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Abstract
In 1944, psychologists Fritz Heider and Marianne Simmel created a short, 90-second animated film
depicting two triangles and a circle moving around a box with a hinged opening, and reported how
subjects viewing the film anthropomorphized the three shapes as characters with humanlike goals,
emotions, and social relationships. In this paper we model this type of high-level reasoning as
a process of probability-ordered logical abduction (Etcetera Abduction), where the interpretation
of the film is incrementally constructed by disambiguating observed movements in the contexts
of multiple running hypotheses. We describe a target interpretation and knowledge base that we
used in a series of experiments to investigate the effects of varying the window size and number of
running hypotheses maintained during the interpretation.

1. Introduction

In their early investigations of the psychology of perception, Fritz Heider and Marianne Simmel
created a short, 90-second animated film1 depicting two triangles and a circle moving around a box
with a hinged opening (Heider & Simmel, 1944). After viewing the film, experimental subjects were
asked to report what they had seen in the movie, to which they responded with narratives of the three
shapes as characters with humanlike goals, emotions, and social relationships. As Heider (1958)
would later propose in his influential book, The Psychology of Interpersonal Relations, viewers
turned to anthropomorphic interpretations of the shapes’ movements, applying commonsense the-
ories of human psychology to explain behavior when physics-based explanations fail. This human
tendency to adapt an intentional stance (Dennett, 1989) is seen as a foundation for human social
cognition, and likewise has been a fundamental concern in successful human-computer interaction.

Modeling this human cognitive ability in software systems poses a number of difficult chal-
lenges, owing to the richness of human commonsense psychological theories and the subjective
nature of social interpretation problems. In previous work (Gordon, 2016) we made progress by
using a 100-question evaluation set called TriangleCOPA (Maslan et al., 2015), where each ques-
tion presents the system with a (formal) description of a short interaction between characters in the
original Heider-Simmel setting, and asks which of two interpretations would be preferred as more
plausible by human raters. We modeled the interpretation task as a problem of logical abduction,
analogous to Hobbs et al.’s (1993) formulation of language interpretation as abduction, where the

1. The film is viewable online at various websites, including https://www.youtube.com/watch?v=n9TWwG4SFWQ
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system chooses the interpretation that can be logically entailed by assumptions with the highest joint
probability, given a knowledge base of probabilistic axioms.

Although promising, our previous solution also underscored the problem of scalability. Given
a reasonably large knowledge base, a problem with nine character actions proved to be intractable,
owing to the strategy of combinatorial search used in logical abduction. Although subsequent work
has shown that advanced optimization techniques can be applied to this approach (Inoue & Gordon,
2017), narratives as large as the original Heider-Simmel film – depicting 75 or more character
actions – would still be intractable to interpret in this manner. Considering how people watch a
movie like the 90-second Heider-Simmel film or a 120-minute Hollywood feature, we see instead
a robust capacity for real-time, incremental interpretation. Instead of waiting until the end of the
movie to begin processing what they saw, people’s running interpretations of the events, as they
unfold, are evidenced by their laughs, groans, and other reactions as audience members.

In this paper, we explore an approach to incremental interpretation of ordered events, specifi-
cally a formalization of the character actions evident in the original Heider-Simmel film. To support
the development and evaluation of our model of incremental interpretation, we authored a single
target interpretation of this film along with the specific set of axioms that would produce this in-
terpretation using our original proposal for Etcetera Abduction, if computationally tractable. We
describe a new algorithm, Incremental Etcetera Abduction, that segments ordered observations into
small sets that are incrementally interpreted in the context of multiple running interpretations, pro-
ducing as output a final set assumptions that logically entails the entire larger set. As our approach
is not guaranteed to find the globally optimal (most probable) solution, we investigate how segment
size and interpretation count effect optimality.

2. Related Work

People’s interpretations of the Heider-Simmel film has been extensively researched in the area of
perceptual psychology over many decades (Shor, 1957; Greenberg & Strickland, 1973; Massad
et al., 1979). In the computational modeling of this interpretation processes, the most compre-
hensive work is that of Thibadeau (1986). Here the position of shapes in each of 1,690 frames in
the original Heider-Simmel film are annotated by hand using formal descriptions, and differences
in descriptions across frames are used to derive action descriptions using formal, hierarchically-
organized action schemas. Thibadeau then compares the times of derived action descriptions with
empirical data of perceived actions, collected in Massad et al.’s (1979) early work where 55 students
clicked a button whenever they perceived an action occurred. Finding high correlation across action
categories, Thibadeau argues that clarity of intention is a better predictor of action perception than
their participation in high-level plan structures attributed to characters.

In our present research, we encoded the original Heider-Simmel film manually in terms of event
descriptions that are roughly equivalent to Thibadeau’s collection of action schemas. We treat these
descriptions as the given observations in the interpretation task, where the assumed plans, goals,
emotions, and social relationships among characters explain these observations as implication-rich
intentional actions. Although Thibadeau’s formal approach to low-level action perception and seg-
mentation was well-suited to this particular film, we believe that contemporary machine-learning
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approaches to action perception (e.g., Roemmele et al., 2016) will ultimately prove more robust in
future perception-interpretation pipelines. In any case, it is the output of the action perception pro-
cess investigated by Thibadeau that is the input to the higher-level interpretation process investigated
in our current research.

