
Advances in Cognitive Systems 7 (2018) 57–76 Submitted 6/2018; published 12/2018

Inductive Learning of Answer Set Programs from Noisy Examples

Mark Law MARK.LAW09@IMPERIAL.AC.UK

Alessandra Russo A.RUSSO@IMPERIAL.AC.UK

Krysia Broda K.BRODA@IMPERIAL.AC.UK

Department of Computing, Imperial College London, London, SW7 2AZ, United Kingdom

Abstract
In recent years, non-monotonic inductive logic programming has received growing interest. Specif-
ically, several new learning frameworks and algorithms have been introduced for learning under the
answer set semantics, allowing the learning of common-sense knowledge involving defaults and ex-
ceptions, which are essential aspects of human reasoning. In this paper, we present a noise-tolerant
generalization of the learning from answer sets framework. We evaluate our ILASP3 system, both
on synthetic and on real data sets, represented in the new framework. In particular, we show that on
many of the data sets ILASP3 achieves a higher accuracy than other systems that have previously
been applied to the data sets, including a recently proposed differentiable framework for inductive
logic programming.

1. Introduction

The ultimate aim of cognitive systems research is to achieve human-like intelligence. People are
capable of many cognitive activities, such as learning from past experience, predicting outcomes of
actions based on what they have learned, and reasoning using this learned knowledge. Each of these
cognitive processes uses existing knowledge and generates new knowledge. They are underpinned
by our ability to perform inductive reasoning, one of our most important high-level cognitive func-
tions. Inductive reasoning is a complex process by which new knowledge is inferred from a series
of observations in a way that can be transferred from past experiences to new situations. When
performing inductive reasoning, observations perceived through the environment are often noisy
and the existing knowledge that we use during the reasoning process is also limited and incomplete.
The human inductive reasoning process is therefore capable of handling noise in the observations,
reasoning with incomplete and defeasible knowledge, applying knowledge learned in one scenario
to many other scenarios, and learning complex knowledge expressed in terms of rules, constraints
and preferences that can be communicated to others.

To realise cognitive systems able to perform human-like inductive reasoning, machine learning
solutions have to meet the above properties. Research in machine learning has yielded approaches
and systems that, although capable of identifying patterns in data sets consisting of millions of
(noisy) data points, cannot express the learned knowledge in a form that could be understood by
a human. Moreover, their learned knowledge can only be used in exactly the scenario in which it

c© 2018 Cognitive Systems Foundation. All rights reserved.

M. LAW, A. RUSSO, AND K. BRODA

was learned: for example, a system trained to play Go on a standard 19x19 board may not perform
very well at Go played on a 20x20 board. Lack of interpretability and transferability of the learned
knowledge make these approaches far from human cognition. On the other hand, Inductive Logic
Programming (ILP: Muggleton, 1991) has been shown to be suited for learning knowledge that can
be understood by humans and applied to new scenarios. Although approaches for performing ILP
in the context of noisy examples have been presented in the literature (e.g., Sandewall & Jansson,
1993; McCreath & Sharma, 1997; Oblak & Bratko, 2010), many existing ILP systems can only learn
knowledge expressed as definite logic programs, so they are not capable of learning common-sense
knowledge involving defaults and exceptions, which are essential aspects of human reasoning. This
type of knowledge can be modelled using negation as failure.

Recently, ILP has been extended to enable learning programs containing negation as failure
(e.g., Ray, 2009; Sakama & Inoue, 2009), and interpreted under the answer set semantics (Gelfond
& Lifschitz, 1988). In particular, our recent results in inductive learning of answer set programs
(ILASP: Law et al., 2014, 2016) have demonstrated the ability to support automated acquisition of
complex knowledge structures in the language of Answer Set Programming (ASP). The theoretical
framework underpinning ILASP, called Learning from Answer Sets (LAS), enables the learning of
constraints, preferences and non-deterministic concepts. For instance, LAS can learn the concept
that a coin may non-deterministically land on either heads or tails, but never both.

When learning, humans are also capable of disregarding information that does not fit the general
pattern. Any cognitive system that aims to mimic human-level learning should therefore be capable
of learning in the presence of noisy data. A realistic approach to cognitive knowledge acquisition is
therefore the learning of knowledge that covers the majority of the examples, but which at the same
time weights coverage against its complexity. In this paper, we present a noise tolerant extension
of our LAS framework, Learning from noisy answer sets (ILPnoise

LOAS) and show that our ILASP3
system is capable of learning complex knowledge from noisy data in an effective and scalable
way. A collection of data sets, ranging from synthetically generated to real data sets, is used to
evaluate the performance of the system with respect to the percentage of noise in the examples
and to compare it to existing ILP systems. Specifically, we consider two classes of synthetically
generated data sets, called Hamiltonian and Journey preferences, and show that ILASP3 is able in
both cases to achieve a high accuracy (of well over 90%), even with 20% of the examples labelled
incorrectly. We also evaluate ILASP3 on data sets concerning learning event theories (Katzouris
et al., 2016), sentence chunking (Agirre et al., 2016), preference learning (Kamishima et al., 2010;
Abbasnejad et al., 2013) and the synthetic data sets of Evans and Grefenstette (2018). Our results
show that in most cases the ability of ILASP3 to compute optimal solutions for a given learning task
allows it to reach higher accuracy than the other systems, which do not guarantee the computation
of an optimal solution.

The remaining pages present the details of our work. Section 2 reviews relevant background
material, while Section 3 introduces our new framework for learning ASP from noisy examples.
Section 4 discusses the ILASP algorithms, then Sections 5 and 6 present an extensive evaluation of
our ILASP3 system. Finally, we conclude with a discussion of related and future work.

58

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

2. Background

We briefly introduce basic notions and terminologies used throughout the paper. Given any atoms
h, h1, . . . , hk, b1, . . . , bn, c1, . . . , cm, a normal rule is of the form h : - b1, . . . , bn, not c1, . . . , not cm,
where “not” is negation as failure, h is the head of the rule and b1, . . . , bn, not c1, . . . , not cm
is the body of the rule. For example, fly(X) : - bird(X), not ab(X) is a normal rule stating that
any bird can fly, unless it is abnormal. The negated condition not ab(X) is assumed to hold un-
less there is a way of proving ab(X) for some value of X . So, the normal rule essentially models
that by default, birds can fly, unless there is a proof that the bird is abnormal. ASP programs in-
clude three other types of rule: choice rules, hard and weak constraints. A choice rule is of the form
l{h1, . . . , hk}u : - b1, . . . , bn, not c1, . . . , not cm, where l and u are integers and l{h1, . . . , hk}u
is called an aggregate. A hard constraint is of the form : - b1, . . . , bn, not c1, . . . , not cm and a
weak constraint is of the form :∼ b1, . . . , bn, not c1, . . . , not cm.[w@l, t1, . . . , tk] where w and
l are terms specifying weight and priority level, and t1, . . . , tk are terms.

