks about the effect of 
changing the planting date. The system knows a problem-solving strategy for exploring the 
effects of changing variables, and so asks whether it should construct a simulation experiment 
that estimates the crop yields for a range of different planting dates. 

Once the user concurs, CWMS builds a plan for the experiment. Basically, it chooses a range 
of planting dates one week apart, starting one month before the typical planting date and running 
to one month after. For each of these dates, it estimates the expected yield using the interpolation 
function for El Niño operating over the 30 years of past data. Once completed, it shows a plot of 
the results to the user and identifies the best option. This is as far as we have space to discuss, but 
the user could easily continue on, asking for elaboration (e.g., OK, and how would that affect the 
malnourishment rates?), exploring other options (e.g., What if we could increase the amount of 
fertilizer that was available?), or pursuing some new strategy for dealing with the problem (e.g., 
shipping more food aid to the region). 



 DIALOGUE AS COLLABORATIVE PROBLEM SOLVING  
 
 

201 

Table 1. A dialogue between a user (U) and the CWMS system (S). 

1 U: Can you analyze food insecurity in Sudan next year? 
2 S: Should we look at child malnourishment rates? 
3 U: OK. 
4 S: Should I compute a baseline estimate based on available data? 
5 U: yes 

System identifies a reasoning engine (IMPACT) that can estimate childhood 
malnourishment, and uses existing knowledge about Sudan (population, food 
availability, etc.) to estimate the number of malnourished children. 

6 S: OK. The percentage of malnourished children is about 39%. 
7 U: What if 2019 is an El Nino year? 

System builds a plan to estimate the difference in crop yields in Sudan in El Nino years 
by interpolating simulation results from 30 years of prior weather data.  

8 S: I can estimate the effect with the following plan. Does that look good? 
9 U: Yes 
10 S: OK. The percentage of malnourished children increases by 5%. 
11 U: What can we do to mitigate the increase? 

System creates and displays a causal graph based on the knowledge it has acquired from 
the declarations of the reasoning engines. 

12 S: Here is what I know about causal influences of malnourishment 
13 U: What would happen if we change the planting date? 
14 S: Shall I run simulations varying the planting date? 
15 U: Yes 

System creates a plan to run a series of simulations that vary the planting date parameter, 
again estimating yields for an El Nino year by interpolating over results obtained from 
simulations of the past 30 years. The plan then assembles the results and presents to the 
user in a chart. 

16 S: The best scenario involves planting crops one week earlier than usual. 
 
 

 

3.   System Details 

This section first discusses some aspects of the generic system applicable in any domain, and then 
considers the domain-specific components of the CWMS system. We use the dialogue in Table 1 
as a running example, and elaborate on the components shown in Figure 2.  

3.1   Language and Discourse Processing  
While not the focus of this paper, to provide context this section describes briefly the language 
and discourse processing performed by the system. The TRIPS parser has an extensive grammar 
and an effective 100,000+ word semantic vocabulary defined in terms of a roughly 4000 concept 
ontology, described in more detail in Allen et al. (2018) and in Allen and Teng (2017). After a 
first pass that performs named-entity recognition, using geographical term databases, the parser 
produces a representation in a unscoped modal logic (see Allen, 1995; Manshadi et al., 2008). A 
fragment of the parse for the first sentence is shown in graphical form in Figure 3. 
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Figure 3. A fragment of the parse for “Can you analyze food insecurity in Sudan next year?”. 

 
 The logical form is then passed to the interpretation manager, which performs a number of 

functions, most notably: (1) utterance segmentation; (2) surface speech act identification; (3) ref-
erence resolution; and (4) ontology mapping. Utterance segmentation handles situations where 
the user might perform multiple speech acts in a single utterance, such as an acceptance and an 
assertion (e.g., Yes. I’ll get the pizza). Segmentation is accomplished by identifying various coor-
dination structures in the logical form produced by the parser. The interpretation manager then 
proceeds to process each speech act individually, updating the discourse context after each one.  

