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Abstract

Sum-product networks (SPNs) are a new kind of deep architecture that support exact, tractable
inference over a large class of problems for which traditional graphical models cannot. The Sigma
cognitive architecture is based on graphical models, posing a challenge for it to handle problems
within this class, such as parsing with probabilistic grammars, a potentially important aspect of
language processing. This work proves that an early unidirectional extension to Sigma’s graphical
architecture, originally added in service of rule-like behavior but later also shown to support neural
networks, can be leveraged to yield exact, tractable computations across this class of problems, and
further demonstrates this tractability experimentally for probabilistic parsing. It thus shows that
Sigma is able to specify any valid SPN and, despite its grounding in graphical models, retain the
desirable inference properties of SPNs when solving them.

1. Introduction

Cognitive architectures (Langley, Laird, & Rogers, 2009) model the fixed mechanisms underlying
human-like cognition and yield cognitive systems when combined with the necessary knowledge
and skills. The efficiency of such architectures has long been a major concern when there is
significant anticipation of their being applied to large-scale and/or real-time problems. An early
important example was the incorporation of the Rete match algorithm (Forgy, 1982) into the Soar
architecture, when the rule system underlying Soar was switched from XAPS2 to OPS5 (Laird &
Newell, 1983). Beyond this, there is also a more specific need for tractability, or even boundedness,
in human-like cognitive architectures that stems from their need to be driven by a cognitive cycle
that, in humans, runs at ~50 msec./cycle (Laird, Lebiere, & Rosenbloom, 2017).

The Sigma cognitive architecture is being developed towards achieving a quartet of desiderata
(Rosenbloom, Demski, & Ustun, 2016a). One concerns sufficient efficiency, the ability to execute
quickly enough for whatever ends are to be accomplished, which hits squarely on the needs just
mentioned. The other three desiderata are: grand unification, combining cognitive and key sub-
cognitive abilities; functional elegance, enabling this diverse behavior from a core set of general
mechanisms; and generic cognition, constructing artificial and modeling natural intelligence. The
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overall approach to satisfying these desiderata in Sigma is based on the graphical architecture
hypothesis, that “key to progress on them is combining what has been learned from over three
decades’ worth of separate work on cognitive architectures and graphical models” (Rosenbloom,
Demski, & Ustun, 2016a).

Many forms of graphs exist in cognitive architectures, from the discrimination networks found
in Rete to the relational graphs (or semantic networks) that form the basis for the declarative long-
term and working memories in some architectures (e.g., Anderson et al., 2004; Laird, 2012) to the
neural networks used in others (e.g., Jilk et al., 2008; Sun, 2016). However, the graphical models
used in Sigma are of a very specific sort, which leverage forms of independence to decompose
arbitrary multivariate functions into products of simpler functions that can be mapped onto graphs
for efficient computation of quantities such as marginals and modes (Koller & Friedman, 2009).

Such graphical models provide the dominant paradigm for probabilistic computation, in forms
such as Bayesian networks (Pearl, 1988), but in the more general form of factor graphs
(Kschischang, Frey, & Loeliger, 2001) — as used in Sigma — they have yielded state-of-the-art
algorithms across the processing of signals, probabilities and symbols. It is this breadth and
efficiency from a single underlying formalism that provides the core potential for achieving three
of Sigma’s four desiderata, with only generic cognition at this point seeming unrelated.

It has, however, recently been shown that there are significant classes of important problems —
such as probabilistic parsing — for which such graphical models yield exponential time and only
approximate answers whereas a new kind of deep architecture — sum-product networks (SPNs) — is
able to solve them in an exact and tractable fashion (Poon & Domingos, 2011). This class of
problems has since been enhanced further to include constraint satisfaction, optimization, and
satisfiability, among others, by generalizing the ideas behind SPNs (Friesen & Domingos, 2016).

The core hypothesis examined in this paper is that Sigma, although grounded in traditional
graphical models, already embodies all that is necessary to encode and solve any valid SPN with
the tractability and exactness expected of them. This hypothesis will be approached by: (1) proving,
with the aid of a translation algorithm, that Sigma’s existing cognitive language is expressive
enough to encode any valid SPN; (2) proving that an extension to Sigma that was originally
developed to support Rete-like rule match (and actions) in Sigma, and which later proved key in
implementing neural networks, can enable solving any valid SPN with the exactness and tractability
expected of them; and (3) demonstrating experimentally that solving SPNs for probabilistic
context-free grammars (PCFGs) in Sigma retains the tractability and exactness implied by the
inside-outside algorithm. These results bear directly on sufficient efficiency as well as functional
elegance while introducing more generally a novel means of combining graphical models and
SPNs. They may even provide a new route to solving the long-standing issue of limiting the
cognitive cycle to tractable or even bounded inference (e.g., Tambe, Newell, & Rosenbloom, 1990).

