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Abstract 

Sum-product networks (SPNs) are a new kind of deep architecture that support exact, tractable 

inference over a large class of problems for which traditional graphical models cannot. The Sigma 

cognitive architecture is based on graphical models, posing a challenge for it to handle problems 

within this class, such as parsing with probabilistic grammars, a potentially important aspect of 

language processing. This work proves that an early unidirectional extension to Sigma’s graphical 

architecture, originally added in service of rule-like behavior but later also shown to support neural 

networks, can be leveraged to yield exact, tractable computations across this class of problems, and 

further demonstrates this tractability experimentally for probabilistic parsing. It thus shows that 

Sigma is able to specify any valid SPN and, despite its grounding in graphical models, retain the 

desirable inference properties of SPNs when solving them. 

1.  Introduction  

Cognitive architectures (Langley, Laird, & Rogers, 2009) model the fixed mechanisms underlying 

human-like cognition and yield cognitive systems when combined with the necessary knowledge 

and skills. The efficiency of such architectures has long been a major concern when there is 

significant anticipation of their being applied to large-scale and/or real-time problems. An early 

important example was the incorporation of the Rete match algorithm (Forgy, 1982) into the Soar 

architecture, when the rule system underlying Soar was switched from XAPS2 to OPS5 (Laird & 

Newell, 1983). Beyond this, there is also a more specific need for tractability, or even boundedness, 

in human-like cognitive architectures that stems from their need to be driven by a cognitive cycle 

that, in humans, runs at ~50 msec./cycle (Laird, Lebiere, & Rosenbloom, 2017). 

 The Sigma cognitive architecture is being developed towards achieving a quartet of desiderata 

(Rosenbloom, Demski, & Ustun, 2016a).  One concerns sufficient efficiency, the ability to execute 

quickly enough for whatever ends are to be accomplished, which hits squarely on the needs just 

mentioned. The other three desiderata are: grand unification, combining cognitive and key sub-

cognitive abilities; functional elegance, enabling this diverse behavior from a core set of general 

mechanisms; and generic cognition, constructing artificial and modeling natural intelligence. The 
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overall approach to satisfying these desiderata in Sigma is based on the graphical architecture 

hypothesis, that “key to progress on them is combining what has been learned from over three 

decades’ worth of separate work on cognitive architectures and graphical models” (Rosenbloom, 

Demski, & Ustun, 2016a).1 

Many forms of graphs exist in cognitive architectures, from the discrimination networks found 

in Rete to the relational graphs (or semantic networks) that form the basis for the declarative long-

term and working memories in some architectures (e.g., Anderson et al., 2004; Laird, 2012) to the 

neural networks used in others (e.g., Jilk et al., 2008; Sun, 2016). However, the graphical models 

used in Sigma are of a very specific sort, which leverage forms of independence to decompose 

arbitrary multivariate functions into products of simpler functions that can be mapped onto graphs 

for efficient computation of quantities such as marginals and modes (Koller & Friedman, 2009). 

Such graphical models provide the dominant paradigm for probabilistic computation, in forms 

such as Bayesian networks (Pearl, 1988), but in the more general form of factor graphs 

(Kschischang, Frey, & Loeliger, 2001) – as used in Sigma – they have yielded state-of-the-art 

algorithms across the processing of signals, probabilities and symbols. It is this breadth and 

efficiency from a single underlying formalism that provides the core potential for achieving three 

of Sigma’s four desiderata, with only generic cognition at this point seeming unrelated. 

It has, however, recently been shown that there are significant classes of important problems – 

such as probabilistic parsing – for which such graphical models yield exponential time and only 

approximate answers whereas a new kind of deep architecture – sum-product networks (SPNs) – is 

able to solve them in an exact and tractable fashion (Poon & Domingos, 2011). This class of 

problems has since been enhanced further to include constraint satisfaction, optimization, and 

satisfiability, among others, by generalizing the ideas behind SPNs (Friesen & Domingos, 2016). 

The core hypothesis examined in this paper is that Sigma, although grounded in traditional 

graphical models, already embodies all that is necessary to encode and solve any valid SPN with 

the tractability and exactness expected of them. This hypothesis will be approached by: (1) proving, 

with the aid of a translation algorithm, that Sigma’s existing cognitive language is expressive 

enough to encode any valid SPN; (2) proving that an extension to Sigma that was originally 

developed to support Rete-like rule match (and actions) in Sigma, and which later proved key in 

implementing neural networks, can enable solving any valid SPN with the exactness and tractability 

expected of them; and (3) demonstrating experimentally that solving SPNs for probabilistic 

context-free grammars (PCFGs) in Sigma retains the tractability and exactness implied by the 

inside-outside algorithm. These results bear directly on sufficient efficiency as well as functional 

elegance while introducing more generally a novel means of combining graphical models and 

SPNs. They may even provide a new route to solving the long-standing issue of limiting the 

cognitive cycle to tractable or even bounded inference (e.g., Tambe, Newell, & Rosenbloom, 1990). 

 The rest of this article elaborates on these themes. Section 2 reviews Sigma along with a brief 

introduction to graphical models. Section 3 discusses sum-product networks and how they map 

onto Sigma. Included in this is more necessary detail on inference in graphical models, an algorithm 

for the mapping of SPNs onto Sigma, a proof that the algorithm works for any valid SPN, and a 

proof that the resulting SPN retains the expected exactness and tractability when solved in Sigma. 