The Herbrand Base of an ASP program P , denoted HBP , is the set of ground (variable free)
atoms that can be formed from predicates and constants in P . Subsets ofHBP are called (Herbrand)
interpretations of P . The semantics of ASP programs P are defined in terms of answer sets – a
special1 subset of interpretations of P , denoted as AS(P), that satisfy every rule in P . Given an
answer set A, a ground normal or choice rule is satisfied if the head is satisfied by A whenever all
positive atoms and none of the negated atoms of the body are inA, that is when the body is satisfied.
A ground aggregate l{h1, . . . , hk}u is satisfied by an interpretation I iff l ≤ |I∩{h1, . . . , hk}| ≤ u.
So, informally, a ground choice rule is satisfied by an answer set A if whenever its body is satisfied
by an answer set A, a number between l and u (inclusive) of the atoms in the aggregate are also
in A. A ground constraint is satisfied when its body is not satisfied. A constraint therefore has the
effect of eliminating all answer sets that satisfy its body.

Weak constraints do not affect what is, or is not, an answer set of a program P . Instead, they
create an ordering �P over AS(P) specifying which answer sets are “preferred” to others. In-
formally, at each priority level l, satisfying weak constraints with level l means discarding any
answer set that does not minimize the sum of the weights of the ground weak constraints (with
level l) whose bodies are satisfied. Higher levels are minimised first. For example, the two weak
constraints :∼ mode(L, walk), distance(L, D).[D@2, L] and :∼ cost(L, C).[C@1, L] express a pref-
erence ordering over alternative journeys. The first constraint (at priority 2) expresses that the total
walking distance (the sum of the distances of journey legs whose mode of transport is walk) should
be minimised, and the second constraint expresses that the total cost of the journey should be min-
imised. As the first weak constraint has a higher priority level than the second, it is minimised
first – so given a journey j1 with a higher cost than another journey j2, j1 is still preferred to j2 so
long as the walking distance of j1 is lower than that of j2. The set ord(P) captures the ordering of
interpretations induced by P and generalises the �P relation, so it not only includes 〈A1, A2, <〉 if
A1 �P A2, but includes tuples for each binary comparison operator (<, >, =, ≤, ≥ and 6=).

A partial interpretation, epi, is a pair of sets of ground atoms 〈einc, eexcpi 〉. An interpretation I
extends epi iff eincpi ⊆ I and eexcpi ∩ I = ∅. Examples for learning come in two forms: context-

1. For a formal definition of answer sets of the programs in this paper, see Law et al. (2015c).

59

M. LAW, A. RUSSO, AND K. BRODA

dependent partial interpretations (CDPIs) and context-dependent ordering examples (CDOEs). A
CDPI example e is a pair 〈epi, ectx〉, where epi is a partial interpretation and ectx is a program with
no weak constraints called the context of e. A program P is said to bravely accept e if there is
at least one answer set A of P ∪ ectx that extends epi – such an A is called an accepting answer
set of P wrt e. Essentially, a CDPI says that the learned program, together with the context of
e, should bravely2 entail all inclusion atoms and none of the exclusion atoms of e. CDPIs can be
used for classification tasks, as they specify that given contexts should entail given conjunctions
of atoms. But as learned programs may have multiple answer sets, accepting a CDPI may require
additional assumptions to be made. A CDOE o is a tuple 〈e1, e2, op〉, where the first two elements
are CDPIs and op is a binary comparison operator. A program P is said to bravely respect o if
there is a pair of accepting answer sets, A1 and A2, of P wrt e1 and e2, respectively, such that
〈A1, A2, op〉 ∈ ord(P). P is said to cautiously respect o if for every pair, A1 and A2, of accepting
answer sets of P (wrt e1 and e2, respectively), 〈A1, A2, op〉 ∈ ord(P). CDOEs enable preference
learning as they specify which answer sets should be prefered to other answer sets.

An ILP context
LOAS task T consists of an ASP background knowledge B, a hypothesis space SM ,

labelled CDPIs, E+ (positive examples) and E− (negative examples), and labelled CDOEs, Ob

(brave orderings) and Oc (cautious orderings). SM is the set of rules allowed in hypotheses. A
hypothesis H ⊆ SM covers a positive (resp. negative) example e if B ∪H accepts (resp. does not
accept) e. H covers a brave (resp. cautious) ordering o if B ∪H bravely (resp. cautiously) respects
o. H is an inductive solution of T iff H covers every example in T .

3. Learning Framework

This section presents the ILPnoise
LOAS framework, which extends our previous (non-noisy) learning

framework ILP context
LOAS (Law et al., 2016), by allowing examples to be weighted context-dependent

partial interpretations and weighted context-dependent ordering examples. These are essentially the
same as CDPIs and CDOEs, but weighted with a notion of penalty. If a hypothesis does not cover an
example, we say that it pays the penalty of that example. Informally, penalties are used to calculate
the cost associated with a hypothesis for not covering examples. The cost function of a hypothesis
H is the sum over the penalties of all of the examples that are not covered by H , augmented with
the length of the hypothesis. The goal of ILPnoise

LOAS is to find a hypothesis that minimises the cost
function over a given hypothesis space with respect to a given set of examples.

Definition 3.1. A weighted context-dependent partial interpretation e is a tuple 〈eid, epen, ecdpi〉,
where eid is a constant, called the identifier of e (unique to each example), epen is the penalty of e
and ecdpi is a context-dependent partial interpretation. The penalty epen is either a positive integer,
or∞. A program P accepts e iff it accepts ecdpi. A weighted context-dependent ordering example
o is a tuple 〈oid, open, oord〉, where oid is a constant, called the identifier of o, open is the penalty of
o and oord is a CDOE. The penalty open is either a positive integer, or ∞. A program P bravely
(resp. cautiously) respects o iff it bravely (resp. cautiously) respects oord.

2. A program P bravely entails an atom a if there is at least one answer set of P that contains a.

60

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

In ILP context
LOAS tasks (without noise), any inductive solution must cover every example. How-

ever, when examples are noisy (i.e., they have a weight), inductive solutions need not cover every
example, but they incur penalties for each uncovered example. Multiple occurrences of the same
CDPI example have different identifiers. So hypotheses that do not cover that example will pay the
penalty multiple times (for instance, if a CDPI occurs twice then a hypothesis will have to pay twice
the penalty for not covering it). In most of the learning tasks presented in this paper, all examples
have the same penalty. In some cases, however, penalties are used to simulate oversampling; for
example, in tasks with far more positive examples than negative examples, we may choose to give
the negative examples a higher weight – otherwise it is likely that the learned hypothesis will treat
all negative examples as noisy.

Our learning task with noisy examples consists of an ASP background knowledge, weighted
CDPI and CDOE examples and a hypothesis space,3 which defines the set of rules allowed to be
used in constructing solutions of the task. These tasks are supervised learning tasks, as all examples
are labelled, as positive/negative, or with an operator in the case of the ordering examples.