The rest of this article elaborates on these themes. Section 2 reviews Sigma along with a brief
introduction to graphical models. Section 3 discusses sum-product networks and how they map
onto Sigma. Included in this is more necessary detail on inference in graphical models, an algorithm
for the mapping of SPNs onto Sigma, a proof that the algorithm works for any valid SPN, and a
proof that the resulting SPN retains the expected exactness and tractability when solved in Sigma.

1 Although originally stated in this form, it is now actually over four decades worth.
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Figure 1. Sigma operationalizes the graphical architecture hypothesis in a layered format. In (a), the
Cognitive architecture is supported by the graphical architecture below it. The cognitive architecture consists
of the cognitive cycle and the cognitive language. The cognitive cycle is shown in (b) at the top with two
major phases — elaboration and adaptation — corresponding to inference and update phases in the graphical
architecture below. The minor phases Input (1) & Output (O) are also shown and are required for interfacing
to the outside world.

Section 4 discusses probabilistic context-free grammars, the challenges faced by a factor graph
representation of them, and experimental results from an SPN-based Sigma implementation that
demonstrates the requisite tractability. Section 5 summarizes and concludes.

2. The Sigma Cognitive System

As implied by the graphical architecture hypothesis, Sigma is an approach to cognitive systems that
reflects a number of lessons from earlier cognitive architectures. At a high level, Sigma borrows
much from Soar. Early Soar was symbolic and functionally elegant, with one symbolic long-term
memory and one symbolic learning mechanism (Laird, Newell, & Rosenbloom, 1987). Soar has
since changed to incorporate multiple long-term memories and learning mechanisms and several
forms of subsymbolic representation (Laird, 2012). It also freely appends, as necessary, external
modules when intensive subsymbolic processing is required. From Soar, Sigma has leveraged:

o the distinction between long-term memory and working memory;

o the use of problem spaces to structure cognitive behavior

e the cognitive cycle structure and its division into two major phases (Figure 1), although with
differences in the details; and

o the functional elegance of its nested three-layer control structure (reactive via a single cognitive
cycle, deliberative via a sequence of operator selections and applications over multiple
cognitive cycles, and reflective via impasse-driven generation of metalevels).

In the process, Sigma has attempted to sustain the kind of functional elegance that was evident in
the early Soar while providing the necessary diversity of long-term memory and learning behaviors
via idioms above the architecture (Rosenbloom, Demski, & Ustun, 2016a). Sigma has also opted
for the more pervasive style of subsymbolic representation — or quantitative metadata (Laird,
Lebiere, & Rosenbloom, 2017) — that is at least partially seen in ACT-R and the later versions of
Soar, but via a strategy based on the broadly state-of-the-art approach of graphical models.
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Figure 2. A factor graph for the function f(X, Y) = fi(X)f2(X, Y), with two variables X,Y shown in variable nodes
and the two factors into which the function decomposes.

Figure 1 shows the operationalization of the graphical architecture hypothesis via a layered
design. Long-term knowledge fragments are specified via Sigma’s cognitive language and then
compiled to a generalized factor graph, representing the memory and structuring its reasoning. The
resulting graph is then solved using a generalized form of the sum-product algorithm. A review of
how Sigma has extended the sum-product algorithm is covered in Rosenbloom, Demski and Ustun
(2016b). The remainder of this section describes Sigma’s cognitive language, factor graphs, and
the unidirectional extension to Sigma’s factor graphs that enables SPN inference.

Sigma’s cognitive language consists of predicates and conditionals. Predicates provide
relational data structures for cognitive processing that join together typed arguments representing
objects, entities or concepts, plus optional functions. Each predicate induces a region in the working
memory (WM) for temporary storage of the state of the system and may also induce a region in the
system’s perceptual buffer for input from the outside world. The types themselves can be discrete
— symbolic or probabilistic — or continuous, thus allowing the predicates to conjointly represent
richly structured representations that are both mixed (symbolic + probabilistic) and hybrid (discrete
+ continuous).

Relationships between predicates are specified using conditionals that represent generalized
knowledge fragments in Sigma’s long-term memory (LTM) by blending concepts from rule-based
systems and probabilistic networks. They are built from predicate patterns — conditions, actions,
and condacts — plus optional functions. Conditions and actions are analogous in their behavior to
the respective parts of rules and provide the forward momentum characteristic of procedural
memory — conditions match to evidence in working memory and actions generate proposed changes
in WM. Condacts support bidirectional processing — both matching to WM and suggesting
changes to it — as needed for general probabilistic reasoning and traditional factor-graph semantics.
The results of matching condacts and conditions within conditionals are combined in a
multiplicative manner, while reuse of the same actions for the same predicate, either within or
across conditionals, results in an additive combination.