                                                 
1 Although originally stated in this form, it is now actually over four decades worth. 
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Section 4 discusses probabilistic context-free grammars, the challenges faced by a factor graph 

representation of them, and experimental results from an SPN-based Sigma implementation that 

demonstrates the requisite tractability. Section 5 summarizes and concludes. 

2.  The Sigma Cognitive System 

As implied by the graphical architecture hypothesis, Sigma is an approach to cognitive systems that 

reflects a number of lessons from earlier cognitive architectures. At a high level, Sigma borrows 

much from Soar. Early Soar was symbolic and functionally elegant, with one symbolic long-term 

memory and one symbolic learning mechanism (Laird, Newell, & Rosenbloom, 1987). Soar has 

since changed to incorporate multiple long-term memories and learning mechanisms and several 

forms of subsymbolic representation (Laird, 2012).  It also freely appends, as necessary, external 

modules when intensive subsymbolic processing is required. From Soar, Sigma has leveraged:  

• the distinction between long-term memory and working memory; 

• the use of problem spaces to structure cognitive behavior  

• the cognitive cycle structure and its division into two major phases (Figure 1), although with 

differences in the details; and  

• the functional elegance of its nested three-layer control structure (reactive via a single cognitive 

cycle, deliberative via a sequence of operator selections and applications over multiple 

cognitive cycles, and reflective via impasse-driven generation of metalevels). 

In the process, Sigma has attempted to sustain the kind of functional elegance that was evident in 

the early Soar while providing the necessary diversity of long-term memory and learning behaviors 

via idioms above the architecture (Rosenbloom, Demski, & Ustun, 2016a). Sigma has also opted 

for the more pervasive style of subsymbolic representation – or quantitative metadata (Laird, 

Lebiere, & Rosenbloom, 2017) – that is at least partially seen in ACT-R and the later versions of 

Soar, but via a strategy based on the broadly state-of-the-art approach of graphical models. 

Figure 1. Sigma operationalizes the graphical architecture hypothesis in a layered format. In (a), the 

Cognitive architecture is supported by the graphical architecture below it. The cognitive architecture consists 

of the cognitive cycle and the cognitive language. The cognitive cycle is shown in (b) at the top with two 

major phases – elaboration and adaptation – corresponding to inference and update phases in the graphical 

architecture below. The minor phases Input (I) & Output (O) are also shown and are required for interfacing 

to the outside world. 
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Figure 1 shows the operationalization of the graphical architecture hypothesis via a layered 

design. Long-term knowledge fragments are specified via Sigma’s cognitive language and then 

compiled to a generalized factor graph, representing the memory and structuring its reasoning. The 

resulting graph is then solved using a generalized form of the sum-product algorithm. A review of 

how Sigma has extended the sum-product algorithm is covered in Rosenbloom, Demski and Ustun 

(2016b). The remainder of this section describes Sigma’s cognitive language, factor graphs, and 

the unidirectional extension to Sigma’s factor graphs that enables SPN inference.  

 Sigma’s cognitive language consists of predicates and conditionals. Predicates provide 

relational data structures for cognitive processing that join together typed arguments representing 

objects, entities or concepts, plus optional functions. Each predicate induces a region in the working 

memory (WM) for temporary storage of the state of the system and may also induce a region in the 

system’s perceptual buffer for input from the outside world. The types themselves can be discrete 

– symbolic or probabilistic – or continuous, thus allowing the predicates to conjointly represent 

richly structured representations that are both mixed (symbolic + probabilistic) and hybrid (discrete 

+ continuous). 

 Relationships between predicates are specified using conditionals that represent generalized 

knowledge fragments in Sigma’s long-term memory (LTM) by blending concepts from rule-based 

systems and probabilistic networks. They are built from predicate patterns – conditions, actions, 

and condacts – plus optional functions. Conditions and actions are analogous in their behavior to 

the respective parts of rules and provide the forward momentum characteristic of procedural 

memory – conditions match to evidence in working memory and actions generate proposed changes 

in WM. Condacts support bidirectional processing – both matching to WM and suggesting 

changes to it – as needed for general probabilistic reasoning and traditional factor-graph semantics. 

The results of matching condacts and conditions within conditionals are combined in a 

multiplicative manner, while reuse of the same actions for the same predicate, either within or 

across conditionals, results in an additive combination. 

 Factor graphs and the message passing sum-product algorithm (Kschischang, Frey, & 

Loeliger, 2001) are used to ground the knowledge and processing thus specified. As Figure 2 ind-

icates, factor graphs are bipartite graphs composed of variable nodes and factor nodes. There is a 

variable node for each variable in the global function and a factor node for each sub-function in its 

decomposition. Each variable node is connected to all the factor nodes in whose function it 

participates. The sum-product algorithm computes messages along these links in both directions. 

A message along a link from a variable node is a product of messages to the node along all other 

links, while the message along a link from a factor node also multiplies in the local factor function. 

Figure 2. A factor graph for the function f(X, Y) = f1(X)f2(X, Y), with two variables X,Y shown in variable nodes 

and the two factors into which the function decomposes. 