Incremental interpretation has been previously explored in systems that incrementally maintain
explanations of actions and events over time. The DiscoverHistory system (Molineaux & Aha,
2015) takes an agent-based approach to infer the sequences of events and assumptions that explain
a series of agent observations, incrementally improving inconsistent explanations through refine-
ment. The UMBRA system (Meadows et al., 2013) performs plan understanding by incrementally
constructing explanations using a knowledge base of hierarchical task networks and domain knowl-
edge, incrementally maintaining the smallest set of assumptions that explain the observed actions
of an agent. Our present work differs most from DiscoverHistory and UMBRA in that multiple run-
ning explanations are maintained during incremental interpretation, all of which logically entail the
observations without inconsistencies, and which are ordered by the joint probability of assumptions
rather than a heuristic cost function or bias toward smaller sets of assumptions.

Narrative interpretation as pursued in our present work is closely related to research on plan
recognition, which also aims to ascribe intentions to agents that explain their observable behavior
(Kautz & Allen, 1986). Whereas we pursue “bottom-up" algorithms that construct explanations
of observations by backward-chaining through a knowledge base, the more typical strategy in plan
recognition takes a “top-down" approach, constructing explanations from a library of plans (hi-
erarchical task networks) and maintaining a probability distribution over the space of candidates.
Our current work on incremental interpretation is most similar to online plan recognition, where
algorithms incrementally maintain hypotheses about an agent’s plans given an ordered set of ob-
servations. Geib and Goldman (2009) present the PHATT algorithm for online plan recognition, a
“top-down" probabilistic algorithm that considers all possible plans given the observations, main-
taining all possible explanations for future unseen agent actions.

As with other abductive reasoning problems, the elaboration of all possible explanations is in-
tractable beyond small plan libraries and observation sequences, leading other researchers to de-
velop techniques for ordering and pruning the space of possible plan explanations. The DOPLAR
algorithm (Kabanza et al., 2013) expands hypotheses only for those plans that are most probable,
capitalizing on fast computation of upper and lower bounds on goal probabilities to avoid the costly
computation of exact probabilities for candidate hypotheses. The CRADLE algorithm (Mirsky
et al., 2017) incrementally prunes the space of candidate hypotheses through the application of sev-
eral domain-independent filters, retaining plans that have recently been extended, that make fewer
commitments about future observations, that are more compact than other explanations, and that
have a higher probability of generating the observation sequence. Our present work is similar to
these approaches in that the probabilities of hypotheses are used to select those that are maintained
as running interpretations, thereby avoiding the exhaustive exploration of an intractably large space
of candidate explanations.

Although some parallels can be drawn between the knowledge bases used in our present work
and the plan libraries used in plan recognition research, our work differs most in its inclusion of
world knowledge beyond plans in the explanations of observations, and in its use of first-order logic
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to represent this knowledge. Our approach is strictly “bottom-up" in the generation of explanations
from observations, and makes no special consideration for plans as the best (or only) explanations
of observed behavior. We believe our present work may be applicable to future investigations of
plan recognition research that are more broadly scoped to consider multi-agent behaviors, context,
exogenous events, agent traits, and non-causal factors in behavior explanations.

3. Target Interpretation
To support the development and evaluation of our model of incremental interpretation, we authored
a formal representation of the sequence of actions that are observable in the original Heider-Simmel
film, along with single interpretation to serve as a target for the reasoning process. Although pre-
vious studies with the Heider-Simmel film have demonstrated remarkable agreement about how the
film is interpreted by experimental subjects (Shor, 1957), our aim was not to define the definitive
interpretation, but rather to restrict the overall problem from one of open-ended interpretation to one
that was primarily concerned with scale.

Using the video annotation software ELAN (Wittenburg et al., 2006), we began by identifying
spans within the original Heider-Simmel film where any of the three characters were moving, and
devising a small vocabulary of action descriptions that best characterized the objective (without
interpretation) observable action. In actuality, some degree of subjective interpretation is needed
to segment and categorize the actions in this film, but our aim was to devise a small vocabulary of
actions that could completely describe the film in qualitative terms. This effort produced 22 labels
for a total of 76 actions observed in the film.

We then divided the 90-second film into 11 segments, each comprised of a small set of highly-
related actions, according to our own interpretation of this film. For each segment, we introspec-
tively considered what assumptions about the characters and their relationships best explained the
observations in each segment, e.g., the nodding of the big triangle toward the little triangle was best
explained by its disapproval for attempting to defend against the big triangle’s attacks, and the encir-
cling of the the little circle by the little triangle is best explained by the shared joy they felt in their
escape from the big triangle. Although our interpretation was subjective, it closely mirrored that
which was reported by Heider and Simmel (1944) as representative of the interpretation commonly
made among their experimental subjects.