Factor graphs and the message passing sum-product algorithm (Kschischang, Frey, &
Loeliger, 2001) are used to ground the knowledge and processing thus specified. As Figure 2 ind-
icates, factor graphs are bipartite graphs composed of variable nodes and factor nodes. There is a
variable node for each variable in the global function and a factor node for each sub-function in its
decomposition. Each variable node is connected to all the factor nodes in whose function it
participates. The sum-product algorithm computes messages along these links in both directions.
A message along a link from a variable node is a product of messages to the node along all other
links, while the message along a link from a factor node also multiplies in the local factor function.
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Although the bidirectionality of the sum-product algorithm, as supported by condacts in
Sigma’s cognitive language, is required in order to meet the semantics of graphical models, certain
forms of processing, such as for rules in procedural memories, require flow of information in one
direction only. This limitation was overcome early on in Sigma by providing the option for
unidirectional message passing along particular links, as specified in the cognitive language by
using conditions and actions in conditionals. This breaks the traditional factor graph semantics for
the affected portions of the overall graph, but it increases the scope of what can be represented and
computed, including enabling rule conditions (and actions) to map onto the generalized factor
graphs produced by Sigma’s compiler in ways that mimic the Rete algorithm (Rosenbloom, 2010).
It has also since been shown to enable mapping of feedforward neural networks onto portions of
these graphs (Rosenbloom, Demski, & Ustun, 2016b).

One other rule-based extension to Sigma’s factor graphs is also leveraged in this work:
messages converging on a single node from multiple actions for the same predicate are combined
via summation rather than multiplication (Rosenbloom, Demski, & Ustun, 2016b). Use of this
extension is not logically necessary to encode SPNs exactly and tractably in Sigma, as it is possible
to instead directly leverage the sum aspect of the sum-product algorithm, but it simplifies the
mapping from SPNs onto Sigma and is thus easier to understand. For simplicity, in the next section
we will refer to these as sum nodes to contrast them with normal product nodes.

3. Sum-Product Networks and Their Mapping onto Sigma

Sum-product networks (SPNs) are a relatively new form of graph-based (actually tree-based in this
case) computational model that represent complex functions via sums and products (Poon &
Domingos, 2011). Although the name here is quite similar to that of the sum-product algorithm,
the two are actually distinct in both history and usage, with the biggest difference being that
inference in SPNs is guaranteed to be exact and linear in the size of the network. SPNs can encode
any graphical model or factor graph where inference is tractable. However, the converse is not true;
a function that can be represented as an SPN does not necessarily lend itself to tractable, non-
exponential inference when expressed as a factor graph. In fact, several classes of problems exist
that can be solved tractably and exactly as SPNs, but that lose their exactness and tractability when
represented as factor graphs (Demski, 2015; Gens & Domingos, 2013). Probabilistic context-free
grammars (PCFGs) provide one key example, for which in fact the SPN representation over a
sentence of bounded length encodes the well-known inside-outside algorithm, supporting inference
(inside) and a prerequisite for learning (outside) (Poon & Domingos, 2011). Friesen and Domingos
(2016) have further generalized earlier results on SPNs to show that inference can remain tractable
for a larger class of problems — characterized by summing over semirings — that “includes
satisfiability, constraint satisfaction, optimization, integration, and others.”

Factor graphs were chosen for Sigma because they subsume many different graphical models
and narrow Al algorithms. Whereas SPNs focus on representing what computations are to be
performed and how to perform these computations, factor graphs specify the goals of the
computation only, with the sum-product algorithm providing one possible algorithmic implement-
ation. For this reason, the decision was made here to focus on direct extensions to the sum-product
algorithm in implementing sum-product networks within Sigma rather than more indirectly finding
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a way of extending the semantics of factor graphs that would in turn guarantee that any algorithm
for solving them would have the right properties. Here, in fact, we specifically leverage the sum-
product algorithm with the two extensions mentioned in the previous section for unidirectional
message passing and sum nodes.

In the rest of this section, we prove that Sigma’s cognitive language is able to specify any valid
SPN while retaining the desirable inference properties of SPNs in the graphs that result from
compiling these specifications into extended factors graphs. This is accomplished by first consider-
ing how inference works in factor graphs, which form the inner loop of the elaboration phase of the
cognitive cycle, and in SPNs. An algorithm to convert an SPN into an equivalent set of Sigma
conditionals is then presented. The effectiveness of this algorithm in producing Sigma conditionals
that retain the desirable inference properties of SPNs is proven by showing that, for the smallest
valid SPN (and the corresponding Sigma model), (1) the posteriors calculated in the corresponding
sum and product nodes in Sigma’s working memory are the same as in the original SPN, (2) the
messages incoming at these nodes are the same as in the original SPN, and (3) there are no cycles
in the resulting Sigma graph. These properties can then be generalized over any valid decomposable
SPN recursively created using the definition of SPNs presented by Gens and Domingos (2013).