SUM-PRODUCT NETWORKS IN SIGMA 

43 

 Although the bidirectionality of the sum-product algorithm, as supported by condacts in 

Sigma’s cognitive language, is required in order to meet the semantics of graphical models, certain 

forms of processing, such as for rules in procedural memories, require flow of information in one 

direction only. This limitation was overcome early on in Sigma by providing the option for 

unidirectional message passing along particular links, as specified in the cognitive language by 

using conditions and actions in conditionals. This breaks the traditional factor graph semantics for 

the affected portions of the overall graph, but it increases the scope of what can be represented and 

computed, including enabling rule conditions (and actions) to map onto the generalized factor 

graphs produced by Sigma’s compiler in ways that mimic the Rete algorithm (Rosenbloom, 2010). 

It has also since been shown to enable mapping of feedforward neural networks onto portions of 

these graphs (Rosenbloom, Demski, & Ustun, 2016b). 

 One other rule-based extension to Sigma’s factor graphs is also leveraged in this work: 

messages converging on a single node from multiple actions for the same predicate are combined 

via summation rather than multiplication (Rosenbloom, Demski, & Ustun, 2016b). Use of this 

extension is not logically necessary to encode SPNs exactly and tractably in Sigma, as it is possible 

to instead directly leverage the sum aspect of the sum-product algorithm, but it simplifies the 

mapping from SPNs onto Sigma and is thus easier to understand. For simplicity, in the next section 

we will refer to these as sum nodes to contrast them with normal product nodes. 

3.  Sum-Product Networks and Their Mapping onto Sigma 

Sum-product networks (SPNs) are a relatively new form of graph-based (actually tree-based in this 

case) computational model that represent complex functions via sums and products (Poon & 

Domingos, 2011). Although the name here is quite similar to that of the sum-product algorithm, 

the two are actually distinct in both history and usage, with the biggest difference being that 

inference in SPNs is guaranteed to be exact and linear in the size of the network. SPNs can encode 

any graphical model or factor graph where inference is tractable. However, the converse is not true; 

a function that can be represented as an SPN does not necessarily lend itself to tractable, non-

exponential inference when expressed as a factor graph. In fact, several classes of problems exist 

that can be solved tractably and exactly as SPNs, but that lose their exactness and tractability when 

represented as factor graphs (Demski, 2015; Gens & Domingos, 2013). Probabilistic context-free 

grammars (PCFGs) provide one key example, for which in fact the SPN representation over a 

sentence of bounded length encodes the well-known inside-outside algorithm, supporting inference 

(inside) and a prerequisite for learning (outside) (Poon & Domingos, 2011). Friesen and Domingos 

(2016) have further generalized earlier results on SPNs to show that inference can remain tractable 

for a larger class of problems – characterized by summing over semirings – that “includes 

satisfiability, constraint satisfaction, optimization, integration, and others.” 

 Factor graphs were chosen for Sigma because they subsume many different graphical models 

and narrow AI algorithms. Whereas SPNs focus on representing what computations are to be 

performed and how to perform these computations, factor graphs specify the goals of the 

computation only, with the sum-product algorithm providing one possible algorithmic implement-

ation. For this reason, the decision was made here to focus on direct extensions to the sum-product 

algorithm in implementing sum-product networks within Sigma rather than more indirectly finding 
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a way of extending the semantics of factor graphs that would in turn guarantee that any algorithm 

for solving them would have the right properties. Here, in fact, we specifically leverage the sum-

product algorithm with the two extensions mentioned in the previous section for unidirectional 

message passing and sum nodes. 

 In the rest of this section, we prove that Sigma’s cognitive language is able to specify any valid 

SPN while retaining the desirable inference properties of SPNs in the graphs that result from 

compiling these specifications into extended factors graphs. This is accomplished by first consider-

ing how inference works in factor graphs, which form the inner loop of the elaboration phase of the 

cognitive cycle, and in SPNs. An algorithm to convert an SPN into an equivalent set of Sigma 

conditionals is then presented. The effectiveness of this algorithm in producing Sigma conditionals 

that retain the desirable inference properties of SPNs is proven by showing that, for the smallest 

valid SPN (and the corresponding Sigma model), (1) the posteriors calculated in the corresponding 

sum and product nodes in Sigma’s working memory are the same as in the original SPN, (2) the 

messages incoming at these nodes are the same as in the original SPN, and (3) there are no cycles 

in the resulting Sigma graph. These properties can then be generalized over any valid decomposable 

SPN recursively created using the definition of SPNs presented by Gens and Domingos (2013).  

3.1  SPNs and Graphical Models 

We borrow notation from Darwiche (2009) and Koller and Friedman (2009) to describe SPNs and 

graphical models respectively. Let 𝒢 = (𝒱, ℰ) be a graphical model with variable nodes in set 𝒱 

and edge nodes in edge set ℰ. Each variable node is a discrete2 random variable 𝑋 and takes on 

values 𝑥𝑖 in its domain 𝛥(𝑋). Figure 3 shows an example of a Bayesian network, the corresponding 

factor graph representation and the SPN corresponding to them.  

An indicator variable typically takes on the value 1 if the supporting variable takes on the 

corresponding value. Here, we extend the definition of indicator variable as done in Gens and 

Domingos (2013). We define an indicator variable ℐ(𝑋𝑖) for every 𝑥𝑖 ∈ 𝛥(𝑋). ℐ(𝑋𝑖) takes on the 

value 1 if the corresponding variable 𝑋 is observed in evidence 𝐸 and it takes value 𝑥𝑖, or if X is 

not observed as part of 𝐸. 