Finally, we encoded both the observed actions and our assumptions for each segment as sets of
literals in first-order logic using the Common Logic Interchange Format (International Organization
for Standardization, 2007), shown in Table 1. Here we employed the same event notation used in
previous work to solve the TriangleCOPA problem set (Gordon, 2016). This notation affords the
easy expression of second-order relations by reifying predications as their own first arguments, e.g.,
the event of shielding oneself from an attack can use the event of the attack as an argument of its
own reification (segment 3). In these representations, the big triangle, little triangle, and circle are
represented using the constants BT, LT, and C, respectively, with additional constants for the door
(D) and the walls of the box (W1-W3). Reified events for observations are represented as numbered
constants (E2-E77), while events for assumed literals in this target interpretation are represented
as variables preceded by a question mark, e.g. ?a3 in segment 3. Repeated actions are listed in
Table 1 as single literals, using shorthand for the event constants, e.g., E11-E13 in segment 3.
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Table 1. Observations (o) and target interpretation (t) of the eleven segments in the Heider-Simmel film.

1. Arrival: LT and BT arrive and BT exits the box, because it is investigating a sound.
o: (arrive’ E2 LT)(arrive’ E3 C)(open’ E4 BT)(exit’ E5 BT)

t: (hear’ ?a1 BT ?a2)(investigate’ ?b1 BT)

2. Scuffle: BT pushes LT to attack. LT hits BT to defend. BT nods in disapproval.
o: (push’ E6 BT LT)(hit’ E7-9 LT BT)(nod’ E10 BT LT)

t: (attack’ ?a2 BT LT)(defend’ ?b2 LT BT)(disapprove’ ?c2 BT LT)

3. Beating: BT pushes LT to attack. LT hits BT to defend. C half-closes the door as shelter.
o: (push’ E11-E13 BT LT)(hit’ E14 LT BT)(push’ E15-17 BT LT)(halfclose’ E18 C)

t: (attack’ ?a3 BT LT)(defend’ ?b3 LT BT)(shield’ ?c3 C ?a3)

4. Scolding: BT nods at LT in disapproval of its defense. BT hits and misses LT to attack.
o: (nod’ E19 BT LT)(hit’ E20-E21 BT LT)(miss’ E22-E25 BT LT)(nod’ E26 BT LT)

t: (disapprove’ ?a4 BT LT)(defend’ ?b4 LT BT)(attack’ ?c4 BT LT)

5. Flinch: BT approaches C, who flinches and enters the box, and closes the door for shelter.
o: (approach’ E27 BT C)(flinch’ E28 C)(enter’ E29 C)(close’ E30 C)

t: (attack’ ?a5 BT C)(shield’ ?b5 C ?a5)

6. Entrapment: BT opens the door, enters, and closes door to attack C, while LT scales the wall.
o: (open’ E31 BT)(enter’ E32 BT)(close’ E33 BT)(scale’ E34 LT)

t: (attack’ ?a6 BT C)

7. Missing: C meanders and shakes in fear. BT shuffles and misses C. Concerned, LT opens door.
o: (meander’ E35 C)(miss’ E36 BT C)(shuffle’ E37 BT)(shake’ E38 C)

(miss’ E39-E43 BT C)(halfopen’ E44 LT)

t: (attack’ ?a7 BT C)(fear’ ?b7 C)(concern’ ?c7 LT)

8. Escape: C exits as LT closes door. BT pushes the jammed door. LT and C escape in joy.
o: (exit’ E45 C)(close’ E46 LT)(hit’ E47-E49 BT D)(push’ E50 BT D)

(touch’ E51-E54 LT C)(encircle’ E55 LT C)(touch’ E56 LT C)

t: (jammed ?a8 D)(sharedjoy’ ?b8 LT C)(escape’ ?c8 C)

9. Chase: BT opens the door and circles around to attack LT, who departs to escape.
o: (open’ E57 BT)(exit’ E58 BT)(circlearound’ E59,E65 LT)

(circlearound’ E60,E66 C)(circlearound’ E61,E64 BT)(enter’ E62 BT)

(exit’ E63 BT)(depart’ E67 LT)(depart’ E68 C)

t: (attack’ ?a9 BT LT)(escape’ ?b9 LT)

10. Rage: BT spins around, then opens and closes the door in rage.
o: (spin’ E69 BT)(close’ E70 BT)(open’ E71 BT)(close’ E72 BT)

t: (rage’ ?a10 BT)

11. Destruction: BT busts the box, and pushes its walls, in rage.
o:(bust’ E73 BT)(bust’ E74 BT)(push’ E75 BT W1)(push’ E76 BT W2)

(push’ E77 BT W3)

t: (rage’ ?a11 BT)
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4. Knowledge Base for the Target Interpretation

Our approach was to first author a single knowledge base of axioms sufficient to find the target
interpretation for each segment individually, using the original algorithm for Etcetera Abduction
(Gordon, 2016), then devise a new incremental interpretation algorithm capable of replicating this
interpretation given all observations at once.