3.1 SPNs and Graphical Models

We borrow notation from Darwiche (2009) and Koller and Friedman (2009) to describe SPNs and
graphical models respectively. Let G = (V, €) be a graphical model with variable nodes in set V
and edge nodes in edge set £. Each variable node is a discrete? random variable X and takes on
values x* in its domain 4(X). Figure 3 shows an example of a Bayesian network, the corresponding
factor graph representation and the SPN corresponding to them.

An indicator variable typically takes on the value 1 if the supporting variable takes on the
corresponding value. Here, we extend the definition of indicator variable as done in Gens and
Domingos (2013). We define an indicator variable 7(X*) for every x! € A(X). 7(X") takes on the
value 1 if the corresponding variable X is observed in evidence E and it takes value x!, or if X is
not observed as part of E.

.‘](Xi) _ {1 if X isin E and E indicates X = x‘orX ¢ E; )
0 otherwise.

The networks shown in Figure 3 encode the distribution
P(X,Y)= Z P(X)P(Y|X) . (2)
XY

Here, P(X) is the prior on X and P(Y|X) is the conditional probability distribution on'Y given X. The
factor graph is a bipartite representation G = (V,F) where the variable nodes V correspond to
variables and the factor nodes F encode functions over variables. The prior and the conditional
distribution from Equation 2 are shown as local factors with the joint distribution being the global
function represented by the graph. Inference is carried out via message passing, with Figure 3(b)

2 We consider discrete random variables for the sake of simplicity; however, these concepts can be applied
to continuous variables with suitable modifications.
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showing the messages sent over the links from variable nodes. In particular, the factor graph in
Figure 3(b) encodes the distribution

P&Y) = ineA(X),yfeA(Y)j(Xl) IEPEOPWIL). )

The value of the factor graph is determined by the evidence provided, as applied by the definition
of the indicator variables to perform inference via message passing. Here we present a brief
description of the message passing algorithm using our notation and interpretation. The messages
incident on variable nodes are from factor nodes and represent beliefs over the domains of the
respective variables. Messages over different links at variable nodes are combined via multiplic-
ation. At the variable nodes, we provide evidence by multiplying the respective indicator variables
with the local distribution over that variable. If the variable is observed as part of evidence, then
this reduces the message to a non-zero value for the particular value of the variable observed. The
calculation performed at the variable nodes is a pointwise product over the variable’s domain and
an update message is generated to other links. The outgoing message from a variable node to a
factor node thus includes a product of all incoming messages except the one from that particular
factor node:

Hxspixieacn = 1_[ j(XL)'uf—nc;xieA(X) 4)
FEF=NCO\Ke o ricacx)

Here, N(X) is the set of nodes that are neighbors of node X. The factor nodes receive messages from
variable nodes that are their neighbors and multiply these messages together along with their local
functions. Outgoing messages to variable nodes are then generated by summing out the other
variables not in this message:

Hrxxienx) = z 1_[ F(x,y )”yﬁf;y"EA(Y) )
y yev= N(f) \”xaf;xieA(X)

This has the effect of selecting a particular state from each of the local factors and multiplying
them to obtain the global function, consistent with any provided evidence. For the variables that
are not observed, this has the effect of yielding their marginals at the respective variable nodes,
given the evidence (Kschischang, Frey, & Loeliger, 2001). It is important to note that the number
of calculations at the factor nodes is exponential in the number of variables in the largest factor and
their domain size, in particular it is 0 (m™), where m is the size of the largest variable domain and
n is the number of variables. It is also important to note that if certain states in the domains of the
variables participating in that factor do not participate, the factor graph has no way of specifying
that. An example of this will be seen later in the domain of PCFG parsing. In this example, the
grammar itself specifies which sums and products are necessary, forgoing those that are not needed.

The factor graph shown in Figure 3(b) is a tree, but this overall procedure can be generalized
to graphs with cycles. However, inference may not be exact in graphs with cycles and the cost is
typically proportional to the treewidth of the graph — a measure of the connectedness of the graph.
In such cases, the inference is approximate as well as exponential in nature. Since the solution of
such graphs is at the very heart of Sigma’s cognitive cycle, this raises not only efficiency issues,
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Figure 3. A Bayesian network shown in standard notation (a) and the corresponding factor graph (b). Each
variable here is Boolean. The factor graph version shows the messages that are to be exchanged along each
link. The corresponding SPN is shown in (c).

but also ones of tractability and boundedness. Even worse, there are major cognitive problems, such
as the parsing of probabilistic context-free grammars (PCFGs) — an important formalism
characterizing linguistic structure (Jurafsky & Martin, 2008) that has been argued recently is
important for cognitive architectures (Demski, 2015) — for which polynomial (cubic) algorithms
are known, but which when mapped onto pure graphical models yield exponential computation
(Pynadath & Wellman, 1998); and even then they only provide approximate solutions rather than
the exact solutions provided by the polynomial algorithms. To work around this problem, Smith
and Eisner (2008) and Naradowsky, Vieira, and Smith (2012) designed a special factor that
embedded dynamic programming — i.e., the structure of the problem — inside the factor itself,
allowing for exact inference. However, as we will show later, inference remains inefficient in the
size of the grammar and requires a special, non-standard message passing schedule.