 
ℐ(𝑋𝑖) = {

1, if 𝑋 is in 𝐸 and 𝐸 indicates 𝑋 =  𝑥𝑖 or 𝑋 ∉ 𝐸;
0, otherwise.

 (1) 

 

The networks shown in Figure 3 encode the distribution 

 P(X,Y)= ∑ P(X)P(Y|X)
X,Y

 . (2) 

Here, P(X) is the prior on X and P(Y|X) is the conditional probability distribution on Y given X. The 

factor graph is a bipartite representation 𝒢 = (𝒱, ℱ) where the variable nodes 𝒱 correspond to 

variables and the factor nodes ℱ encode functions over variables. The prior and the conditional 

distribution from Equation 2 are shown as local factors with the joint distribution being the global 

function represented by the graph. Inference is carried out via message passing, with Figure 3(b) 

                                                 
2 We consider discrete random variables for the sake of simplicity; however, these concepts can be applied 

to continuous variables with suitable modifications. 
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showing the messages sent over the links from variable nodes. In particular, the factor graph in 

Figure 3(b) encodes the distribution 

 𝑃(𝑋, 𝑌) = ∑ ℐ(𝑋𝑖) ℐ(𝑌𝑗)𝑃(𝑋)𝑃(𝑌|𝑋) .
𝑥𝑖∈𝛥(𝑋),𝑦𝑗∈𝛥(𝑌)

 (3) 

The value of the factor graph is determined by the evidence provided, as applied by the definition 

of the indicator variables to perform inference via message passing. Here we present a brief 

description of the message passing algorithm using our notation and interpretation. The messages 

incident on variable nodes are from factor nodes and represent beliefs over the domains of the 

respective variables. Messages over different links at variable nodes are combined via multiplic-

ation. At the variable nodes, we provide evidence by multiplying the respective indicator variables 

with the local distribution over that variable. If the variable is observed as part of evidence, then 

this reduces the message to a non-zero value for the particular value of the variable observed. The 

calculation performed at the variable nodes is a pointwise product over the variable’s domain and 

an update message is generated to other links. The outgoing message from a variable node to a 

factor node thus includes a product of all incoming messages except the one from that particular 

factor node: 

 𝜇𝑥→𝑓;𝑥𝑖∈Δ(𝑋) = ∏ ℐ(𝑋𝑖)𝜇𝑓→𝑥;𝑥𝑖∈Δ(𝑋)

𝑓∈ℱ = 𝑁(𝑋) \ 𝜇
𝑓→𝑥;𝑥𝑖∈Δ(𝑋)

 (4) 

 

Here, N(X) is the set of nodes that are neighbors of node X. The factor nodes receive messages from 

variable nodes that are their neighbors and multiply these messages together along with their local 

functions. Outgoing messages to variable nodes are then generated by summing out the other 

variables not in this message: 

 𝜇𝑓→𝑥;𝑥𝑖∈Δ(𝑋) =  ∑  ∏ 𝐹(𝑥, 𝑦)𝜇𝑦→𝑓;𝑦𝑖∈Δ(𝑌)

𝑦∈𝒱 = 𝑁(𝑓) \𝜇
𝑥→𝑓;𝑥𝑖∈Δ(𝑋)

 𝑦

 (5) 

 This has the effect of selecting a particular state from each of the local factors and multiplying 

them to obtain the global function, consistent with any provided evidence. For the variables that 

are not observed, this has the effect of yielding their marginals at the respective variable nodes, 

given the evidence (Kschischang, Frey, & Loeliger, 2001). It is important to note that the number 

of calculations at the factor nodes is exponential in the number of variables in the largest factor and 

their domain size, in particular it is 𝑂(𝑚𝑛), where 𝑚 is the size of the largest variable domain and 

𝑛 is the number of variables. It is also important to note that if certain states in the domains of the 

variables participating in that factor do not participate, the factor graph has no way of specifying 

that. An example of this will be seen later in the domain of PCFG parsing. In this example, the 

grammar itself specifies which sums and products are necessary, forgoing those that are not needed. 

The factor graph shown in Figure 3(b) is a tree, but this overall procedure can be generalized 
to graphs with cycles. However, inference may not be exact in graphs with cycles and the cost is 
typically proportional to the treewidth of the graph – a measure of the connectedness of the graph. 
In such cases, the inference is approximate as well as exponential in nature. Since the solution of 

such graphs is at the very heart of Sigma’s cognitive cycle, this raises not only efficiency issues, 
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but also ones of tractability and boundedness. Even worse, there are major cognitive problems, such 
as the parsing of probabilistic context-free grammars (PCFGs) – an important formalism 
characterizing linguistic structure (Jurafsky & Martin, 2008) that has been argued recently is 
important for cognitive architectures (Demski, 2015) – for which polynomial (cubic) algorithms 
are known, but which when mapped onto pure graphical models yield exponential computation 
(Pynadath & Wellman, 1998); and even then they only provide approximate solutions rather than 

the exact solutions provided by the polynomial algorithms. To work around this problem, Smith 
and Eisner (2008) and Naradowsky, Vieira, and Smith (2012) designed a special factor that 
embedded dynamic programming – i.e., the structure of the problem – inside the factor itself, 
allowing for exact inference. However, as we will show later, inference remains inefficient in the 
size of the grammar and requires a special, non-standard message passing schedule. 