Etcetera Abduction is a logic-based reasoning method that searches for sets of literals that, if
true, would logically entail a set of input literals given a knowledge base of definite clauses in first-
order logic. The reference implementation executes this search by first identifying all possible sets
of entailing assumptions for each input literal, independently, and then composing solutions for
all input literals by taking the Cartesian product of these sets. Where literals in these composite
solutions can be logically unified, additional solutions are created with the appropriate variable
substitutions when necessary.

Etcetera Abduction differs from other abductive reasoning methods in that all axioms in the
knowledge base (definite clauses) include a literal in the antecedent known as the “etcetera literal,"
unique to the individual axiom, that reifies the additional, unspecified facts that must also be true
to guarantee that the first-order axiom always holds. Originally proposed by Hobbs et al (1993),
building on McCarthy’s use of abnormality literals as a means of handling defeasibility in first-order
logic (McCarthy, 1986), etcetera literals are used in Etcetera Abduction to encode the conditional
probability of the consequent in a definite clause given the remaining literals in the antecedent, or the
consequent’s prior probability in the case that the etcetera literal is the only literal in the antecedent.
Here, we follow the convention of encoding these probabilities as real number constants in the first
argument position of each etcetera literal.

Etcetera Abduction requires that each axiom contains a unique etcetera literal, and that backchain-
ing on input literals always terminates at etcetera literals representing prior probabilities. When
identifying all possible sets of entailing assumptions for a given input literal, Etcetera Abduction
only considers assumption sets comprised entirely of etcetera literals, limited by a parameter that
limits the depth of backchaining. The joint probability of solutions can then be computed as the
product of each etcetera literal’s probability. In this way, each unification that is made across
assumptions for different input literals identifies a common factor, both figuratively and literally,
increasing the probability of the solution. Exhaustively searching all possible combinations and
unifications, Etcetera Abduction identifies the most probable set of assumptions (etcetera literals)
that logically entail the given input literals.

Working on each segment independently, we created only the axioms necessary so that the most
probable set of assumptions entailed the target interpretation. For example, segment 2 in Table 1
depicts five character actions (a nod, three hits, and a push) that are explained by the disapproval
of the big triangle over the small triangle’s defense against its attack. For this segment, we created
the six axioms in Table 2, in Common Logic Interchange Format, so that the three target literals are
also entailed by the most probable set of etcetera literals that also entail the five observations.

Figure 1 depicts the entailing relationships between the assumptions (ovals), the target literals
(single-line rectangles), and the given observations (double-line rectangles) for segment 2, as iden-
tified in the most probable solution. In all, 81 definite clauses were authored to produce the target
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Table 2. Six axioms authored to produce the target interpretation of segment 2.

1. Why nod? Maybe disapproval
(if (and (disapprove’ ?e1 ?x ?y)(etc1_nod 0.1 ?e ?e1 ?x ?y))

(nod’ ?e ?x ?y))

2. Why disapprove? Maybe against defend
(if (and (defend’ ?e1 ?y ?x)(etc1_disapprove 0.5 ?e ?x ?y ?e1))

(disapprove’ ?e ?x ?y))

3. Why hit? Maybe to defend
(if (and (defend’ ?e1 ?x ?y)(etc1_hit 0.1 ?e ?e1 ?x ?y))

(hit’ ?e ?x ?y))

4. Why defend? Maybe someone is attacking
(if (and (attack’ ?e1 ?y ?x)(etc1_defend 0.5 ?e ?e1 ?x ?y))

(defend’ ?e ?x ?y))

5. Why push? Maybe to attack
(if (and (attack’ ?e1 ?x ?y)(etc1_push 0.1 ?e ?e1 ?x ?y))

(push’ ?e ?x ?y))

6. Why attack? Attacks sometimes happen (prior probability)
(if (etc0_attack 0.1 ?e ?x ?y)

(attack’ ?e ?x ?y))

interpretations for each of the 11 segments, of which 37 encoded prior probabilities. In all axioms,
the numerical probabilities were selected without regard to empirical data.

5. Incremental Etcetera Abduction

At a high-level, our approach to incremental abduction was to break up large sequences of observa-
tions into smaller segments of size window, and sequentially interpret each segment in the context
of solutions found for all previous segments. From this perspective, the important considerations
are how previous solutions are represented, and how they influence the interpretation of the current
segment. A guiding principle in our approach was to preserve the central tenet of logical abduc-
tion that the resulting solutions logically entail the entire sequence observations. Accordingly, we
represent a context as a conjunction of etcetera literals that logically entail all literals observed in
previous segments, the most probable of which are maintained as a set of running interpretations
of size beam. After the last segment in a large problem is processed, this set represents the most
probable set of assumptions that logically entail all observations found for given values of window
and beam.