SPNs avoid these problems by being able to specify only the operations that are needed to
compute the marginal efficiently. This is achieved via the use of a network polynomial (Darwiche,
2009) and postulating hidden variables to express the network polynomial efficiently. An SPN is a
tree rooted in a sum node, encoding a partition function over a probability distribution. More
formally, we use the definition of a decomposable SPN from Gens and Domingos (2013) because
it helps show how to compose SPNs from basic elements. Consider a set of variables X =
{X1,X,,.., Xy} and let Xy be partition such that Xx = X; U X, ..U Xg. An SPN S(X) is
recursively defined and constructed by (repeated) application of three rules:

1. An indicator variable 7(X/) is an SPN S({X;}). The previous definition of indicator variables
presented in Eq. 1 applies.

2. A product [TK_; S(Xy) is an SPN, with the SPNs {S, (X)) }X_, factors.

3. The weighted sum YX_, w;. S, (X) is an SPN, where {w, } are non-negative weights and sum to
one for probability distributions and they combine the SPNs S (X).

The above definition also implies a structure of alternating sum and product nodes with the topmost
root node being a sum node. SPNs are evaluated in two distinct passes. There is a bottom-up pass
for evaluating the probability of particular evidence, as applied via the indicator variables. To obtain
the most-probable-explanation assignment of unobserved variables, a top-down pass is also needed,
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Figure 4. (a) Messages computed by SPNs in the bottom-up pass and (b) Messages computed by SPNs in
the top-down pass, from equations 6 and 7, respectively.

selecting the most likely branch at each sum node. The top-down and bottom-up messages are
calculated via the application of differentiation in arithmetic circuits. Interested readers may refer
to Darwiche (2009) for a detailed explanation of how these messages are obtained. Here we present
just a high-level overview of them in the interest of showing how they can be computed in Sigma.

Figure 4 shows the messages exchanged between child and parent nodes, in both directions. In
the bottom-up direction, the message going from a Sum node S;g to its parent node is simply the
weighted addition of its child nodes, and similarly the message going from a Product node S;g to
its parent node is simply the product of its children. These outgoing messages are the values of the
SPN rooted in those nodes. In the top-down direction, the value of a product node is simply the
weighted addition of its parents’ values (“product” is an accurate label for the node only in the
bottom-up direction),

Wy;0S(X)
Se= ). SHEES 0, ©)
kepa(i) k

whereas the value of a sum node is
Sie = z WieiBS(X) /85, (X) | | 5. 0
kepa(i) leCh(pa(i))—i

It is important to note that by specifying computations directly, in a computational trellis, SPNs
provide a compact representation of all the operations needed to perform exact inference.

3.2 Converting SPNs to Sigma Conditionals

As discussed previously, long term knowledge is specified in Sigma using the language of
conditionals. In this section we describe an algorithm to translate an SPN into an equivalent Sigma
model (Table 1). We focus on valid, decomposable SPNs only because we are interested in
translating only such SPNs into Sigma. Learning a valid, decomposable SPN from a dense SPN is
left for future work.
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Table 1. Algorithm 1, which generates a Sigma model from an input SPN. The SPN is specified in terms
of the sum and product nodes with associated links. The algorithm generates the corresponding Sigma
model in time and space linear in the size of the SPN.

Input: An SPN G = (V,E), with V = {Sg, Sg, T(X 1)}
Output: A Sigma model with associated predicates, and conditionals.