SPNs avoid these problems by being able to specify only the operations that are needed to 

compute the marginal efficiently. This is achieved via the use of a network polynomial (Darwiche, 

2009) and postulating hidden variables to express the network polynomial efficiently. An SPN is a 

tree rooted in a sum node, encoding a partition function over a probability distribution. More 

formally, we use the definition of a decomposable SPN from Gens and Domingos (2013) because 

it helps show how to compose SPNs from basic elements. Consider a set of variables 𝒳 =
{𝑋1, 𝑋2, … , 𝑋𝑁} and let 𝒳𝐾 be partition such that 𝒳𝐾 = 𝑋1  ∪  𝑋2 … ∪ 𝑋𝐾. An SPN 𝑆(𝑋) is 

recursively defined and constructed by (repeated) application of three rules: 

1. An indicator variable ℐ(𝑋𝑖
𝑗
) is an SPN 𝑆({𝑋𝑖}). The previous definition of indicator variables 

presented in Eq. 1 applies. 

2. A product ∏ 𝑆(𝑋𝑘)𝐾
𝑘=1  is an SPN, with the SPNs {𝑆𝑘(𝑋𝑘)}𝑘=1

𝐾  factors. 

3. The weighted sum ∑ 𝑤𝑘𝑆𝑘(𝑋)𝐾
𝑘=1  is an SPN, where {𝑤𝑘} are non-negative weights and sum to 

one for probability distributions and they combine the SPNs 𝑆𝑘(𝑋). 

The above definition also implies a structure of alternating sum and product nodes with the topmost 

root node being a sum node. SPNs are evaluated in two distinct passes.  There is a bottom-up pass 

for evaluating the probability of particular evidence, as applied via the indicator variables. To obtain 

the most-probable-explanation assignment of unobserved variables, a top-down pass is also needed, 

Figure 3. A Bayesian network shown in standard notation (a) and the corresponding factor graph (b). Each 

variable here is Boolean. The factor graph version shows the messages that are to be exchanged along each 

link. The corresponding SPN is shown in (c). 
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selecting the most likely branch at each sum node. The top-down and bottom-up messages are 

calculated via the application of differentiation in arithmetic circuits. Interested readers may refer 

to Darwiche (2009) for a detailed explanation of how these messages are obtained.  Here we present 

just a high-level overview of them in the interest of showing how they can be computed in Sigma. 

Figure 4 shows the messages exchanged between child and parent nodes, in both directions. In 

the bottom-up direction, the message going from a Sum node 𝑆𝑖⨁ to its parent node is simply the 

weighted addition of its child nodes, and similarly the message going from a Product node 𝑆𝑖⨂ to 

its parent node is simply the product of its children. These outgoing messages are the values of the 

SPN rooted in those nodes. In the top-down direction, the value of a product node is simply the 

weighted addition of its parents’ values (“product” is an accurate label for the node only in the 

bottom-up direction), 

 
𝑆𝑖⨂ =  ∑

𝑤𝑘𝑖𝛿𝑆(𝑋)

𝛿𝑆 𝑘
(𝑋) ,

𝑘∈𝑝𝑎(𝑖)
 (6) 

whereas the value of a sum node is 

 𝑆𝑖⨁ =  ∑ 𝑤𝑘𝑖𝛿𝑆(𝑋)/𝛿𝑆𝑘(𝑋)
𝑘∈𝑝𝑎(𝑖)

∏ 𝑆𝑙(𝑋) .
𝑙∈𝐶ℎ(𝑝𝑎(𝑖))−𝑖

 (7) 

It is important to note that by specifying computations directly, in a computational trellis, SPNs 

provide a compact representation of all the operations needed to perform exact inference. 

3.2  Converting SPNs to Sigma Conditionals 

As discussed previously, long term knowledge is specified in Sigma using the language of 

conditionals.  In this section we describe an algorithm to translate an SPN into an equivalent Sigma 

model (Table 1). We focus on valid, decomposable SPNs only because we are interested in 

translating only such SPNs into Sigma. Learning a valid, decomposable SPN from a dense SPN is 

left for future work. 

Figure 4. (a) Messages computed by SPNs in the bottom-up pass and (b) Messages computed by SPNs in 

the top-down pass, from equations 6 and 7, respectively. 
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Table 1. Algorithm 1, which generates a Sigma model from an input SPN. The SPN is specified in terms 

of the sum and product nodes with associated links. The algorithm generates the corresponding Sigma 

model in time and space linear in the size of the SPN. 

Input: An SPN 𝒢 = (𝒱, ℰ), with 𝒱 = {𝑆⨁, 𝑆⨂, ℐ(𝒳𝑖)}. 

Output: A Sigma model with associated predicates, and conditionals. 

1. Declare a set of perception predicates 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒(𝒳𝑖) for ℐ(𝒳𝑖) indicator nodes. 

2. Declare two sets of predicates {𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆⨁)} and {𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆⨁)}  for bottom-up and 

top-down values of SPN 𝑆⨁nodes. 

3. Declare a set of predicates 𝑝𝑟𝑜𝑑_𝑎𝑙𝑝ℎ𝑎 (𝑆⨂), 𝑝𝑟𝑜𝑑_𝑏𝑒𝑡𝑎(𝑆⨂) for top-down values of SPN 

𝑆⨂nodes. 

4. Declare a set of perception predicates 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒(𝒳𝑖) for ℐ(𝒳𝑖) indicator nodes. 

5. Declare two sets of predicates {𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆⨁)} and {𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆⨁)}  for bottom-up and 

top-down values of SPN 𝑆⨁nodes. 