Definition 3.2. An ILPnoise
LOAS task T is a tuple of the form 〈B,SM , 〈E+, E−, Ob, Oc〉〉, where B

is an ASP program, SM is a hypothesis space, E+ and E− are sets of weighted CDPIs and Ob and
Oc are sets of weighted CDOEs. Given a hypothesis H ⊆ SM ,

• uncov(H,T) is the set consisting of all examples e ∈ E+ (resp. E−) such that B ∪H does not
accept (resp. accepts) e and all ordering examples o ∈ Ob (resp. Oc) such that B ∪H does not
bravely (resp. cautiously) respect o.
• the penalty of H , denoted as pen(H,T), is the sum

∑
e∈uncov(H,T) epen.

• the score of H , denoted as S(H,T), is the sum |H|+ pen(H,T).
• H is an inductive solution of T (written H ∈ ILPnoise

LOAS(T)) if and only if S(H,T) is finite.
• H is an optimal inductive solution of T (written H ∈ ∗ILPnoise

LOAS(T)) if and only if S(H,T) is
finite and @H ′ ⊆ SM such that S(H,T) > S(H ′, T).

Examples with infinite penalty must be covered by any inductive solution, as any hypothesis
that does not cover such an example will have an infinite score. An ILPnoise

LOAS task T is said to be
satisfiable if ILPnoise

LOAS(T) is non-empty. If ILPnoise
LOAS(T) is empty, then T is said to be unsatis-

fiable. Theorem 3.1 shows that for propositional tasks (where all hypothesis spaces, contexts and
background knowledge are propositional) the complexity of ILPnoise

LOAS is the same as ILP context
LOAS

for the decision problems of verification – deciding if a given hypothesis is a solution of a given task
– and satisfiability – deciding if a given task has any solutions – investigated in Law et al. (2018).

Theorem 3.1.

1. Deciding verification for an arbitrary propositional ILPnoise
LOAS task is DP -complete.

2. Deciding satisfiability for an arbitrary propositional ILPnoise
LOAS task is ΣP

2 -complete.

3. For details of hypothesis spaces in this paper, see https://www.doc.ic.ac.uk/~ml1909/ILASP/.

61

M. LAW, A. RUSSO, AND K. BRODA

Like its predecessor ILP context
LOAS , our new learning framework ILPnoise

LOAS for noisy examples is
capable of learning complex human-interpretable knowledge, containing defaults, non-determinism,
exceptions and preferences. The generalization to allow penalties on the examples means that the
new framework can be deployed in realistic settings where examples are not guaranteed to be cor-
rectly labelled. Theorem 3.1 shows that this generalization does not come at any additional cost in
terms of the computational complexity of important decision problems of the framework.

4. The ILASP System

ILASP (Inductive Learning of Answer Set Programs: Law et al., 2014, 2015a,b, 2016) is a collection
of algorithms for solving LAS tasks. The general idea behind the ILASP approach is to transform a
learning task into a meta-level ASP program, which can be iteratively solved (extending the program
in each iteration) until the optimal answer sets of the program correspond to solutions of the learning
task. Unlike many other ILP systems, such as Muggleton (1995), Ray (2009), and Kazmi et al.
(2017), the ILASP algorithms are guaranteed to return an optimal solution of the input learning
task (with respect to the cost function). This can of course mean that ILASP may take longer
to compute a solution than approximate systems (which are not guaranteed to return an optimal
solution); however, as we demonstrate in Section 6, the hypotheses found by ILASP are often more
accurate than those found by approximate systems.

Each version of ILASP has aimed to address scalability issues of the previous versions.
ILASP1 (Law et al., 2014) was a prototype implementation, with a major efficiency issue with
respect to negative examples. ILASP2 (Law et al., 2015b) addressed this issue by introducing a
notion of an violating reason. In each iteration, each answer set of the ILASP2 meta-level program
Tmeta contains a representation of a hypothesis which covers every positive example and every
brave ordering example. An answer set representing a hypothesis that is not an inductive solution,
contains a “reason” why at least one negative example or cautious ordering is not covered, which
can be translated into an ASP representation that, when added to Tmeta, rules out any hypothesis
that is not a solution for this reason. This process is performed iteratively until no more violating
reasons are detected. For full details of violating reasons, see Law et al. (2015b).

Both ILASP1 and ILASP2 scale poorly with respect to the number of examples, as the number
of rules in the ground instantiation of their meta-level representation is proportional to the number
of examples in the learning task. As many examples may be similar, and thus covered by the
same hypotheses, in non-noisy tasks (where all examples must be covered), it is often sufficient to
consider a small subset of the examples called a relevant subset of the examples. ILASP2i (Law
et al., 2016) uses this property to further improve the scalability of ILASP2. It starts with an empty
set of relevant examples RE, and, at each iteration, it calls ILASP2 on a learning task using only
the examples inRE. The hypothesis returned by ILASP2 is guaranteed to cover the current relevant
examples, but is not necessarily an inductive solution of the original task. So, if ILASP2 returns a
hypothesis that does not cover at least one example, then an arbitrary uncovered example is added
to RE and the next iteration is started. If no such example exists, then the hypothesis is returned as
an optimal inductive solution of the original task. Law et al. (2016) showed that ILASP2i can be up
to two orders of magnitude faster than ILASP2 on tasks with 500 (noise-free) examples.

62

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 40 80 120 160 200

P
e
rc

e
n
ta

g
e
 a

c
c
u
ra

c
y

Number of examples

(a)

5% noise
10% noise
20% noise

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 40 80 120 160 200

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of examples

(b)

5% noise
10% noise
20% noise

Figure 1. (a) the average computation time and (b) average accuracy of ILASP3 for the Hamilton learning
task, with varying numbers of examples, and varying noise.

Both ILASP2 and ILASP2i can be extended to solve ILPnoise
LOAS tasks; however, neither algo-

rithm is well suited to solving tasks with a large number of noise examples with finite penalties.
ILASP2 does not scale with respect to the number of examples (regardless of whether examples
have finite penalties), and the relevant example feature of ILASP2i is not equally effective when
examples have penalties. One reason for this is that many noisy examples may have to be added
to the relevant example set before the cost of not covering a particular class of relevant examples
is enough to outweigh the cost of learning an extra rule in the hypothesis. The most recent ILASP
algorithm, ILASP3, iteratively translates examples into hypothesis constraints – constraints on the
structure of a hypothesis that are satisfied if and only if the hypothesis covers the example. This
leads to a much more compact meta-level program, defined in terms of these hypothesis constraints.
Once hypothesis constraints have been computed for one example e, it is possible to compute the set
of other examples (which have not yet been translated into hypothesis constraints) that are definitely
not covered if e is not covered. This means that one relevant example can effectively have a much
higher penalty than just the penalty for that example, meaning that the number of relevant examples
that are needed in ILASP3 is often lower than those needed by ILASP2i.

5. Evaluation of ILASP3 on Synthetic Data Sets

In this section ILASP3 is evaluated on two synthetic data sets, the first of which is aimed at learn-
ing normal rules, choice rules and hard constraints, while the second is aimed at learning weak
constraints. The value of using synthetic data sets is that we can control the amount of noise and
investigate how the accuracy and running time of ILASP3 varies with the amount of noise.