1. Declare a set of perception predicates perceive (X*) for 7(X*t) indicator nodes.
2. Declare two sets of predicates {sum_alpha(Sg)} and {sum_beta(Sg)} for bottom-up and
top-down values of SPN Sgnodes.
3. Declare a set of predicates prod_alpha (Sg), prod_beta(Sg) for top-down values of SPN
Sgnodes.
4. Declare a set of perception predicates perceive(X*?) for 7(X*) indicator nodes.
5. Declare two sets of predicates {sum_alpha(Sg)} and {sum_beta(Sg)} for bottom-up and
top-down values of SPN Sgnodes.
6. Declare a set of predicates prod_alpha (Sg), prod_beta(Sg) for top-down values of SPN
Sgnodes.
7. Declare a set of predicates {sum_gamma(Sg)} for the posteriors.
8. In the bottom-up direction, from indicators to root, for each element of sum_alpha(S;g):
i.  For each product child node S;g, of S;q, create a conditional such that:
a. The predicate in the condition is prod_alpha(S;g).
b. There is an action for the predicate sum_alpha(S;g).
c. There is a function in the conditional that corresponds to the weight w;;.
9. In the bottom-up direction, indicators to root, for each element of prod_alpha(S;g):
i. Create a conditional such that:
a. The predicates in the conditions are sum_alpha(S;g), corresponding to the children
Sie of Si.
b. There is an action for the predicate prod_alpha(S;g).
10. In the top-down direction, root to indicators, for each element sum_beta(S;g):
i.  For each parent node S;g 0Of S;q create a conditional such that:
a. The predicates in the conditions are sum_alpha(S,g), Where each S gis a child of S;g.
Exclude the sum_alpha(S;q) predicates from the conditions.
b. Add the predicate prod_beta(S;g) to the conditions.
c. There is an action for the predicate sum_beta(S;g).
11. In the top-down direction, root to indicators, for each element prod_beta(S;g):
i.  For each parent node S;q 0f S;g, create a conditional such that:
a. The predicate in the condition is sum_beta(S;g) .
b. There is an action for the predicate prod_beta(S;g).
c. There is a function in the conditional that corresponds to the weight wy;.
12. Initiate the bottom-up pass by providing evidence via Sigma’s perception mechanism for the
indicator variables in accordance with their definition.
13. Initiate the top-down pass by providing evidence of “1” for the root node sum_beta(S,oora)-
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The number of predicates required in Sigma is at most thrice the number of total nodes in the
original SPN. This is because we compute the values of each node in two separate passes, based on
separate trees for bottom-up and top-down computations, and then combine them via a third set of
predicates. Deconstructing the graph in this fashion breaks the loops that would otherwise occur
among the bottom-up and top-down messages along individual links. An example of this shall be
seen in the next section. Furthermore, the messages computed by Sigma are a superset of the
messages computed by the SPN, but scale by a constant factor as shall be seen in the next section.
Finally, selection of the most likely path — as required by some algorithms such as Viterbi (Rabiner,
1989) — can be performed via the selection/decision process provided by Sigma’s cognitive cycle.
Although the selection process has not yet been implemented here, as the focus has been instead
on inferential tractability and exactness, something very similar was previously implemented for
continuous speech processing in Joshi, Rosenbloom, and Ustun (2016).

Proposition 1: Algorithm 1 produces a set of conditionals that computes the same posteriors as the
sum and product nodes in the original SPN.

Proof: Recall from the earlier discussion of Sigma’s graphical architecture that messages are
combined via product for predicates that are in conditions and combined via addition when the
predicate appears in actions of multiple conditionals. For example, consider the SPNs shown in
Figure 4. It can be established due to the conditionals created in steps 5 and 6 that the messages
generated towards the sum_alpha(S;q) and prod_alpha(S;q) predicates are the same as those
shown in Figure 4(a). Similarly, the messages generated towards predicates sum_beta(S;q) and
prod_beta(S;q) using conditionals from steps 7 and 8 are those shown in Figure 4(b). Since
Algorithm 1 can thus generate Sigma conditionals to calculate the messages for basic valid SPNs,
then by induction, all decomposable SPN messages — i.e. messages exchanged in decomposable
SPNs recursively created using the SPN definition from Section 3.1 — can be generated by
conditionals from steps in Algorithm 1. m

Proposition 2: Algorithm 1 induces a Sigma graph that is tractable.

Proof: This compilation process yields a set of predicates and conditionals that compile into a graph
composed of bottom-up and top-down trees that are isomorphic to the corresponding SPN trees, up
to the addition of a constant factor of additional nodes and messages. The sum-product algorithm
will respect this tree structure in computing the same results in the same manner as the SPN models.
[ ]

4. Probabilistic Grammar Parsing in Sigma

Parsing of probabilistic context-free grammars (PCFGs) (Jurafsky & Martin, 2008) defines an
important class of problems in computational linguistics. Formally, a context-free grammar (CFG)
consists of a set of rules, called productions, expressed over a set of non-terminal symbols,
including a special start symbol and terminal symbols. A PCFG extends the notion of a CFG by
assigning probabilities to each rule. A context-free language is one that consists of all possible
sentences that are derived from a particular context-free grammar. Intuitively, the non-terminals
model consecutive words as a group — also referred to as a constituent — with evidence existing that
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Rule Probability
S-> AB|BC  0.6]0.4

A->BA| a
B-=CC|b
C->AB | a

(b) (c)

Figure 5. (a) A PCFG specified in Chomsky Normal Form. (b) Corresponding SPN, specifying precisely the
sums and products necessary for inside-outside algorithm, with all invalid trees not represented. (c) Corres-
ponding factor graph version, with each variable node representing a distribution over a set of non-terminals
and factor nodes encoding the grammar rules along with their associated probabilities.

constituency plays a role in human language processing (Jurafsky & Martin, 2008). Due to its
importance in language processing, and its potential architectural importance in this context, we
use it here to demonstrate the tractable use of SPNs in Sigma.