6. Declare a set of predicates 𝑝𝑟𝑜𝑑_𝑎𝑙𝑝ℎ𝑎 (𝑆⨂), 𝑝𝑟𝑜𝑑_𝑏𝑒𝑡𝑎(𝑆⨂) for top-down values of SPN 

𝑆⨂nodes. 

7. Declare a set of predicates {𝑠𝑢𝑚_𝑔𝑎𝑚𝑚𝑎(𝑆⨁)} for the posteriors. 

8. In the bottom-up direction, from indicators to root, for each element of 𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨁): 

i. For each product child node 𝑆𝑗⨂ of 𝑆𝑖⨁, create a conditional such that: 

a. The predicate in the condition is 𝑝𝑟𝑜𝑑_𝑎𝑙𝑝ℎ𝑎(𝑆𝑗⨂).  

b. There is an action for the predicate  𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨁). 

c. There is a function in the conditional that corresponds to the weight 𝑤𝑖𝑗 . 

9. In the bottom-up direction, indicators to root, for each element of 𝑝𝑟𝑜𝑑_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨂):   

i. Create a conditional such that: 

a. The predicates in the conditions are 𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆𝑗⨁), corresponding to the children 

𝑆𝑗⨁  of 𝑆𝑖⨂. 

b. There is an action for the predicate  𝑝𝑟𝑜𝑑_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨂). 

10. In the top-down direction, root to indicators, for each element 𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆𝑖⨁): 

i. For each parent node 𝑆𝑗⨂ of 𝑆𝑖⨁ create a conditional such that: 

a. The predicates in the conditions are 𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆𝑐⨁), where each 𝑆𝑐⨁is a child of 𝑆𝑗⨂. 

Exclude the 𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨁) predicates from the conditions. 

b. Add the predicate 𝑝𝑟𝑜𝑑_𝑏𝑒𝑡𝑎(𝑆𝑗⨂) to the conditions. 

c. There is an action for the predicate  𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆𝑖⨁). 

11. In the top-down direction, root to indicators, for each element 𝑝𝑟𝑜𝑑_𝑏𝑒𝑡𝑎(𝑆𝑖⨂):   

i. For each parent node 𝑆𝑗⨁ of 𝑆𝑖⨂, create a conditional such that: 

a. The predicate in the condition is 𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆𝑗⨁) . 

b. There is an action for the predicate 𝑝𝑟𝑜𝑑_𝑏𝑒𝑡𝑎(𝑆𝑖⨂). 

c. There is a function in the conditional that corresponds to the weight 𝑤𝑗𝑖 . 

12. Initiate the bottom-up pass by providing evidence via Sigma’s perception mechanism for the 

indicator variables in accordance with their definition. 

13. Initiate the top-down pass by providing evidence of “1” for the root node 𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆𝑟𝑜𝑜𝑡⨁). 
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The number of predicates required in Sigma is at most thrice the number of total nodes in the 

original SPN. This is because we compute the values of each node in two separate passes, based on 

separate trees for bottom-up and top-down computations, and then combine them via a third set of 

predicates. Deconstructing the graph in this fashion breaks the loops that would otherwise occur 

among the bottom-up and top-down messages along individual links. An example of this shall be 

seen in the next section. Furthermore, the messages computed by Sigma are a superset of the 

messages computed by the SPN, but scale by a constant factor as shall be seen in the next section. 

Finally, selection of the most likely path – as required by some algorithms such as Viterbi (Rabiner, 

1989) – can be performed via the selection/decision process provided by Sigma’s cognitive cycle. 

Although the selection process has not yet been implemented here, as the focus has been instead 

on inferential tractability and exactness, something very similar was previously implemented for 

continuous speech processing in Joshi, Rosenbloom, and Ustun (2016). 

 

Proposition 1: Algorithm 1 produces a set of conditionals that computes the same posteriors as the 

sum and product nodes in the original SPN. 

Proof: Recall from the earlier discussion of Sigma’s graphical architecture that messages are 

combined via product for predicates that are in conditions and combined via addition when the 

predicate appears in actions of multiple conditionals. For example, consider the SPNs shown in 

Figure 4. It can be established due to the conditionals created in steps 5 and 6 that the messages 

generated towards the 𝑠𝑢𝑚_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨁) and 𝑝𝑟𝑜𝑑_𝑎𝑙𝑝ℎ𝑎(𝑆𝑖⨁) predicates are the same as those 

shown in Figure 4(a). Similarly, the messages generated towards predicates 𝑠𝑢𝑚_𝑏𝑒𝑡𝑎(𝑆𝑖⨁) and 

𝑝𝑟𝑜𝑑_𝑏𝑒𝑡𝑎(𝑆𝑖⨁) using conditionals from steps 7 and 8 are those shown in Figure 4(b). Since 

Algorithm 1 can thus generate Sigma conditionals to calculate the messages for basic valid SPNs, 

then by induction, all decomposable SPN messages – i.e. messages exchanged in decomposable 

SPNs recursively created using the SPN definition from Section 3.1 – can be generated by 

conditionals from steps in Algorithm 1. ∎ 

 

Proposition 2: Algorithm 1 induces a Sigma graph that is tractable. 

Proof: This compilation process yields a set of predicates and conditionals that compile into a graph 

composed of bottom-up and top-down trees that are isomorphic to the corresponding SPN trees, up 

to the addition of a constant factor of additional nodes and messages.  The sum-product algorithm 

will respect this tree structure in computing the same results in the same manner as the SPN models. 