5.1 Hamilton Graphs

In this experiment the task is to learn the definition of what it means for a graph to be Hamiltonian.
This concept was chosen as it requires learning a hypothesis that contains choice rules, recursive

63

M. LAW, A. RUSSO, AND K. BRODA

rules and hard constraints, and also contains negation as failure. In these experiments, we show that
ILASP3 could learn this hypothesis in the presence of noise, and we test how the running time of
ILASP3 is affected by the number of examples and the number of incorrectly labeled examples.

For n = 20, 40, . . . , 200, n random graphs of size one to four were generated, half of which
were Hamiltonian. The graphs were labelled as either positive or negative, where positive indicates
that the graph is Hamiltonian. The correct ASP representation of Hamiltonian and a discussion of
the representation of examples in this task is given in Appendix A.

We ran three sets of experiments to evaluate ILASP3 on the Hamilton learning problem, with
5%, 10% and 20% of the examples being labelled incorrectly. In each experiment, an equal number
of Hamiltonian graphs and non-Hamiltonian graphs were randomly generated and 5%, 10% or
20% of the examples were chosen at random to be labelled incorrectly. This set of examples were
labelled as positive (resp. negative) if the graph was not (resp. was) Hamiltonian. The remaining
examples were labelled correctly (positive if the graph was Hamiltonian; negative if the graph was
not Hamiltonian). Figure 5.1 shows the average accuracy and running time of ILASP3 with up to
200 example graphs. Each experiment was repeated 50 times (with different randomly generated
examples). In each case, the accuracy was tested by generating a further 1,000 graphs and using
the learned hypothesis to classify the graphs as either Hamiltonian or non-Hamiltonian (based on
whether the hypothesis was satisfiable when combined with the representation of the graph).

The experiments show that on average ILASP3 is able to achieve a high accuracy (of well over
90%), even with 20% of the examples labelled incorrectly. A larger percentage of noise means that
ILASP3 requires a larger number of examples to achieve a high accuracy. This is to be expected, as
with few examples, the hypothesis is more likely to “overfit” to the noise, or pay the penalty of some
non-noisy examples. With large numbers of examples, it is more likely that ignoring some non-noisy
examples would mean not covering others, and thus paying a larger penalty. The computation time
rises in all three graphs as the number of examples increases. This is because larger numbers of
examples are likely to require larger numbers of iterations of the ILASP3 algorithm. Similarly,
more noise is also likely to mean a larger number of iterations.

5.2 Noisy Journey Preferences

The experiment in this section is a noisy extension of the journey preference learning setting used
in Law et al. (2016), where the goal is to learn a user’s preferences from a set of ordered pairs
of journeys. These experiments aim to show that ILASP3 is capable of preference learning in the
presence of noise, and to test how the accuracy and running time of ILASP3 are affected by the
numbers of examples and the proportion of examples which are incorrectly labelled.

In each experiment, we selected a “target hypothesis” consisting of between one and three weak
constraints from a hypothesis space of weak constraints (discussed in Appendix A). For each set
of weak constraints, we then ran learning tasks with 0, 20, . . ., 200 examples and with 5%, 10%
and 20% noise. The ordering examples for these learning tasks were generated from the weak
constraints such that half of the (brave) ordering examples represented pairs of journeys J1 and J2
where J1 was strictly preferred to J2, given the weak constraints, and the other half represented
journeys such that J1 was equally preferred to J2. Depending on the level of noise, either 5%, 10%

64

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200

A
c
c
u
ra

c
y

Number of ordering examples

(a)

5% noise
10% noise
20% noise

 0

 10

 20

 30

 40

 50

 60

 70

 0 40 80 120 160 200

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of ordering examples

(b)

5% noise
10% noise
20% noise

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
c
c
u
ra

c
y

Number of ordering examples

(c)

5% noise
10% noise
20% noise
40% noise

Figure 2. (a) and (c) the average accuracy and (b) average computation time of ILASP3 for the journey
preference learning task, with varying numbers of examples, and varying noise. Each point in the graphs is
an average over 50 different tasks.

or 20% of the examples were given with the wrong operator (> instead of < and 6= instead of =).
Each ordering example was given a penalty of one.

The results (Figure 2 (a)) show that even with 20% noise, ILASP3 was able to learn hypotheses
with an average accuracy of over 90%. There was not much difference between ILASP3’s accuracy
with 5%, 10% and 20% noise, although the noisier tasks had a higher computation time (this is
shown in Figure 2 (b)), as in general ILASP3 requires more iterations on noisier tasks. Even with
20% noise and 200 ordering examples, ILASP3 terminated in just over 60 seconds on average.

As the results for 20% noise were so close to the results for 5% noise, we ran a further set of
examples to check that there was some limit to the level of noise where ILASP3 would no longer
learn such an accurate hypothesis.4 In this second set of experiments, we tested ILASP3 with up
to 40% noise, and investigated with 0, 10, . . ., 100 examples. With 40% noise, the accuracy was
lower, but ILASP still achieved an average accuracy of just under 80%.

These experiments show that ILASP3 is able to accurately learn a set of weak constraints from
examples of the orderings of answer sets given by these weak constraints, even when 20% of the
orderings are incorrect. Although the running time of ILASP3 is affected by the number of examples
and the proportion of incorrectly labelled examples, ILASP3 is able to find an optimal solution in
an average of 60 seconds, even with 200 ordering examples, 20% of which are incorrectly labelled.
Learning weak constraints is significant, as they can be used to represent user preferences. In
Sections 6.3 and 6.4, we apply ILASP3 on two real preference learning data sets.

6. Comparison with Other Systems

The experiments in this section use data sets that have previously been used to evaluate other ILP
systems in the presence of noise. Unlike ILASP3, none of the systems we compare with aim to find

4. If ILASP could achieve such a high accuracy, even with very high levels of noise, then this would indicate that the
hypothesis space was too restrictive, and it was impossible to learn anything other than an accurate hypothesis.

65

M. LAW, A. RUSSO, AND K. BRODA

optimal solutions. The aim of this set of experiments is therefore to test whether finding optimal
solutions leads to any gain in accuracy over systems which may return suboptimal solutions.

6.1 CAVIAR Data Set

In this experiment ILASP3 was tested on the recent CAVIAR data set that has been used to evaluate
the OLED (Katzouris et al., 2016) system, which is an extension of the XHAIL (Ray, 2009) algo-
rithm, for learning event calculus (Kowalski & Sergot, 1986) theories. The data set contains data
gathered from a video stream. Information such as the positions of people has been extracted from
the stream, and humans have annotated the data to specify when any two people are interacting.
Specifically, we consider a task from Katzouris et al. (2016), in which the aim is to learn rules to
define initiating and terminating conditions for two people meeting. In the evaluation of the OLED
system, examples were generated for every pair of consecutive time points t and t+1. Each example
is a pair 〈N ∪At, At+1〉, where N is the “narrative” at time t (a collection of information about the
people in the video stream, such as their location and direction), and Ai is the “annotation” at time
i (exactly which pairs of people in the video have been labelled as meeting). This is very simple
to express using context-dependent examples. The context of an example is simply the narrative
and annotation of time t together with a set of constraints that enforce that the meetings at time t
are exactly those in the annotation. The aim of this experiment is to compare ILASP3 to OLED,
which was specifically designed to solve this kind of task efficiently. We aimed to discover whether
ILASP3 is able to find better quality hypotheses than OLED (in terms of the F1 measure used to
evaluate the hypotheses found by OLED), and whether ILASP3’s guarantee of finding an optimal
solution comes at a cost in terms of running time.