The problem of parsing consists of assigning structure to a sentence from the language
described by the PCFG. This is typically accomplished by the well-known CKY algorithm from
computational linguistics. The CKY algorithm considers an entire sentence as input and generates
a set of possible parse trees in a structure called a parse chart.® The parse chart encodes all valid
parse trees that can give rise to the input sentence. Naively representing the parse chart as a
graphical model and using the belief propagation algorithm gives rise to exponential inference
(exponential in the treewidth). The size of the largest clique provides a measure of how connected
the graph is and is used to characterize the efficiency of inference. Additionally, inference is not
exact here due to the presence of loops in the graph in Figure 5(c). A similar approach was used in
Pynadath and Wellman (1998) where PCFGs were mapped onto graphical models by representing
the parse chart as a Bayesian network. To avoid the exponential and approximate nature of
inference, more recently Naradowsky, Vieira, and Smith (2012) introduced a special factor,
CKYTree, that encapsulated the dynamic programming necessary to perform cubic time parsing.
This special purpose factor requires a modification to the belief propagation message passing

3 Although CKY parsing is not incremental, there are other approaches to PCFG parsing, such as predictive
shift reduce (Shieber, Schabes, & Pereira, 1995), that ultimately might better support the needs of arch-
itecture-based cognitive systems. In unpublished work, Kenji Sagae explored incremental shift-reduce
parsing in Sigma.
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Table 2. Example conditionals generated by Algorithm 1. (a) Conditional for grammar rule S— A B with
probability 0.6. Head corresponds to root sum-node in Figure 4(b). Conditional corresponds to leftmost link
of four in bottom direction toward root sum node. Function represents weight on link between sum and
product node. (b) Conditional for downward message from root node to an intermediate sum node,
corresponding to grammar rule S— A B with probability 0.6. Head corresponds to root sum-node in Figure
4b. Downward message to an intermediate node also includes bottom up from sibling, as from Left here.
Conditional is sending downward message to right child of rule.

(a) CONDITIONAL Bottom-Up-S AB (b) CONDITIONAL Top-Down-S AB
Conditions: Left (non-terminal:A) Conditions: Head(non-terminal:S)
Right (non-terminal:B, Left (non-terminal:A)
Actions: Head(non-terminal:S) Actions: Right (non-terminal:B)
Function: 0.6 Function: 0.6

schedule to handle the requirements of this factor. Our work here also extends the message passing
algorithm but in a way that requires no special purpose factors, other than the nodes which sum
across the messages from multiple actions for a single predicate, and which have previously been
mentioned to not be logically necessary.

When the probabilities associated with the rules are to be estimated, the inside-outside
algorithm (Jurafsky & Martin, 2008) is used. The inside portion of the algorithm is similar to CKY’s
bottom-up pass and calculates the probability of a substring rooted in a certain non-terminal,
whereas the outside portion of the algorithm calculates the probability of a substring rooted in a
particular non-terminal in the context of the rest of the sentence. An SPN encoding the inside-
outside algorithm for a toy language is shown in Figure 5(b). The SPN is cubic in the size of the
sentence. Due to the absence of loops, inference is tractable and exact. To understand why inference
is efficient, note that the SPN encodes only the sums and products that are necessary in the context
of the grammar.

Table 2(a) shows a Sigma conditional generated by Step 5 of Algorithm 1, in the bottom-up
direction (‘inside’ in the context of PCFGs). The conditions correspond to the RHS of the grammar
rule S— A B of the grammar shown in Figure 5(a) and are generated according to Step 5.ii. The
action represents the LHS of the rule and is generated by Step 5.iii. The function corresponds to the
probability of the rule and is generated by Step 5.iv. Table 2(b) shows the analogous conditional in
the top-down direction (‘outside’ in the context of PCFGS) as generated by Step 7 in the algorithm.*
It is straightforward to note that these conditionals produce a graph that when operated upon by
Sigma’s sum-product algorithm yields inference with the desired properties of the underlying SPN.
Exactness of inference is established by Proposition 1 and tractability is established by Proposition
2, both from Section 3.2.