∎ 

4.  Probabilistic Grammar Parsing in Sigma 

Parsing of probabilistic context-free grammars (PCFGs) (Jurafsky & Martin, 2008) defines an 

important class of problems in computational linguistics. Formally, a context-free grammar (CFG) 

consists of a set of rules, called productions, expressed over a set of non-terminal symbols, 

including a special start symbol and terminal symbols. A PCFG extends the notion of a CFG by 

assigning probabilities to each rule. A context-free language is one that consists of all possible 

sentences that are derived from a particular context-free grammar. Intuitively, the non-terminals 

model consecutive words as a group – also referred to as a constituent – with evidence existing that 
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constituency plays a role in human language processing (Jurafsky & Martin, 2008). Due to its 

importance in language processing, and its potential architectural importance in this context, we 

use it here to demonstrate the tractable use of SPNs in Sigma. 

The problem of parsing consists of assigning structure to a sentence from the language 

described by the PCFG. This is typically accomplished by the well-known CKY algorithm from 

computational linguistics. The CKY algorithm considers an entire sentence as input and generates 

a set of possible parse trees in a structure called a parse chart.3 The parse chart encodes all valid 

parse trees that can give rise to the input sentence. Naively representing the parse chart as a 

graphical model and using the belief propagation algorithm gives rise to exponential inference 

(exponential in the treewidth). The size of the largest clique provides a measure of how connected 

the graph is and is used to characterize the efficiency of inference. Additionally, inference is not 

exact here due to the presence of loops in the graph in Figure 5(c). A similar approach was used in 

Pynadath and Wellman (1998) where PCFGs were mapped onto graphical models by representing 

the parse chart as a Bayesian network. To avoid the exponential and approximate nature of 

inference, more recently Naradowsky, Vieira, and Smith (2012) introduced a special factor, 

CKYTree, that encapsulated the dynamic programming necessary to perform cubic time parsing. 

This special purpose factor requires a modification to the belief propagation message passing 

                                                 
3 Although CKY parsing is not incremental, there are other approaches to PCFG parsing, such as predictive 

shift reduce (Shieber, Schabes, & Pereira, 1995), that ultimately might better support the needs of arch-
itecture-based cognitive systems. In unpublished work, Kenji Sagae explored incremental shift-reduce 
parsing in Sigma. 

Figure 5.  (a) A PCFG specified in Chomsky Normal Form. (b) Corresponding SPN, specifying precisely the 

sums and products necessary for inside-outside algorithm, with all invalid trees not represented. (c) Corres-

ponding factor graph version, with each variable node representing a distribution over a set of non-terminals 

and factor nodes encoding the grammar rules along with their associated probabilities. 
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schedule to handle the requirements of this factor. Our work here also extends the message passing 

algorithm but in a way that requires no special purpose factors, other than the nodes which sum 

across the messages from multiple actions for a single predicate, and which have previously been 

mentioned to not be logically necessary. 

When the probabilities associated with the rules are to be estimated, the inside-outside 

algorithm (Jurafsky & Martin, 2008) is used. The inside portion of the algorithm is similar to CKY’s 

bottom-up pass and calculates the probability of a substring rooted in a certain non-terminal, 

whereas the outside portion of the algorithm calculates the probability of a substring rooted in a 

particular non-terminal in the context of the rest of the sentence. An SPN encoding the inside-

outside algorithm for a toy language is shown in Figure 5(b). The SPN is cubic in the size of the 

sentence. Due to the absence of loops, inference is tractable and exact. To understand why inference 

is efficient, note that the SPN encodes only the sums and products that are necessary in the context 

of the grammar.  

Table 2(a) shows a Sigma conditional generated by Step 5 of Algorithm 1, in the bottom-up 

direction (‘inside’ in the context of PCFGs). The conditions correspond to the RHS of the grammar 

rule S→ A B of the grammar shown in Figure 5(a) and are generated according to Step 5.ii.  The 

action represents the LHS of the rule and is generated by Step 5.iii. The function corresponds to the 

probability of the rule and is generated by Step 5.iv. Table 2(b) shows the analogous conditional in 

the top-down direction (‘outside’ in the context of PCFGs) as generated by Step 7 in the algorithm.4 

It is straightforward to note that these conditionals produce a graph that when operated upon by 

Sigma’s sum-product algorithm yields inference with the desired properties of the underlying SPN. 

Exactness of inference is established by Proposition 1 and tractability is established by Proposition 

2, both from Section 3.2.  

To explore these claims empirically, a version of Algorithm 1 was implemented for PCFGs and 

applied to the one in Figure 5(a), with the resulting graphs then solved in Sigma. SPNs 

corresponding to sentence lengths varying from three up to fifteen words were generated. Figure 6 

shows the number of messages exchanged in the Sigma SPN model as a function of the number of 

                                                 
4 The Sigma-SPN parser code for a set of sample sentences from grammar of Figure 5(a) is available at 
https://bitbucket.org/hima_cogarch/acs_spn/. 