We explored several mechanisms by which the beam of contexts might influence the interpreta-
tion of the current segment. To find globally optimal solutions, it is necessary to unify the entailing
assumptions of the current segment with those represented in the contexts. However, our early at-
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etc0_attack 0.1

(attack' $1 BT LT)etc1_defend 0.5

(defend' $2 LT BT)etc1_disapprove 0.5

(disapprove' $3 BT LT) etc1_hit 0.1

(hit' E7 LT BT)

etc1_hit 0.1

(hit' E8 LT BT)

etc1_hit 0.1

(hit' E9 LT BT)

etc1_nod 0.1

(nod' E10 BT LT)

etc1_push 0.1

(push' E6 BT LT)

Figure 1. The target interpretation of segment 2, depicting the entailment relationships between the assump-
tions (ovals), the target interpretation (single-line rectangles), and observables (double-line rectangles).

tempts to devise an algorithm suffered from combinatorial explosions in the number of unifications
to be considered, which worsened as the contexts grew in size with each subsequent segment.

Our solution to this problem was to check for possible context unifications as early as possi-
ble, before full solutions for the current segment are composed. Our approach was to modify the
backward chaining algorithm used in our original implementation of Etcetera Abduction. In its
original form, this algorithm identifies all conjunctions of etcetera literals that logically entail a
single observation by backchaining on knowledge base axioms (definite clauses) to a given depth.
Etcetera Abduction subsequently composes full solutions from the Cartesian product of the sets for
each input observation. We modified this backchaining algorithm to accept a context as an addi-
tional parameter, and allowed the algorithm to drop assumptions from output conjunctions when
they could be unified with literals in the context. The resulting algorithm identifies all conjunctions
of etcetera literals etc where etc ∧ context logically entail the input observation.

Table 3 lists pseudocode for our approach to Incremental Etcetera Abduction, showing the two
primary functions INCREMENTAL and ETCABDUCTION*. The main function, INCREMENTAL,
maintains a beam of running contexts that logically entail all previous segments. The function
proceeds by processing input literals obs in segments of size window until none remain, then re-
turning these contexts as solutions. Entailing assumptions for each segment are found independently
for each context, via the function ETCABDUCTION*. Variables in these solutions are replaced with
Skolem constants (via the function SKOLMEIZE), then combined with its context to form a solution
for all segments processed thus far. These combinations are sorted by their joint probability, com-
puted as the product of probabilities encoded in the etcetera literals, and the most probable subset
becomes the new beam of contexts.

The supporting function, ETCETERAABDUCTION*, is identical to the original (non-incremental)
formulation of Etcetera Abduction except for the addition of a context parameter, representing as-
sumptions (a conjunction of etcetera literals) that logically entail previously-processed segments.
This parameter is passed to the supporting function BACKWARDCHAIN*, described above, which
modifies the original version to return all conjunctions of etcetera literals etc found by backchaining
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Table 3. Incremental Etcetera Abduction.

1: function INCREMENTAL(obs, kb, depth, window, beam)
2: contexts← {∅}
3: while obs 6= ∅ do
4: current← POPn(obs, window)
5: combinations← ∅
6: for each context in contexts do
7: solutions← ETCABDUCTION*(current, kb, depth, context)
8: for each solution in solutions do
9: solution← SKOLEMIZE(solution)

10: combination← APPEND(solution, context)
11: PUSH(combination, combinations)
12: ordered← SORTBY(combinations, JOINTPROBABILITY)
13: contexts← POPn(ordered, beam)
14: return contexts
15: function ETCABDUCTION*(obs, kb, depth, context)
16: setOfSets← ∅
17: solutions← ∅
18: for each observation in obs do
19: EtcAntecedents← BACKWARDCHAIN*(observation, kb, depth, context)
20: PUSH(setOfSets, etcAntecedents)
21: for each conjunction in CARTESIANPRODUCT(setOfSets) do
22: combinations← CRUNCH(conjunction)
23: PUSHn(solutions, combinations)
24: return SORTBY(solutions, JOINTPROBABILITY)

in kb from observation to depth such that etcs ∧ context entails observation. Unmodified is the
supporting function CRUNCH, which returns the set of all conjunctions resulting from the powerset
of substitutions for unifiable literals in an input conjunction.

By adjusting the parameters of beam, window, and depth, our approach to Incremental Etcetera
Abduction affords some ability to tackle very large interpretation problems with constrained com-
putational resources, albeit without the guarantee of finding the globally optimal solution. In this
approach to incremental abduction, solutions with higher probability can be missed when their ev-
idence is distributed across multiple segments such that the common factors are initially seen as
improbable, and dropped from an insufficiently large beam before they can be used in the proof
of latter observations. Accordingly, interpretation problems where such evidence is relatively close
should benefit from larger window sizes, so as to encourage their interpretation within the same seg-
ment. Likewise, interpretation problems where such evidence is very distant in the input sequence
may benefit from a larger beam, so that initially improbable solutions might remain on the beam
until latter evidence is processed.

From the pseudocode, it can be seen that setting the window parameter to the length of input
observations obs or greater makes INCREMENTAL functionally equivalent to the original formu-
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lation of Etcetera Abduction. In such case, the entire input would be processed as current by
ETCABDUCTION* with context parameter set to the null context ∅, with the resulting solutions
sorted (twice!) by their joint probability and returned as contexts.