To explore these claims empirically, a version of Algorithm 1 was implemented for PCFGs and
applied to the one in Figure 5(a), with the resulting graphs then solved in Sigma. SPNs
corresponding to sentence lengths varying from three up to fifteen words were generated. Figure 6
shows the number of messages exchanged in the Sigma SPN model as a function of the number of

4 The Sigma-SPN parser code for a set of sample sentences from grammar of Figure 5(a) is available at
https://bitbucket.org/hima cogarch/acs_spn/.
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Figure 6. The number of messages exchanged in a Sigma graph is linear in the size of the underlying SPN in
terms of the number of links in the corresponding SPN.

links in the underlying SPN. It is clear here that the number of messages exchanged in the Sigma
SPN graph is linear (R? of 0.99) in the size of the underlying SPN, as opposed to the exponential
growth that would be expected for a pure factor graph (Naradowsky, Vieira, & Smith, 2012).

These results provide a concrete demonstration of what was proven abstractly in the previous
section, demonstrating that the inner loop of Sigma’s cognitive cycle is able to solve an important
class of problems — parsing for PCFGs — in an exact and tractable fashion. In the process, it raises
the possibility of combining this work on PCFGs with other work (Joshi, Rosenbloom, & Ustun,
2014; Joshi, Rosenbloom, & Ustun, 2016) towards a uniform supra-architectural integration of
speech, language and cognition via conditionals in Sigma, rather than as separate architectural
modules, as a major step forward in both grand unification and functional elegance. It also raises
the possibility of incorporating other efficient algorithms for important problems, such as
optimization and satisfiability, within Sigma.

5. Summary and Conclusion

Sum-product networks (SPNs) provide a new graph-based computational model that shows great
potential for performing tractable and exact calculations on important problems for which
traditional graphical models are exponential and approximate. The core hypothesis examined in
this paper has been that Sigma, although grounded in traditional graphical models, already
embodies all that is necessary to encode and solve any valid SPN with the tractability and exactness
expected of them. This hypothesis was approached via three key steps. First, an algorithm was
developed that was proven able to convert any valid SPN into Sigma’s cognitive language of
conditionals. Second, it was proven that when the resulting cognitive expressions are compiled
down to factor graphs that have been extended to allow unidirectional message passing along links
—an extension to Sigma that was originally developed to support Rete-like rule match (and actions),
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and which later proved key in implementing neural networks — then the resulting SPNs retain the
exactness and tractability expected of them. Exactness was proven by showing Sigma SPNs
calculate the same posteriors as the underlying SPN. Tractability was proven by showing that
processing is within a constant factor of the SPN. Third, we demonstrated experimentally that
solving SPNs in Sigma for probabilistic context-free grammars (PCFGs) retains this expected
tractability and exactness. The number of messages required in the Sigma implementation was
linear in the number of links in the underlying SPNs.

These results directly bear on Sigma’s sufficient efficiency desideratum by showing how a
major cognitive problem — of parsing PCFGs — can be solved tractably within its graphical
processing. They also imply that Sigma may be able to solve a variety of additional major cognitive
problems tractably within the cognitive cycle — such as optimization, constraint satisfaction and
satisfiability — that would not be possible with pure graphical models. These results also bear on
the desideratum of functional elegance by reusing for SPNs the core sum-product algorithm that
was implemented in Sigma for factor graphs plus the same unidirectional extension that underlies
rule match and neural networks. For convenience, this work also reused another extension
previously made for rules that sums the messages arriving from multiple actions for the same
predicate. These results also provide a path towards bearing on the desideratum of grand unification
through combining tractable parsing of PCFGs with other work in Sigma on spoken language
understanding, including the encoding of speech processing itself via conditionals, to yield a tight
coupling of the cognitive and subcognitive aspects of this overall problem.

Moving beyond Sigma to cognitive architectures more broadly, these results suggest a path
toward evaluating more generally whether SPNs by themselves, or some suitable generalization of
them, might provide the long-sought solution to limiting the cognitive cycle to tractable, and even
bounded, inference while remaining sufficiently expressive to support generic cognition. Such an
approach would be akin to, but hopefully more successful due to being more expressive than, earlier
efforts in Soar to restrict the expressiveness of rules in order to guarantee tractable match. Beyond
cognitive architectures, these results yield a novel approach to combining the efficiency of SPNs
with the generality of graphical models. Although other approaches to such a combination have
recently been explored, such as Expression Graphs (Demski, 2015) and Sum Product Graphical
Models (Desana & Schnorr, 2017), none of these alternatives also extends to include rules and
neural networks.

This work showed how SPNs can be leveraged for PCFG processing in a purely reactive
fashion. A deliberative sentence processing capability that leverages a dynamic and online form of
SPNs for sentence processing is more suitable in a cognitive architecture setting. This provides an
intriguing opportunity for future work. Another important opportunity for future work involves the
learning of SPN structures and parameters. Applications of SPNs towards efficient acoustic
modeling, language modeling, and other areas are also important.
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