The second phase is identification of the surface speech act, which encodes the conventional 
ways that basic communicative intentions can be realized. The basic speech acts include 
assertions (TELL), commands (REQUEST), acknowledgements, acceptance and rejection acts, 
proposals, and various forms of questions and answers. It uses patterns based on convention 
linguistic forms to identify the range of likely speech acts. For example, the sentence Can you 
open the door would be identified most likely to be a REQUEST (to open the door), with a less 
likely option that it is a true yes/no question about the ability to open the door. This phase of 
processing provides a significant canonicalization for the range of possible ways speech acts can 
be realized. For instance, the following acts are all identified as asking a question about the time: 
What is the time? Can you tell me the time? Do you know the time? Tell me the time. I want to 
know the time. For the most part, these are all interpretations that could be derived from first 
principles using the plan-based model of speech acts (Allen & Perrault, 1980). With our current 
approach, however, these so-called indirect forms identified by inference in the plan-based model 
are derived directly and with no additional “cognitive effort”, and thus is consistent with what we 
know of human processing from psycholinguistic research. The system has slightly less than one 
hundred hand-built rules that encode conventional common indirect forms found in conversation. 
Note the rules do not identify a single interpretation. Rather, they identify a ranked set of possible 
interpretations based on typical usage and the current discourse context. These options are passed 
to the next phase, which can then use additional context to identify the interpretation that was 
actually intended. 

 Let us return to our running example. The sentence Can you analyze food insecurity in Sudan 
next year?, while literally a yes-no question about ability, is mapped to a REQUEST act as first 
choice. Namely, it is a request that the system perform an analysis action (ONT::SCRUTINY) of 
the food insecurity situation in Sudan. 
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The next phase in the interpretation manager is reference resolution, in which referring 
expressions such as anaphora and definite descriptions are connected to previously mentioned 
terms in the discourse. As typical with the first utterance in a dialogue, there are no anaphoric 
expressions in our example sentence. Note that external name references have already been 
handled by the named-entity recognition component that was part of preprocessing. Thus, 
external names are already tagged with their referential information before parsing.  

In many cases, the logical form produced by parsing is transformed into a new representation 
based on the domain ontology using an ontology mapping system. In systems where such map-
ping rules are defined, we can automatically compute which TRIPS ontology types correspond to 
domain-specific types and prefer these senses. This process results in the surface speech act that 
is the starting point in Figure 2.  

3.2  Collaborative Problem-Solving Management 

The output of the discourse interpretation phase is a speech-act hypothesis that is the input to the 
collaborative problem-solving management phase. The CPS manager is designed to interpret and 
drive the interactions that embody problem-solving negotiation between the user and the system 
(i.e., the interaction level in the above discussion). It is an evolution of the Collaborative Problem 
Solving (CPS) model described by Allen et al. (2002), with a particular focus on separating the 
domain-independent aspects from the domain-specific reasoning. It is mainly concerned with 
interpreting and driving the interaction that establishes and manages the collaborative problem 
state, by means of CPS acts such as proposing a goal, accepting or rejecting a proposal, proposing 
the refinement of a goal, or identifying a solution to a problem. One might immediately realize 
that this cannot be done accurately without reasoning about domain-specific intentions as well.  

For instance, in our running example, the sentence Can you analyze food insecurity in Sudan 
next year?, which has been mapped to a surface speech act REQUEST, is deemed likely to be a 
PROPOSE of a new top-level goal (since no goal has been established so far, this being the first 
utterance). All this can be done based on the current problem-solving context (i.e., no goal has 
been agreed to yet) and the form of the surface speech act (i.e., a REQUEST). But this hypothesis 
cannot be confirmed without checking that ‘analyzing food insecurity’ is a reasonable 
collaborative goal for the user to propose to this system. This check requires domain-specific 
knowledge and reasoners. Some other REQUEST acts, such as Can you repeat what you said?, 
would not be confirmed as a relevant shared domain goal and thus would not be interpreted as a 
PROPOSE for a shared goal. Rather, it would be interpreted using a model of the communication 
process and grounding.  