In contrast, an infinite beam setting can still fail to find solutions identified by the original
formulation of Etcetera Abduction. In many interpretation problems there will be common factors
(unifications) across segments, and our approach can find them in all cases (given sufficient beam),
except in one special case. An assumption (etcetera literal) for an earlier segment containing a
universally quantified variable will fail to unify with an assumption for a latter segment with a
constant in the same argument position. The reason is that variables in solutions are replaced with
Skolem constants before added to contexts (line 9 in Table 3), and literals with different constants in
the same position fail to unify following the rules of logical unification. The introduction of Skolem
constants in our approach greatly simplifies the representation of contexts, allowing them to remain
fixed throughout the analysis of a single segment, but introduces this shortcoming that remains to
be addressed in future work.

We implemented our approach to Incremental Etcetera Abduction in Python 3 by modifying the
original reference implementation of Etcetera Abduction, and added this new functionality to its
open-source repository.2

6. Interpretation of the Heider-Simmel Film

Using our Python implementation of Incremental Etcetera Abduction, we generated an interpre-
tation of the Heider-Simmel film using our knowledge base of axioms and formalization of the
event sequence as input. For this one interpretation, we set depth to 5, as used in developing the
knowledge base for the target interpretation, and set the window to 5 and the beam to 10.

Figure 2 depicts the graphical proof structure of the most probable solution. While the full
graph in Figure 2 is admittedly too small to inspect in detail, the overall narrative structure of the
Heider-Simmel film is evident, with the first two-thirds of the story interpreted as attacks by the big
triangle on the little triangle and circle, leading to a dramatic escape that prompts the big triangle to
destroy the box in a fit of rage.

The four magnified insets in the figure illustrate some of the key facets of the incremental inter-
pretation. Inset (a) shows that our incremental approach is able to replicate the target interpretation
depicted in Figure 1, where the nods of the big triangle toward the little triangle are seen as express-
ing disapproval for the little triangle’s defense against the big triangle’s attacks. Inset (b) shows that
the big triangle’s aim of attacking the little triangle is a common factor in the interpretation of the
entire first half of the film. Here the circle entering and half-closing the door of the box is seen as
an act of shielding it from this attack, with a Skolem constant reifying the attack appearing as an
argument of the shielding event. Inset (c) shows the interpretation of a moment late in the film when
the little triangle touches and moves around the circle, explained by a feeling of shared joy with the
circle owing to its escape from the big triangle’s attacks.

Inset (d) shows the interpretation of the film’s ending where the big triangle’s rage is seen as
the explanation for closing doors, busting walls, and pushing walls around. The leftmost literal in

2. The software is available at https://github.com/asgordon/EtcAbductionPy.
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etc0_arrive 0.01

(arrive' E2 LT)

etc0_arrive 0.01

(arrive' E3 C)

etc0_attack 0.1

(attack' $1:1 BT LT)

etc1_open 0.4

(open' E4 BT)

etc1_push 0.1

(push' E6 BT LT)

etc3_exit' 0.1

(exit' E5 BT)

etc1_defend 0.5

(defend' $2:2 LT BT) etc1_disapprove 0.5

(disapprove' $2:1 BT LT)etc1_hit 0.1

(hit' E7 LT BT)

etc1_hit 0.1

(hit' E8 LT BT)

etc1_hit 0.1

(hit' E9 LT BT)

etc1_nod 0.1

(nod' E10 BT LT)

etc1_push 0.1

(push' E11 BT LT)

etc1_halfclose 0.5

(halfclose' E18 C)

etc1_hit 0.1

(hit' E14 LT BT)

etc1_nod 0.1

(nod' E19 BT LT)

etc1_push 0.1

(push' E15 BT LT)

etc1_shield 0.5

(shield' $3:1 C $1:1)etc2_hit 0.1

(hit' E20 BT LT)

etc0_attack 0.1

(attack' $4:1 BT C)

etc1_approach 0.1

(approach' E27 BT C)

etc1_enter 0.1

(enter' E29 C)

etc1_flinch 0.1

(flinch' E28 C)

etc1_miss 0.1

(miss' E22 BT LT)

etc1_nod 0.1

(nod' E26 BT LT)

etc0_scale 0.01

(scale' E34 LT)

etc1_close 0.1

(close' E30 C)

etc1_close 0.1

(close' E33 BT)

etc1_enter 0.1

(enter' E32 BT)

etc1_shield 0.5

(shield' $5:1 BT $1:1) etc2_open 0.5

(open' E31 BT)

etc1_concern 0.6

(concern' E44 LT) etc1_fear 0.5

(fear' E35 C)etc1_halfopen 0.1

(halfopen' E44 LT)

etc1_meander 0.1

(meander' E35 C)

etc1_miss 0.1

(miss' E36 BT C)

etc1_shake 0.5

(shake' E38 C)

etc1_shuffle 0.1

(shuffle' E37 BT)

etc0_jammed 0.01

(jammed' $7:4 D)

etc0_like 0.5

(like' $7:2 LT C)