In total there are 24,530 consecutive pairs in the data set.5 We performed ten-fold cross vali-
dation by randomly partitioning the data set. As there were only 22 time points where the group
of people meeting was different to the time point before, these examples were given a high penalty
(of 100). Effectively this is the same as oversampling this class of examples. If all examples had
been given a penalty of one, then ILASP3 would have likely learned the empty hypothesis, as the
twenty-two examples in a task of many thousands of examples would likely be treated as noise.

We compare ILASP3 to OLED on the measures of precision, recall and the F1 score.6 ILASP3
achieved a precision of 0.832 and a recall of 0.853, giving an F1 score of 0.842, compared with
OLED’s precision of 0.678 and recall of 0.953, with an averageF1 score of 0.792. ILASP3’s average
running time was significantly higher at 576.3s compared with OLED’s 107s. This is explained by
the fact that the OLED system computes hypotheses through theory revision, iteratively processing
examples in sequence to continuously revise its hypothesis. This means that, unlike ILASP3, OLED
is not guaranteed to find an optimal solution of a learning task.

We note several key differences between our experiments and those reported in Katzouris et al.
(2016). First, to reduce the number of irrelevant answer sets (which lead to slow computation),
we constrained the hypothesis space stating that rules for terminatedAt(meeting(V1, V2), T) had

5. We used the data from users.iit.demokritos.gr/~nkatz/OLED-data/caviar.json.tar.gz
6. Let tp, tn, fp, fn represent the number of true positives, true negatives, false positives, and false negatives achieved

by a classifier on some test data. The precision of the classifier (on this test data) is equal to tp/(tp + fp) and the
recall is equal to tp/(tp+ fn). The F1 score is equal to 2× precision× recall / (precision+ recall).

66

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

to contain holdsAt(meeting(V1, V2), T) in the body, which ensures that a fluent can only be ter-
minated if it is currently happening. Similarly, any rule for initiatedAt(meeting(V1, V2), T)
had to contain not holdsAt(meeting(V1, V2), T) in the body. OLED does not employ this con-
straint, but when processing an example pair of time points, only considers learning a new rule for
initiatedAt, for example, if two people are meeting at time t+ 1, but not at time t.

The second difference in our experiment is that ILASP3 enumerates the hypothesis space in full.
As the hypothesis space in this task is potentially very large, several “common sense” constraints
were enforced on the hypothesis space. For instance, two people cannot be both close to and far
away from each other at the same time, so rules with both conditions in the body were not generated.
In total, the hypothesis space contained 3,370 rules. OLED does not enumerate the hypothesis space
in full, but uses an approach similar to XHAIL, and derives a “bottom clause” from the background
knowledge and the example. In most cases – unless there is noise in the narrative, suggesting that
two people are both close to and far away from each other – OLED will therefore only consider
rules that respect the “common sense” constraints, as other rules would not be derivable.

This experiment has shown that, at least on this data set, ILASP3’s guarantee of finding an
optimal solution can lead to better quality hypotheses than those found by OLED; however, this
quality comes at a cost, as ILASP3’s running time is significantly higher than OLED’s.

6.2 Sentence Chunking

In Kazmi et al. (2017), the Inspire system was evaluated on a sentence chunking (Tjong Kim Sang
& Buchholz, 2000) data set (Agirre et al., 2016). The task in this setting is to learn to split a sentence
into short phrases called chunks. For instance, according to the data set (Agirre et al., 2016), the
sentence “Thai opposition party to boycott general election.” should be split into the three chunks
“Thai opposition party”, “to boycott” and “general election”. Kazmi et al. (2017) describe how
to transform each sentence into a set of facts consisting of part of speach (POS) tags. We use
each of these sets of facts as the context of a context dependent example. In Inspire (which is a
brave induction system), the facts are all put into the background knowledge. The task is to learn
a predicate split/1, which expresses where sentences should be split. Inspire does not guarantee
finding an optimal solution. The hypothesis can be suboptimal for three reasons: the abductive
phase may find an abductive solution which leads to a suboptimal inductive solution; Inspire’s
pruning may remove some hypotheses from the hypothesis space; and Inspire was set to interrupt
the inductive phase after 1,800 seconds, returning the most optimal hypothesis found so far. In these
experiments, we aimed to show that ILASP3’s guarantee of finding an optimal solution leads to a
better quality hypotheses than Inspire’s approximations, and if so, whether ILASP3’s running time
was higher Inspire’s timeout of 1,800s.

Note that the Inspire tasks in Kazmi et al. (2017) group the multiple split examples for a chunk
into a single example (using a goodchunk predicate). For example, the background knowledge may
contain a rule goodchunk(1) : - split(1), not split(2), not split(3), split(4) expressing
that there is a chunk between words one and four of a sentence. It is noted in Kazmi et al. (2017) that
this increased performance. This is because there is no benefit in covering some of the split atoms
that make up a chunk, as hypotheses are tested over full chunks rather than splits. In our framework,
we represent this directly with no need for the goodchunk rules, with the individual split atoms

67

M. LAW, A. RUSSO, AND K. BRODA

Table 1. F1 scores for Inspire and ILASP3 and ILASP3’s average running time on the sentence chunking tasks.

Inspire F1 score ILASP F1 score ILASP time (s)

100 examples

Headlines S1 73.1 74.2 351.2
Headlines S2 70.7 73.0 388.3

Images S1 81.8 83.0 144.9
Images S2 73.9 75.2 187.2

Students S1/S2 67.0 72.5 264.5

500 examples

Headlines S1 69.7 75.3 1,616.6
Headlines S2 73.4 77.2 1,563.6

Images S1 75.3 80.8 929.8
Images S2 71.3 78.9 935.8

Students S1/S2 66.3 75.6 1,451.3

being inclusions and exclusions in the partial interpretation of the example and the penalty being
on the full example. In our learning task, the example corresponding to the rule for goodchunk(1)
would have the partial interpretation 〈{split(1), split(4)}, {split(2), split(3)}〉. In Kazmi
et al. (2017), eleven-fold cross validation was performed on five different data sets, with 100 and
500 examples. As Inspire has a parameter which determines how aggressive the pruning should be,
Kazmi et al. (2017) present several F1 scores, for different values of this parameter. Each entry for
Inspire in Table 1 is Inspire’s best F1 score over all pruning parameters.