 In order to make the system as domain independent as possible, we balance this tension 
between the desire for domain-independent processing and the need for domain-specific 
processing by having the CPS manager generate hypotheses about the actual CPS act performed 
and then request the behavioral agent to evaluate their likelihood given the current problem-
solving state. If the behavioral agent deems the hypothesis acceptable, then the CPS manager 
commits the act and thus changes the CPS model, thereby identifying what the system believes 
was the intended interpretation. If the behavioral agent finds a hypothesis unacceptable, the CPS 
manager can then suggest another possible interpretation and continue to do so until an acceptable 
one is found or until all hypothesized interpretations are exhausted. This evaluate-commit cycle 
(see Figure 4) is critical for enabling intention recognition that exploits strong linguistic context 
(i.e., the exact phrasing    of utterances and the    discourse context),    as well as the     strong context of  
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Figure 4. The EVALUATE-COMMIT cycle to determine whether a CPS act is acceptable before jointly 
committing to it.  
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the collaborative problem-solving state and domain reasoning provided by different back-end 
specialized reasoning engines.  

Continuing with our running example, the system sends a set of messages to establish the 
joint goal to analyze food insecurity in Sudan:  

CPS Manager ® BA: (EVALUATE :content (ADOPT :id O1 :what C1 :as (GOAL)) :context …) 
BA ® CPS Manager: (ACCEPTABLE :content (ADOPT :id O1 :what C1 :as (GOAL)) :context …) 
CPS Manager ® BA: (COMMIT :content (ADOPT :id O1 :what C1 :as (GOAL)) :context …) 

Here C1 is an identifier to the semantic representation of the action of analyzing food insecurity 
in Sudan, which is formally specified in the elided context arguments. In addition, the CPS 
manager issues a directive to the generation component to produce an acceptance of the proposal 
(the OK in utterance 2 in Table 1). Once the acceptance is generated, the system believes there is 
a shared joint goal with the user to analyze the food security situation in Sudan.  

Looking at the formalism in a bit more detail, we see that a CPS act itself consists of two 
main parts: an operation and a collaborative problem-solving object. The operations model the 
interactions that the two agents take to establish joint intentions, including actions such as 
ADOPT and ABANDON, whereas the CPS objects are goals, constraints, situations, and the like. 
A brief summary of the key CPS acts is shown in Table 2. Each of these acts may take a number 
of arguments that provide further context for the operation. For instance, the ADOPT act might 
introduce a top-level goal or might introduce a goal that is a subgoal of an existing goal, e.g., a 
top level goal can be introduced with (ADOPT :id O1 :what C1 :as (GOAL)), whereas a subgoal 
could be (ADOPT :id O2 :what C2 :as (SUBGOAL :of O1)). More detail on the architecture of our 
CPS manager can be found in Galescu et al. (2018).  

3.3   Defining Domain-Specific Capabilities 
Before discussing the behavioral agent, we should address how the behavioral agent’s domain-
independent problem solving relates to the domain-specific reasoning and knowledge capabilities 
for the application domain. We will refer to these as the domain-specific reasoning engines 
(DSREs). At system startup time, each DSRE identifies its capabilities in terms of its input and 
output parameters indexed into a common ontology. The behavioral agent then uses this 
information when it needs information that matches one of the output parameters. Each parameter 
declaration includes, as appropriate, key information such as the required units for values. In 
addition, each input parameter is declared as being required (i.e., the values must be provided) or 
optional (i.e., generally this means the DSRE has default values if a value is not specified). In 
world modeling, many of the DSREs require or produce table-based data (e.g., the crop yields in 
different grid locations over ten years). To allow this, the specification language allow declaration 
of table formatting parameters. 
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As an example, Table 3 shows how the DSRE that encapsulates the pSIMS module identifies 
its capabilities, which includes computing crop production and other values for an area and 
timeframe, as described in Elliot et al. (2014). Looking at the declarations, we see this component 
is defined in terms of a set of input parameters and output parameters that specify what it can 
compute. All parameters are identified by an :ID-CODE and their data format is specified in the 
:FORMAT, along with a :UNIT field if it is a numerical quantity. For instance, the INPUT 
parameter LOCATION-FILE in Table 3 has the ID-CODE LOCATION and a FORMAT value of 
(RASTER “GTIff” 180 90).  