etc1_close 0.1

(close' E46 LT)

etc1_sharedjoy 0.5

(sharedjoy' $7:5 LT C)

etc1_shield 0.5

(shield' $7:3 LT $1:1)

etc1_touch 0.1

(touch' E51 LT C)

etc2_escape 0.5

(escape' $7:1 C)

etc2_exit' 0.1

(exit' E45 C)

etc2_push' 0.9

(push' E50 BT D)

etc3_hit' 0.9

(hit' E47 BT D)

etc1_circlearound 0.2

(circlearound' E59 LT)

etc1_encircle 0.1

(encircle' E55 LT C)

etc1_open 0.4

(open' E57 BT)

etc2_circlearound 0.2

(circlearound' E61 BT)

etc2_escape 0.5

(escape' $8:1 LT)etc3_exit' 0.1

(exit' E58 BT)

etc0_spin 0.01

(spin' E69 BT)

etc1_close 0.1

(close' E70 BT)

etc1_depart' 0.2

(depart' E67 LT)

etc1_enter 0.1

(enter' E62 BT)

etc3_exit' 0.1

(exit' E63 BT)

etc0_rage 0.01

(rage' $10:1 BT)etc1_bust 0.1

(bust' E73 BT)

etc1_bust 0.1

(bust' E74 BT)

etc3_close 0.2

(close' E72 BT)

etc3_push 0.1

(push' E75 BT W1)

etc4_open 0.2

(open' E71 BT)

etc3_push 0.1

(push' E76 BT W2)

etc3_push 0.1

(push' E77 BT W3)

a. 

b. 

c. 

d. 

Figure 2. A generated interpretation of the Heider-Simmel film (window=5, beam=10).
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Table 4. Precision and recall at different beam and window settings (T.O. = timed out at 600 seconds).

Beam
1 10 100 1000

Window prec. rec. prec. rec. prec. rec. prec. rec.

1 .55 .60 .55 .60 .52 .58 T.O.
2 .61 .65 .67 .70 .67 .70 .67 .70
3 .70 .74 .71 .75 .71 .75 .73 .74
4 .75 .79 .75 .79 T.O. T.O.
5 .79 .79 .79 .79 T.O. T.O.
6 T.O. T.O. T.O. T.O.

this inset, the big triangle spinning around, is unconnected from the larger interpretation, explained
only by its prior probability. In our target interpretation for this event, however, the big triangle
is spinning due to its rage – the same rage that explains subsequent events. Our approach fails to
make this connection due to an unfortunate segmentation of the event sequence that separates the
spinning from latter evidence of rage. Seeing the spin in insolation, the knowledge base favors the
prior probability over an interpretation involving the big triangle’s rage, and this latter interpretation
is dropped off of the beam before it can be promoted by further evidence.

7. Tuning the Window and Beam Parameters

We evaluated whether our approach could generate interpretations closer to the target interpretation
by varying the parameters of beam and window. Our hypothesis was that using a very large beam
would yield performance as good as when using a large window, given the same constraints on
computational resources. We reasoned that high values in either parameter allow the algorithm to
aggregate evidence to identify high-probability interpretations. To test this hypothesis, we fixed the
depth of backchaining to 5, and varied the beam and window parameters to investigate their relative
importance in finding the global-optimal solution.

To provide a quantitative score of the optimality of the solution, we first identified the exact
set of etcetera literals that would need to be assumed to entail both the observations and target
inferences in Table 1 using our knowledge base of 81 axioms. Coincidentally, the number of these
assumptions was also 81, but some axioms encoding prior probabilities did not participate in the
target interpretation, and other axioms were instantiated multiple times. Using this set of 81 target
assumptions, we then computed a precision, recall, and F1 score for a given output with particular
parameter settings, considering only the most probable solution of the N-best list. Precision was
computed as the number of literals in the solution that can be unified with the target assumptions
over the size of the solution. Recall was computed as the number of literals in the target assumptions
that could be unified with solution literals, divided by 81.
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Table 4 lists the precision and recall scores for beam sizes of 1, 10, 100, and 1000 and window
sizes up to 6, reporting all cases where our implementation was able to find a solution in under 600
seconds. No parameter setting was found that could produce the exact target interpretation of the
Heider-Simmel film, but these results indicate that larger window sizes are much more instrumental
in producing the desired interpretation than larger beams. We surmise that the Hieder-Simmel film
is representative of interpretation problems where common factors help explain events that are rel-
atively close together in the input sequence, and that larger window sizes enable these assumptions
to explain multiple observations, promoting their relative probability such that they remain on the
beam of running interpretations. We find it surprising, however, that exponentially increasing the
beam in our experiments had almost no effect on accuracy. We hypothesize that even with a beam
size of 1000, the target interpretation is dropped before it can be supported by further evidence,
owing to the enormous number of candidate solutions that are considered. We suspect that this
hypothesis would be evidenced if it were practical to use beams orders of magnitude larger. How-
ever, the completion time of our algorithm scales linearly with the number of contexts considered,
limiting the exploration of exponentially larger beams.