Inspire approximates the optimal inductive solution of the task and has a timeout of 1,800s
on the inductive phase; in contrast, ILASP3 terminated in less than 1,800 seconds on every task.
ILASP3 achieved a higher average F1 score than Inspire on every one of the ten tasks. This shows
that computing the optimal inductive solution of a task can lead to a better quality hypothesis than
approximating the optimal solution. Note that for four out of the five data sets, Inspire performs
better with 100 examples than with 500 examples. A possible explanation for this is that with more
examples, Inspire does not get as close to the optimal solution as it does with fewer examples,
thus leading to a lower F1 score on the test data. With 500 examples, ILASP3 does take longer to
terminate than it does for 100 examples, but in four out of the five cases, ILASP’s average F1 score
is higher, confirming the expected result that more data should tend to lead to a better hypothesis.

6.3 Car Preference Learning

We tested ILASP3’s ability to learn real user preferences with the car preference data set from Ab-
basnejad et al. (2013). This data set consists of responses from 60 different users, who were each
asked to give their preferences about ten cars. They were asked to order each (distinct) pair of
cars, leading to 45 orderings. The cars had four attributes, as shown in Table 2 (a). Through this
experiment, we aim to show that ILASP3 is capable of learning real user preferences, encoded as
weak constraints. There is not much work on applying ILP systems to preference learning, but one
such work (Qomariyah & Kazakov, 2017) applied the Aleph (Srinivasan, 2001) system to the car

68

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

Table 2. (a) The attributes of the car preference data set, along with the possible range of values for each
attribute. The integer next to each value is how that value is represented in the data. (b) The accuracy results
of ILASP3 compared with the three methods in Qomariyah & Kazakov (2017) on the car preference data set.

(a) (b)

Attribute Values
Body type sedan(1), suv(2)

Transmission manual(1), automatic(2)
Engine Capacity 2.5L, 3.5L, 4.5L, 5.5L, 6.2L
Fuel Consumed hybrid(1), non_hybrid(2)

Method Accuracy
SVM 0.832
DT 0.747

Aleph 0.729
ILASP3 A 0.880
ILASP3 B 0.863

preference data set. Aleph is not guaranteed to find an optimal solution,7 and is only capable of
learning rules (and not of learning weak constraints). Qomariyah and Kazakov (2017) used Aleph
to learn rules defining the predicate bt/2, where bt(c1, c2) represents that c1 is preferred to c2. We
make comparisons with the results of Qomariyah and Kazakov on this data set.

Our initial experiment was based on an experiment in Qomariyah and Kazakov (2017), where
the Aleph (Srinivasan, 2001) system was used to learn the preferences of each user in the data set and
compared with support vector machines (SVM) and decision trees (DT). Ten-fold cross validation
was performed for each of the 60 users on the 45 orderings. In each fold, 10% of the orderings were
omitted from the training data and used to test the learned hypothesis. The flaw in this approach is
that the omitted examples will often be implied by the rest of the examples (i.e., if a ≺ b and b ≺ c
are given as examples it does not make sense to omit a ≺ c). For this reason, we also experimented
with leaving out all the examples for a single car in each fold (i.e., every pair that contains that car),
and using these examples to test (again leading to ten folds). This new task corresponds to learning
preferences from a complete ordering of nine cars, and testing the preferences on an unseen car.

Table 2 (b) shows the accuracy of the approach in Qomariyah and Kazakov (2017) and ILASP3
accuracy on the two versions of the experiment. The easier task (with 10% of the orderings omit-
ted) is denoted as experiment A in the table, and the harder task is denoted as experiment B.
In fact, even on the harder version of the task, ILASP3 performs better than the approaches in
Qomariyah and Kazakov (2017) perform on the easier version of the task. In one fold for the
first user (in experiment A), ILASP3 learns the following weak constraints: :∼ fuel(2).[1@4];
:∼ body(1), transmission(2).[−1@3]; :∼ engine_cap(V0).[V0@2, V0]; :∼ body(1).[−1@1].
This hypothesis corresponds to the following set of prioritised preferences (ordered from most to
least important): the user (1) prefers hybrid cars to non-hybrid cars; (2) likes automatic sedans; (3)
would like to minimize the engine capacity of the car; and (4) prefers sedans to SUVs.

The noise in this experiment comes from the fact that some of the answers given by participants
in the survey may contradict other answers. Some participants gave inconsistent orderings (breaking
transitivity) meaning that there is no set of weak constraints that covers every ordering example.

7. Aleph processes the examples sequentially, and searches for the best clause to add in each iteration (in terms of
coverage). Although each iteration adds the best clause, this may still lead to a suboptimal hypothesis overall.

69

M. LAW, A. RUSSO, AND K. BRODA

Table 3. (a) the attributes of the SUSHI preference data set, along with the range of values for each attribute,
and (b) the average accuracy of ILASP3 compared with the methods used in Qomariyah and Kazakov (2017).

(a) (b)

Attribute Values
Style maki(0), non_maki(1)

Major group seafood(0), non_seafood(1)
Minor group 0, . . . , 11

Oiliness [0, 4]
Frequency Eaten [0, 3]
Normalised Price [0, 5]
Frequency Sold [0, 1]

Method Accuracy
SVM 0.76
DT 0.81

Aleph 0.78
ILASP3 0.84

The results of these experiments have shown that ILASP3 is able to learn hypotheses that accu-
rately represent real user preferences, even in the presence of noise. On average, ILASP3 learns a
hypothesis with a higher accuracy than the hypothesis learned by Qomariyah and Kazakov (2017).
This could be for two reasons: (1) the fact that Aleph might return a suboptimal inductive solution;
or (2), the representation of hypotheses as weak constraints allows for preferences to be expressed
that cannot be expressed using the definite search space in Qomariyah and Kazakov (2017).

6.4 SUSHI Preference Learning

Another data set for preference learning is the SUSHI data set (Kamishima et al., 2010). The data
set is comprised of peoples’ preference orderings over different types of sushi. The purpose of these
experiments is to show that ILASP3 is capable of learning weak constraints that accurately capture
real user preferences. Qomariyah and Kazakov (2017) also tested their approach on these data sets,
and we compare ILASP3’s accuracy with their results in order to test whether the optimal solution
found by ILASP3 is more accurate than their solutions.

Each type of sushi has several attributes, described in Table 3 (a). There is a mix of categorical
and continuous attributes. In the language bias for these experiments, the categorical attributes are
used as constants, whereas the continuous attributes are variables that can be used as the weight of
the weak constraint. This allows weak constraints to express that the continuous attributes should be
minimised or maximised. The data set was constructed from a survey in which people were asked
to order ten different types of sushi. This ordering leads to 45 ordering examples per person. This
experiment is based on a similar experiment in Qomariyah and Kazakov (2017). For each of the first
60 people in the data set ten-fold cross validation was performed, omitting 10% of the orderings in
each fold. This experiment suffers from the same flaw as Experiment A on the car data set in that
some of the omitted examples may be implied by the training examples, but we give the results for
a comparison to Qomariyah and Kazakov (2017). As shown in Table 3 (b), ILASP3 achieved an
average accuracy of 0.84, comparing favorably to the earlier results.