Key to enabling the interoperability on different components is the declaration of parameters 
in terms of a common ontology. For this initial prototype, we hand-built the ontology drawing 
from a range of sources, including the ICASA ontology (White et al., 2013), the DSSAT 
parameter codes, and a few generic ontology types from the TRIPS ontology (e.g., LOCATION, 
TIME). The ID-CODE is drawn from this ontology and lets the system link the same parameters 
between different DSREs. From this declaration, we know this parameter identifies a LOCA-
TION, and, furthermore, one that is specified as a gridded representation of the area of interest, 
(RASTER “GTIff” 180 90). The system also knows of other ways to represent locations, includ-
ing ISO country codes, which are used by other DSREs. The planner uses a component called 
SPACEMAN that can map locations between different location formats as necessary; this also 
can map from natural language descriptions (e.g., country names) to various location formats.  

 As another example, the FEN_TOT input parameter encodes the amount of fertilizer used 
and has an ID-CODE drawn from the ICASA ontology. The pSIMS module requires the amount 

Table 2. Key collaborative problem-solving acts. 

Topic ACT Gloss Example Sentence 

 
 
 
 

Goals 

ADOPT Introducing a goal Let’s plan food aid for Sudan. 

SELECT Focusing on existing goal Let’s return to the food problem. 

DEFER Temporarily putting a goal 
aside 

Let’s work on this later. 

ABANDON Abandoning a goal I don’t care about this anymore. 

RELEASE Completing a goal We’re done. 

 
Knowledge 

ASSERTION Making a claim It's too hot to grow rice. 

ASK-IF Asking a yes/no question Is it too hot? 

ASK-WH Asking a WH question How cool does it need to be? 

 
 
 

Reporting 
Problem-

Solving Status 

ACCEPTABLE Goal is acceptable OK. That’s good. 

UNACCEPTABLE Goal is unacceptable That doesn’t make sense. 

REJECTED Goal is refused No. I won’t do that. 

FAILURE Problem solving failed I can’t do that. 
I don’t have enough wheat. 

ANSWER Satisfying a question We need cool nights. 

EXECUTION-STATUS Reporting on progress in 
problem solving 

I’m running the simulation. 
I found all the distribution areas. 
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to be specified in kg/hectare. Other modules may require fertilizer amounts to be expressed in 
different units; the planner uses a specialized component to convert between different unit types 
as desired. Note that FEN_TOT is actually a function dependent on the crop, location, and plant-
ing year. The declarations also specify whether the parameter must be specified in order to run 
the component (i.e., it is REQUIRED) or it is optional. FEN_TOT is optional and, if not speci-
fied, will be instantiated with a default level that the application retrieves based on the location. 
The crop identifier, location, and planting year are all required.  

Finally, a key part of the parameter declaration is the explicit representation of tabular data. 
Often a component will produce a table as its result. For example, the PROD parameter defined in 
the output declaration is a table that lists the production for each crop, location, and planting time 
specified in the inputs. Such tables must be explicitly defined so that the planner can extract in-
formation as necessary to prepare input to another component. For instance, once the production 
per crop per location per year is computed, the planner might sum over the location grid elements 
to produce a table that represents the total production for the whole area (e.g., South Sudan). In 
other cases, the planner might plan a series of calls to a component that iterates over the values in 
a table and then collects all the results to construct a new table for use as input to another DSRE. 
Given that DSREs are systems built by external parties with different uses in mind, the planner 
must be flexible enough to accommodate the data idiosyncrasies of each one. The careful 
declaration of the input and output parameters provides the information to accomplish this aim. 

3.4  The Behavioral Agent  
We can now describe the CWMS behavioral agent. In our previous applications, the behavioral 
agents have always been domain specific and built from the ground up for each domain. 
However, the behavioral agent of CWMS captures the generic problem-solving process itself, 

Table 3. Excerpts from a declaration of a domain-specific reasoning engine. 