(a) CONDITIONAL Bottom-Up-S_AB 

       Conditions: Left(non-terminal:A) 

                   Right(non-terminal:B) 

       Actions: Head(non-terminal:S) 

       Function: 0.6 

(b) CONDITIONAL Top-Down-S_AB 

       Conditions: Head(non-terminal:S) 

                   Left(non-terminal:A) 

       Actions: Right(non-terminal:B) 

       Function: 0.6 

Table 2. Example conditionals generated by Algorithm 1. (a) Conditional for grammar rule S→ A B with 

probability 0.6. Head corresponds to root sum-node in Figure 4(b).  Conditional corresponds to leftmost link 

of four in bottom direction toward root sum node.  Function represents weight on link between sum and 

product node. (b) Conditional for downward message from root node to an intermediate sum node, 

corresponding to grammar rule S→ A B with probability 0.6. Head corresponds to root sum-node in Figure 

4b. Downward message to an intermediate node also includes bottom up from sibling, as from Left here. 

Conditional is sending downward message to right child of rule. 
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links in the underlying SPN. It is clear here that the number of messages exchanged in the Sigma 

SPN graph is linear (R2 of 0.99) in the size of the underlying SPN, as opposed to the exponential 

growth that would be expected for a pure factor graph (Naradowsky, Vieira, & Smith, 2012). 

These results provide a concrete demonstration of what was proven abstractly in the previous 

section, demonstrating that the inner loop of Sigma’s cognitive cycle is able to solve an important 

class of problems – parsing for PCFGs – in an exact and tractable fashion. In the process, it raises 

the possibility of combining this work on PCFGs with other work (Joshi, Rosenbloom, & Ustun, 

2014; Joshi, Rosenbloom, & Ustun, 2016) towards a uniform supra-architectural integration of 

speech, language and cognition via conditionals in Sigma, rather than as separate architectural 

modules, as a major step forward in both grand unification and functional elegance. It also raises 

the possibility of incorporating other efficient algorithms for important problems, such as 

optimization and satisfiability, within Sigma. 

5.  Summary and Conclusion 

Sum-product networks (SPNs) provide a new graph-based computational model that shows great 

potential for performing tractable and exact calculations on important problems for which 

traditional graphical models are exponential and approximate. The core hypothesis examined in 

this paper has been that Sigma, although grounded in traditional graphical models, already 

embodies all that is necessary to encode and solve any valid SPN with the tractability and exactness 

expected of them. This hypothesis was approached via three key steps. First, an algorithm was 

developed that was proven able to convert any valid SPN into Sigma’s cognitive language of 

conditionals.  Second, it was proven that when the resulting cognitive expressions are compiled 

down to factor graphs that have been extended to allow unidirectional message passing along links 

– an extension to Sigma that was originally developed to support Rete-like rule match (and actions), 

Figure 6. The number of messages exchanged in a Sigma graph is linear in the size of the underlying SPN in 

terms of the number of links in the corresponding SPN. 
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and which later proved key in implementing neural networks – then the resulting SPNs retain the 

exactness and tractability expected of them. Exactness was proven by showing Sigma SPNs 

calculate the same posteriors as the underlying SPN. Tractability was proven by showing that 

processing is within a constant factor of the SPN. Third, we demonstrated experimentally that 

solving SPNs in Sigma for probabilistic context-free grammars (PCFGs) retains this expected 

tractability and exactness. The number of messages required in the Sigma implementation was 

linear in the number of links in the underlying SPNs. 

These results directly bear on Sigma’s sufficient efficiency desideratum by showing how a 

major cognitive problem – of parsing PCFGs – can be solved tractably within its graphical 

processing. They also imply that Sigma may be able to solve a variety of additional major cognitive 

problems tractably within the cognitive cycle – such as optimization, constraint satisfaction and 

satisfiability – that would not be possible with pure graphical models. These results also bear on 

the desideratum of functional elegance by reusing for SPNs the core sum-product algorithm that 

was implemented in Sigma for factor graphs plus the same unidirectional extension that underlies 

rule match and neural networks. For convenience, this work also reused another extension 

previously made for rules that sums the messages arriving from multiple actions for the same 

predicate. These results also provide a path towards bearing on the desideratum of grand unification 

through combining tractable parsing of PCFGs with other work in Sigma on spoken language 

understanding, including the encoding of speech processing itself via conditionals, to yield a tight 

coupling of the cognitive and subcognitive aspects of this overall problem.   

 Moving beyond Sigma to cognitive architectures more broadly, these results suggest a path 

toward evaluating more generally whether SPNs by themselves, or some suitable generalization of 

them, might provide the long-sought solution to limiting the cognitive cycle to tractable, and even 

bounded, inference while remaining sufficiently expressive to support generic cognition. Such an 

approach would be akin to, but hopefully more successful due to being more expressive than, earlier 

efforts in Soar to restrict the expressiveness of rules in order to guarantee tractable match. Beyond 

cognitive architectures, these results yield a novel approach to combining the efficiency of SPNs 

with the generality of graphical models. Although other approaches to such a combination have 

recently been explored, such as Expression Graphs (Demski, 2015) and Sum Product Graphical 

Models (Desana & Schnorr, 2017), none of these alternatives also extends to include rules and 

neural networks. 

 This work showed how SPNs can be leveraged for PCFG processing in a purely reactive 

fashion. A deliberative sentence processing capability that leverages a dynamic and online form of 

SPNs for sentence processing is more suitable in a cognitive architecture setting. This provides an 

intriguing opportunity for future work. Another important opportunity for future work involves the 

learning of SPN structures and parameters. Applications of SPNs towards efficient acoustic 

modeling, language modeling, and other areas are also important. 
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