Although in this experiment each participant gave a consistent total ordering of the ten types
of sushi, it might be the case that there is no hypothesis in the hypothesis space that covers all of
the examples. This could be the case when we are not modelling a feature of the sushi that the

70

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

participant considers to be important. For this reason, we treated this as a noisy learning setting,
and used ILASP3 to maximize the coverage of the examples.

This experiment has shown that ILASP3 is capable of learning weak constraints that accurately
capture users’ preferences, and that ILASP3’s approach of finding an optimal hypothesis comprising
of weak constraints is (on average) more accurate than the approach of Qomariyah and Kazakov
(2017), which finds a (potentially suboptimal) set of definite clauses.

6.5 Comparison to δILP

Although the work in this paper concerns learning ASP programs from noisy examples, work has
been done in the area of extending definite clause learning to handle noisy examples (e.g., Sandewall
& Jansson, 1993; Srinivasan, 2001; Oblak & Bratko, 2010). In Evans and Grefenstette (2018), it
was claimed that ILP approaches are unable “to handle noisy, erroneous, or ambiguous data” and
that “If the positive or negative examples contain any mislabelled data, [ILP approaches] will not
be able to learn the intended rule”. The experiments in this section aim to refute this claim.

To learn from noisy data, Evans and Grefenstette introduced the δILP algorithm, based on arti-
ficial neural networks. They demonstrated that δILP is able to achieve a high accuracy even with a
large proportion of noise in the examples. They evaluated δILP on six synthetic data sets, with noise
ranging from 0% to 90%. In these experiments, we investigated the accuracy of ILASP3 on five of
these six data sets.8 In the original experiments, examples were atoms, and noise corresponded to
swapping positive and negative examples. In each of the ILPnoise

LOAS tasks, we ensured that the hy-
pothesis space was such that for eachH ⊆ SM ,B∪H∪ectx was stratified for each example e. This
allowed atomic examples to be represented as (positive) partial interpretations – a positive example
e was represented as a partial interpretation 〈{e}, ∅〉, and a negative example e was represented as
a partial interpretation 〈∅, {e}〉. Due to the differences in language biases used by ILASP and δILP,
the hypothesis spaces of the two systems are not equivalent.

Due to the imbalance of positive and negative examples in many of the tasks, we weight the
positive examples atw×|E−|/(|E+|+|E−|) and the negative examples atw×|E+|/(|E+|+|E−|),
where in this experiment w is 100. The weight for each example class (positive or negative) is equal
to w multiplied by the proportion of the whole set of examples which are in the other class. This
“corrects” any imbalance between positive and negative examples (i.e., the penalty for not covering
a proportion of the positive examples is the same as the penalty for not covering the same proportion
of negative examples). The constant w can be thought of as the difference in importance between
the hypothesis length and the number of examples covered. In these experiments we chose 100, as
it is high enough to ensure that coverage is considered far more important than hypothesis length.

Figure 3 shows the mean squared error of the two systems, where the results for δILP are taken
from Evans and Grefenstette (2018). In most tasks ILASP3 achieves similar results to δILP when
the noise is in the range of 0% to 40%. However, at the other end of the scale (with more than
50% noise), there are some tasks where ILASP3 finds hypotheses with close to 100% error, where
δILP’s error is much lower (less than 20% in the “member” problem). We argue that when the
noisy examples outnumber the correctly labelled examples, the learner should start learning the

8. Evans and Grefenstette provided us with the training and test data for these five problems.

71

M. LAW, A. RUSSO, AND K. BRODA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.3 0.6 0.9

(a)

ILASP3
dILP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.3 0.6 0.9

(b)

ILASP3
dILP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.3 0.6 0.9

(c)

ILASP3
dILP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.3 0.6 0.9

(d)

ILASP3
dILP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.3 0.6 0.9

(e)

ILASP3
dILP

Figure 3. A comparison of δILP and ILASP3 on five data sets from Evans and Grefenstette (2018). Specifi-
cally, in their work the graphs correspond to the (a) predecessor, (b) less than, (c) member, (d) connected and
(e) undirected edge experiments. In each graph, the x and y axes represent the noise level and mean squared
error, respectively.

negation of the target hypothesis; for instance, in the case of “less than”, ILASP3 correctly learned
the “greater than or equal to” relation. The ideal outcome of these kinds of experiments, where
the proportion of noise is varied, is that the learner achieves close to 0% error until around 50%
noise and close to 100% error thereafter. This is roughly what seems to happen for ILASP3 in the
“predecessor”, “less than”, “member” and “undirected edge” experiments. In “predecessor”, the
graph is less symmetric, with the “crossover” from low to high error occurring later. This is likely
because the hypothesis for “not predecessor” is longer than the hypothesis for “predecessor”. The
failure of δILP to get close to 100% error in many of the tasks (e.g., in “member”, δILP has an error
of less than 20% with the noise level at 90%) may indicate that the negation of the target concept is
not representable given the language bias used by δILP in these experiments, instead of δILP being
particularly robust to noise. In some cases, such as “member”, this is likely because the negation
of the concept requires negation as failure, which is not supported by δILP, but in others, such as
“less than”, the negation of the concept is expressible without it. These results show that, on the ILP
problems investigated by Evans and Grefenstette (2018), ILASP3 is certainly robust to noise, thus
refuting their claim that ILP systems cannot handle noise.

72

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

7. Related Work

Several other ILP systems use ASP solvers in the search for hypotheses. For example, Balduccini
(2007) presented an early system for learning action descriptions, where the search for inductive
solutions is encoded in ASP. Many of these systems, such as those reported by Balduccini (2007),
Athakravi et al. (2013), Bragaglia and Ray (2014), and Kazmi et al. (2017), operate under a brave
semantics – the learned program should have at least one answer set that satisfies some given prop-
erties (such as covering examples). But our results on the generality of learning frameworks in Law
et al. (2018) prove that there are ASP programs that can be learned by our framework and that can-
not be learned by any of these systems. For example, brave induction systems cannot learn hard or
weak constraints, no matter what examples are given.

In a different line of research, Sridharan et al. (2017) and Sridharan and Meadows (2017) present
an architecture that combines relational reinforcement learning with ASP-based inference and deci-
sion tree induction to identify a set of candidate axioms. The candidates deemed to have the highest
likelihood are then represented in an ASP program, which the system uses for planning.

Early approaches to relational learning (e.g., Langley, 1987; Mooney & Ourston, 1991; Cohen,
1995) were able to learn definite rules from noisy data. Mooney and Ourston (1991) presented
an ILP system based on theory revision, where hypotheses are only modified if the modification
leads to the additional coverage of more than one example. In practice, however, it is possible that
given a large enough set of examples, two noisy examples may be covered by exactly the same
class of hypotheses. Under the ILPnoise

LOAS approach, the penalty for not covering a set of examples
which forms a small proportion of examples is low, even if there are multiple examples in this set.
Cohen (1995) introduces algorithms which learn from noisy examples, learning one clause at a time.
ILP systems which iteratively learn single clauses, removing covered positive examples after each
iteration, are common when the target hypotheses are definite logic programs (with no negation), as
the programs being learned are monotonic. Learning non-monotonic ASP programs with negation
(allowing for the learning of exceptions) requires a different approach (Ray, 2009). This is because,
due to the non-monotonicity of the learned programs, examples which are covered in one iteration
may become uncovered when further rules are learned.