(DEFINE-SERVICE :NAME PSIMS :COMPONENT CROPMODELLER  
:INPUT 

( (INPUT :NAME LOCATION-FILE :GLOSS "image file of geographic region to simulate"  
    :ID-CODE LOCATION :FORMAT (RASTER "GTiff" 180 90) :REQUIREMENTS :REQUIRED) 

(INPUT :NAME CRID :GLOSS "identifier of crop to simulate"  
:ID-CODE CRID :ID-CODE-CONSTRAINT (MAZ PML RIC SGG SBN WHB WHD WHT)  
:FORMAT ONT::CODE :REQUIREMENTS :REQUIRED) 

(INPUT :NAME PLYR :GLOSS "planting year(s) to simulate" 
:ID-CODE YEAR :ID-CODE-CONSTRAINT (RANGE 1980 2010) 
:FORMAT (OR ONT::NUMBER ONT::LIST) :REQUIREMENTS :REQUIRED) 

(INPUT :NAME FEN_TOT :GLOSS "total nitrogen in applied fertilizer" 
:ID-CODE FEN_TOT :ARGUMENTS (:LOCATION-FILE :CRID :PLYR)  
:UNIT (RATIO ONT::KG ONT::HECTARE) :FORMAT ONT::FUNCTION :REQUIREMENTS :OPTIONAL) 

…) 
:OUTPUT 

   ( (OUTPUT :NAME PROD :GLOSS "global sum of harvest weight at maturity"  
:ID-CODE PROD :UNIT ONT::MEGATONNE :ARGUMENTS (:LOCATION-FILE :CRID :PLYR)  
:FORMAT (TABLE :PROD :LOCATION-FILE :CRID :PLYR) 

…)  
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abstracted away from specific domains. This distinction is similar to that found in general-
purpose planning systems, where the planner itself is domain independent and the domain-
specific aspects are found in the definitions of the operators. However, this correspondence only 
goes so far, as traditional planning is only a small part of overall problem-solving behavior. Other 
behaviors in CWMS include building causal models of phenomena, planning and evaluating 
interventions, and acquiring data from online sources and user interaction. Table 4 summarizes 
some different problem-solving tasks that are present in the world modeling domain. Note that 
any one dialogue will involve multiple problem-solving behaviors (e.g., to build a simulation 
workflow one might first need to build a plausible causal model).  

There are two main functions that each collaborative problem-solving task must perform: 
intention recognition (i.e., given we are engaged in the current PS task, what does the user want 
to do now?) and behavior (i.e., once we know the new goal/subgoal in the task, how do we 
accomplish it?). The intention-recognition function supports the Evaluate/Commit protocol 

Table 4. Some of the key collaborative problem-solving activities in world modeling. 

Problem-Solving 
Task 

Description Examples of Goal 
Statements 

 
 
1 
 

 
 
Building causal 
models 

Collaboratively build a causal model that 
captures key influences on a certain end 
condition or, alternatively, find a model 
that explains the relationship between two 
conditions (using prior knowledge, 
knowledge from reading, and user input) 

What are the key 
influences affecting food 
insecurity? 
How does a drought 
affect food availability? 

 
 
2 

 
Planning and 
running simulation 
workflows 

Given a causal model, collaboratively plan 
a workflow of existing simulation engines 
that could quantify the causal model (using 
knowledge of available simulation engines, 
and user input, especially with respect to 
generating approximations) 

What are the predictions 
for food insecurity in 
Sudan next year? 
How is migration 
affecting population at 
risk? 

 
 
3 

Compare effects of 
varying input values 
(e.g., intervention 
analysis) 

Given a causal model and/or a simulation 
workflow, collaboratively plan a series of 
runs under different conditions in order to 
explore how one condition affects another. 

How are crops affected if 
next year is an El Nino? 
What planting date would 
maximize the crop yield? 

 
 
4 

 
 
Acquiring and 
preparing data sets 

Given a set of information needs, 
collaboratively acquire or estimate this 
information using existing databases, 
acquiring data through reading existing 
documents, and developing approximations 
as necessary with the user. 