8. Conclusions

In the pursuit of humanlike artificial intelligence, automating the processes of narrative interpreta-
tion poses several difficult methodological challenges for researchers, owing to the very personal
and idiosyncratic nature of sense-making when dealing with narrative content. As the output of
these processes are literally “open to interpretation" and largely unobservable, the prospects for cu-
rating vast amounts of training data with high levels of inter-rater agreement are slim, and therefore
ill-suited to contemporary machine learning methods. On the other hand, knowledge-based ap-
proaches to narrative interpretation are also problematic. In addition to new reasoning algorithms,
a robust capability for narrative interpretation requires insurmountable amounts of commonsense
knowledge. In our research, we mitigate these problems by treating the interpretation as a given, in
order to make progress on the reasoning algorithm. It is not at all remarkable that we can devise
a knowledge base of hand-authored axioms that is able to replicate an interpretation that we also
devised ourselves, produced from an input representation of our own creation. Instead, the contribu-
tion of this work is in advancing technologies that allow abductive reasoning to be applied to large
interpretation problems.

Our current work focuses on only one movie and one target interpretation, raising questions
about the generality of the approach. While the specific knowledge base authored for this research
is unlikely to be reused in future applications, we argue that the Incremental Etcetera Abduction
algorithm is broadly applicable to interpretation problems consisting of long sequences of input
observations. The algorithm employs no domain-dependent heuristics in controlling its search,
and allows both the set of observations and the knowledge base to be expressed as literals and
definite clauses, respectively, in first-order logic. Interpretations are ordered by their probability,
reified as etcetera literals in the antecedents of knowledge base axioms. Although not done in our
current research, we envision that these probabilities can be estimated from empirical data in future
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applications. Admittedly, our expectations about the generality of this approach must be evidenced
by successful applications of this algorithm to new interpretation problems in future research.

One promising area of application is in knowledge-driven natural language understanding, which
motivated Hobbs et al.’s (1993) original proposal for interpretation as abduction. Incremental ab-
ductive reasoning may help address language understanding problems that remain difficult for con-
temporary data-driven approaches (e.g., word sense disambiguation), where the intended meanings
of individual words are jointly disambiguated by the context of other ambiguous words, the run-
ning interpretation of a text, and pragmatic considerations of the discourse. Incremental Etcetera
Abduction provides one approach to contextual disambiguation by maintaining running interpreta-
tions that are amiable to high-level pragmatic reasoning, all within a framework that offers hope of
integration into contemporary probabilistic language processing pipelines.

There are several limitations of the Incremental Etcetera Abduction algorithm that we aim to
address in future work. Our current approach of dividing large sequences of observations into equal-
sized windows has the benefit of simplicity, but is not well-suited to online, real-time interpretation
of incoming observations. Rather than waiting for a window to fill up with incoming observations,
a real-time interpretation algorithm should begin consideration of observations as soon as they are
made, and do so in a way that avoids redundant computation as subsequent observations arrive.
Likewise, a true anytime algorithm for interpretation would scale its search for the most probable
interpretation based on the timing of input observations, rather than fixed parameters for beam, win-
dow, and depth. When applied in time-critical applications, substantial performance gains could be
achieved by rewriting the Python implementation of Incremental Etcetera Abduction in a compiled,
strongly-typed language.

As noted in Section 5, our approach can fail to find a more-probable solution due to the skolem-
ization of universal variables in previous windows, preventing unification of literals with a constant
in the current window. This limitation reduces the complexity of the software implementation in our
current approach, but could be removed with a more clever approach to variable substitution in the
running hypotheses on the beam. Lastly, we expect that some applications will require expressivity
in the knowledge base beyond what is possible with first-order definite clauses. Adding support for
negation, multiple consequents, and argument inequalities create new opportunities to use existing
knowledge bases of first-order logical axioms, particularly if these features could be added without
severely compromising computational efficiency.

We have found the original Heider-Simmel film to be a rich source of inspiration in the com-
putational modeling of high-level narrative cognition, and see many opportunities for continued
investigation of this one short film within AI. One area of future work is in the integration of its
high-level interpretation with lower-level computational models of action perception and segmen-
tation, as pursued in Thibadeau’s (1986) previous work. In particular, the influence of the film’s
running interpretations may help explain how there can be high agreement among viewers as to the
observed actions (Shor, 1957), despite evidence of low inter-rater agreement when these character
movements are viewed out of context (Roemmele et al., 2016). A second area of future work with
the Heider-Simmel film concerns the generation of natural language narratives from formal inter-
pretations. While progress has been made in generating fluent English descriptions from similar
proof structures (e.g., Ahn et al., 2016), we imagine that the sheer size of this film’s interpretation
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requires more sophisticated discourse planning methods to produce narratives similar to those of
Heider and Simmel’s (1944) experimental subjects. Finally, we see the need for future work in the
formal representation of commonsense knowledge. Our formalization of the observable events in
this film can serve as a starting point for further investigations of its interpretation, to include a richer
representation of the emotions, intentions, and relationships that people ascribe to the characters.
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