What are the soil 
characteristics in eastern 
South Sudan? 
How much maize was 
produced in each region 
of Sudan last year? 

 
 
5 

 
 
Situation analysis 

A very general behavior that typically 
invokes the other more specific behaviors. 
Given a problem statement to understand a 
situation, collaborate with user to facilitate 
their understanding of the actual conditions 
and possible interventions 

 
Let’s analyze food 
insecurity in Sudan for 
the next two years 
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described above and the behavioral agent interacts with the CPS manager to arrive at an 
interpretation of the latest user move (be it from language or a GUI action). The input to the 
intention recognition is a plausible CPS act computed by the CPS manager, which is then 
evaluated in the context of the current problem-solving task. The behavioral agent returns a 
response to the CPS manager that accepts, conditionally accepts, or rejects the interpretation. 
Once an interpretation is agreed upon and committed, the behavioral agent enters the behavior 
phase to perform the appropriate actions leading to a response.  

Looking in more detail, each problem-solving task is represented as a state-transition 
network, namely a set of states where transitions between the states are labeled with a CPS act 
that signals the transition. Associated with each state is code that implements the system’s 
“private” problem-solving behavior, which ultimately results in an attempt to establish the next 
shared CPS act that is captured in one of the outgoing transitions. In other words, the intention-
recognition process involves either initiating a new problem-solving task or identifying the 
correct transition to take within the existing task. Once the transition is taken, the behavioral 
agent performs the behavior associated with the new state to further the problem-solving 
interaction. This behavior might involve planning, running simulations, acquiring data, or other 
reasoning, and ultimately terminates at the stage where user agreement would be necessary to 
continue (i.e., the system must initiate the next collaborative problem-solving act). The range of 
possible CPS acts will be captured by the set of outgoing transitions from the state. The new CPS 
act is proposed to the CPS manager and, if it is agreed to by the user, the transition is taken to the 
next problem-solving state in the task.  

Note a key difference between the activity in the CPS manager and the activity of the 
behavioral agent: The CPS manager models the individual interactions between the system and 
user, while the behavioral agent models the problem-solving state in terms of committed (i.e., 
mutually agreed) problem-solving actions. In other words, the CPS manager models the dialogue 
in terms of proposals, acceptances, rejections, and so on. The behavioral agent, on the other hand, 
models the interaction in terms of the mutually agreed problem-solving actio ns (e.g., we are 
jointly analyzing food insecurity, we are agreeing to make a certain assumption, we are jointly 
building on a simulation model).  

To make this clear, consider some of the interactions that occur in the example dialogue of 
Table 1. Specifically, let us start with the first six interactions: 

(1)  U: Can we analyze food insecurity in Sudan next year. 
(2)  S: Should we look at child malnourishment rates? 
(3)  U: OK. 
(4)  S: Should I compute a baseline estimate based on available data? 
(5)  U: yes. 
(6)  S: OK. The percentage of malnourished children is about 39%.  

Figure 5 shows a path through the situation-analysis task that is invoked and executed during 
these six utterances. Note this is a single path through the model that captures this one dialogue. 
Other dialogues would take other paths in the model that are not shown. 

As discussed earlier, statement (1) is transformed into a REQUEST to analyze food 
insecurity, which the CPS manager converts to a PROPOSAL of a new goal that the behavioral 
agent identifies as initiating the situation analysis task, where the condition of interest is food 
insecurity, the location of interest is Sudan, and the time of interest is next year, namely 2019. 
Once the COMMIT message is received by the behavioral agent, the first transition shown in 
Figure 5 is followed and the behavioral agent is in state SA-1. The behavior associated with this 
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state is to identify how an abstract condition (i.e., food insecurity) might be analyzed in terms of 
indicators that can be measured. Based on knowledge of a component from the IMPACT system, 
the system knows that the percentage of malnourished children is a possible indicator of food 
insecurity. The behavioral agent sends a proposal back to the CPS manager to reach agreement on 
using childhood malnutrition as an indicator (utterance 2). Once agreement is reached (utterance 
3), the transition from SA-1 to SA-2 has been satisfied. Note this same model would account for a 
different dialogue in which the user says utterance (2) and the system makes utterance (3). Since 
the transitions are joint actions, it does not matter who actually made this initial proposal. 

State SA-2 involves deciding on a method to estimate the indicator. There are a number of 
possibilities that a full system might consider. For instance, it might check if there is existing 
concrete data regarding the condition at the time and place (unlikely, as we are looking at the 
future) or it might search the web for documents that offer predictions and analyses for the 
condition at the time and place. The current prototype, however, is limited in its ability to search 
and retrieve such information from online sources. This is an area for future work. A third 
strategy, which we have implemented, is to see if the system has any reasoning engines that could 
compute an estimate for the indicator. In this case, CWMS does have such a component, namely 
a part of the IMPACT DSRE that can compute food insecurity measures. The system proposes to 
the user that it compute an estimate using baseline information (utterance 4). Once this is 
accepted (in utterance 5), the transition from SA-2 to SA-3 is made. In SA-3, the system invokes 
the planner to estimate the percentage of child malnourishment in Sudan in 2019. In this case, the 
plan is trivial, as IMPACT contains all the default data needed to compute the estimated value. 
Once this plan is executed (i.e., the IMPACT module has been invoked and returns a result), the 
behavioral agent then sends the CPS manager a request to INFORM the user of the result 
(utterance 6) as a way to establish the transition at the bottom of Figure 5.  

The next segment of the dialogue involves more complex behavior: 

(7) U: What if 2019 is an El Nino year? 
(8) S: I can estimate the effect with the following plan. Does that look good? 
(9) U: Yes. 
(10) S: OK. The percentage of malnourished children increases by 5%. 

The intention recognition for utterance (7) occurs in the context of the AGREE-ON-VALUE 
transition from state SA-3 in Figure 5. The CPS manager is expecting an acceptance or rejection 

 

Figure 5. A trace through the situation analysis problem-solving model underlying the dialogue. 

AGREE-ON-VALUE [CHILD_MAL]
[SUDAN, 2019] 

ANALYZE [FOOD_INSECURITY] 
[SUDAN, 2019] 

COMPUTE-BASELINE [CHILD_MAL]
[SUDAN, 2019] 

INDICATOR [CHILD_MAL, FOOD_INSECURITY]
[SUDAN, 2019] SA-2 

[choose estimation 
method]

SA-3 
[estimate indicator]

SA-4 
[choose next action]

SA-1 
[identify indicators]
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Figure 7. Revised plan adding weather estimation to predict future production. 
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of utterance (6), but utterance (7) appears to be neither. This is commonplace in human dialogue, 
in which a proposal can be implicitly accepted if the response can be interpreted as continuing the 
current problem-solving process. The system does this by attempting intention recognition on 
utterance (7) as though utterance (6) had been accepted (assuming the response was not an 
explicit rejection!). Utterance (7) is recognized as a proposal to compute an alternative analysis 
assuming that 2019 is an El Niño year, an expected continuation of the problem-solving process. 
The behavioral agent receives an acceptance of the value for childhood malnutrition from the 
CPS manager, which completes the transition to SA-4 at the bottom of Figure 5.  

Following this, the CPS manager sends the behavioral agent the (already derived) 
interpretation of utterance (7) and the behavioral agent in response initiates a subtask to compute 
and compare a set of results, with the control parameter being whether 2019 is an El Niño year. 
The first step of this subtask is to initiate a further subtask to identify a causal model that relates 
the target condition (child malnutrition) with the control condition (2019 as El Niño year or not). 
The CWMS system attempts to construct such a model using its knowledge about available 
domain-specific reasoning engines, as finding a chain through the input and output parameters of 
these models would suggest a method for computing the values. Figure 6 shows an initial chain 
linking the two parameters. 

Although this identifies a possible causal chain through a suite of known reasoning engines, 
there are problems that must be resolved before this becomes an executable workflow. First, each 
of the DSREs have other input parameters that are required – some values can be identified in the 
immediate context (e.g., LOCATION is Sudan, year is 2019), others might need to be retrieved or 
looked up (e.g., the main crops grown in Sudan), and others might need approximations 
developed in collaboration with the user. A key area where approximations must be used is 
weather. The agricultural models used in pSIMS and DSSAT need detailed day-to-day weather 
data to simulate the growth of the crops. However, we clearly lack such a model of the weather in 
2019, as it has not happened yet! In fact, for pSIMS we only have weather records for the years 
1980 to 2010. To deal with this problem, we developed a weather estimation operator in CWMS 
that runs desired configurations on past weather data, then uses an interpolation function to 
approximate the values for a future date. As a default interpolation, when we have no insight into 
the future weather, we use a simple weighted average that gives slightly more relevance to more 
recent years. If we know something about the future weather, say that it is an El Niño year, then 
we can use an interpolation function over past years in which previous El Niño years are given 
more weight. Using this capability, CWMS revises its plan in Figure 6 to add the segment 
approximating yields in 2019, as shown in Figure 7. 

Once the system thinks it has generated a valid plan, it presents the plan to the user and asks 
for comments and/or approval (utterance 9). At this stage, the user might suggest modifications 
and revisions to the plan, completely reject it, or accept it. In our example, the user accepts the 
plan (utterance 10), which the system then executes under the two control conditions (unspecified 
default weather vs. El Niño weather). Plan execution for the most part involves invoking the 

 
Figure 6. An initial causal graph connecting weather to food insecurity.  
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DSREs in the appropriate order, after making necessary data conversions to match the required 
data formats for each DSRE. Once CWMS completes the execution, it summarizes the effect of 
the new assumption in terms of the change in rate of malnourished children (utterance 10). Note 
that utterance (11) involves yet another implicit acceptance of the result. Once this is recognized, 
the subtask of comparing effects is completed and the behavioral agent is once again back in state 
SA-4, ready to interpret the user’s new request, which is how to mitigate the effects.  

4.  Concluding Remarks 

In this article, we have discussed a framework that can manage dialogues for substantially more 
complex tasks than possible with previous approaches. This is demonstrated in a detailed 
discussion of the CWMS system for the domain of world modeling. Furthermore, the system 
applies generally to domains that can be cast as collaborative problem solving. We have shown 
how the dialogue management can be integrated with domain-dependent reasoning engines based 
solely on the declaration of their reasoning capabilities in an agent-based framework. CWMS can 
engage in complex collaborative problem solving as required for modeling world processes. We 
note that the current implementation is only a prototype and much work remains to be done to 
produce a robust, fully functional system that can be used by analysts.  

One of the remaining key challenges is that, unlike the example dialogue we used above that 
was language dominant, complex world modeling will often require significant use of GUIs for 
communication. The system must be able to present information and summarize results using 
maps, charts, and other graphical devices. Furthermore, these GUI components, like DSREs, will 
generally be developed by other organizations. We plan to integrate these GUI engines in a 
similar way to DSREs, where each GUI declares its capabilities at system start up. The additional 
complication is that the dialogue system must be constantly updated on the information currently 
being presented and the options (e.g., menu items, gestures) that are available. In essence, the 
active GUIs provide the context for the dialogue, and many system actions may need to be 
accomplished via the GUI’s API.  

While the challenges remaining are great, we are optimistic that the partition of 
responsibilities we have outlined here and the domain-independent framework for collaborative 
problem solving will provide the environment for building truly useful systems. 
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Appendix 

For further details on CWMS and related TRIPS-based systems, including available open source 
code, the reader is referred to these links:  

• www.cs.rochester.edu/research/trips/lexicon/browse-ont-lex.html   
for browsing the TRIPS lexicon and ontology; 

• trips.ihmc.us/parser for on-line interfaces to the TRIPS parser customized for 
different domains, including CWMS; 

• github.com/wdebeaum/cogent for source code for the generic dialogue shell based 
on collaborative problem solving (Cogent), which includes the parser, dialogue 
management, and the CPS manager, but which does not yet include the behavioral agent 
described in this paper. 

 