In order to search for good hypotheses, ILP systems often use a cost function, defined in terms
of the coverage of the examples and the length of the hypothesis (e.g., Srinivasan, 2001; Muggleton,
1995; Bragaglia & Ray, 2014). When examples are noisy, this cost function is sometimes combined
with a notion of maximum threshold, and the search is not for a hypothesis that minimises the cost
function, but for a hypothesis that does not fail to cover more than a defined maximum threshold
number of examples (e.g., Srinivasan, 2001; Oblak & Bratko, 2010; Athakravi et al., 2013). In this
way, once an acceptable hypothesis (i.e., a hypothesis that covers a sufficient number of examples)
is computed the system does not search for a better one. As such, the computational task is simpler,
and therefore the time needed to compute a hypothesis is shorter, but there may be other hypotheses
which have a lower cost. Furthermore, to guess the “correct” maximum threshold requires some
idea of how much noise there is in the given set of examples. For instance, one of the inputs to the
HYPER/N (Oblak & Bratko, 2010) system is the proportion of noise in the examples. When the
proportion of noise is unknown, too small a threshold could result in the learning task being unsat-
isfiable, or in learning a hypothesis that overfits the data. On the other hand, too high a threshold

73

M. LAW, A. RUSSO, AND K. BRODA

could result in poor accuracy, as the hypothesis may not cover many of the examples. Our ILPnoise
LOAS

framework addresses the problem of computing optimal solutions (with respect to the cost function)
and in doing so does not require knowledge a priori of the level of noise in the data. Note that
optimal hypotheses are not guaranteed to outperform other hypotheses on unseen data, but, based
on the evidence (i.e., the training examples), they minimize the cost function, so if the cost function
is reasonable, they should be more likely to be correct. This can be seen in the sentence chunking
experiments, where we used ILASP with the same cost function as Inspire (which does not guaran-
tee minimising the cost function). In future work, we intend to explore alternative cost functions,
and formalize what makes a cost function “reasonable” in a given learning setting.

8. Conclusion

Learning interpretable knowledge is a key requirement for cognitive systems that are required to
communicate with each other or with humans. Our research has addressed the problem of learning
ASP programs, which are capable of representing complex knowledge, such as defaults, exceptions
and preferences. In practice, cognitive systems are required to learn knowledge from noisy data
sources, where there is no guarantee that all examples are perfectly labelled.

This paper has presented the ILPnoise
LOAS framework for learning answer set programs from noisy

examples, described the ILASP3 system that implements this framework, and reported experiments
that evaluated its abilities. We used several synthetic data sets to show that ILASP3 can learn even in
the presence of high proportions noisy examples. We also tested ILASP3’s performance on several
data sets used by other ILP systems. The results of these experiments show that, in most cases,
ILASP3 can learn with a higher accuracy than the other systems, which, unlike ILASP3, are not
guaranteed to find optimal solutions of the tasks. Although ILASP3 is a significant improvement
on previous ILASP systems with respect to the running time on noisy tasks, some scalability issues
remain, especially with the size of the hypothesis space. Every ILASP system begins by computing
the hypothesis space in full, which limits the feasible size of the hypothesis space. In future work,
we plan to design ILASP systems which do not begin by computing the hypothesis space in full.

Acknowledgements

We would like to thank the reviewers for their useful comments and suggestions.

References

Abbasnejad, E., Sanner, S., Bonilla, E. V., & Poupart, P. (2013). Learning community-based pref-
erences via Dirichlet process mixtures of Gaussian processes. Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (pp. 1213–1219). Beijing, China: AAAI
Press.

Agirre, E., Gonzalez Agirre, A., Lopez-Gazpio, I., Maritxalar, M., Rigau Claramunt, G., & Uria, L.
(2016). Semeval-2016 task 2: Interpretable semantic textual similarity. Proceedings of the Tenth
International Workshop on Semantic Evaluation (pp. 512–524). San Diego, CA: Association for
Computational Linguistics.

74

INDUCTIVE LEARNING OF ANSWER SET PROGRAMS

Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2013). Learning through hypothesis refinement
using answer set programming. Proceedings of the Twenty-Third International Conference on
Inductive Logic Programming (pp. 31–46). Rio de Janeiro, Brazil: Springer.

Balduccini, M. (2007). Learning action descriptions with A-Prolog: Action language C. Proceed-
ings of the 2007 AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning
(pp. 13–18). Palo Alto, CA: AAAI Press.

Bragaglia, S., & Ray, O. (2014). Nonmonotonic learning in large biological networks. Proceedings
of the Twenty-Fourth International Conference on Inductive Logic Programming (pp. 33–48).
Nancy, France: Springer.

Cohen, W. W. (1995). Fast effective rule induction. Proceedings of the Twelfth International Con-
ference on Machine Learning (pp. 115–123). Tahoe City, CA: Morgan Kaufmann.

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61, 1–64.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. Proceed-
ings of the Fifth International Conference and Symposium on Logic Programming (pp. 1070–
1080). Seattle, WA: MIT Press.

Kamishima, T., Kazawa, H., & Akaho, S. (2010). A survey and empirical comparison of object
ranking methods. In J. Fürnkranz & E. Hüllermeier (Eds.), Preference learning, 181–201. Berlin:
Springer-Verlag.

Katzouris, N., Artikis, A., & Paliouras, G. (2016). Online learning of event definitions. Theory and
Practice of Logic Programming, 16, 817–833.

Kazmi, M., Schüller, P., & Saygın, Y. (2017). Improving scalability of inductive logic programming
via pruning and best-effort optimisation. Expert Systems with Applications, 87, 291–303.

Kowalski, R. A., & Sergot, M. J. (1986). A logic-based calculus of events. New Generation Com-
puting, 4, 67–95.

Langley, P. (1987). A general theory of discrimination learning. In Production system models of
learning and development, 99–161. Cambridge, MA: MIT Press.

Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs. Proceedings of
the Fourteenth European Conference on Logics in Artificial Intelligence (pp. 311–325). Funchal,
Madeira, Portugal: Springer.

Law, M., Russo, A., & Broda, K. (2015a). The ILASP system for learning answer set programs.
Retrieved 30 July, 2018, from https://www.doc.ic.ac.uk/~ml1909/ILASP.

Law, M., Russo, A., & Broda, K. (2015b). Learning weak constraints in answer set programming.
Theory and Practice of Logic Programming, 15, 511–525.

Law, M., Russo, A., & Broda, K. (2015c). Simplified reduct for choice rules in ASP. Technical
report, DTR2015-2, Department of Computing, Imperial College London, London, UK.

Law, M., Russo, A., & Broda, K. (2016). Iterative learning of answer set programs from context
dependent examples. Theory and Practice of Logic Programming, 16, 834–848.

75

M. LAW, A. RUSSO, AND K. BRODA

Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning answer set
programs. Artificial Intelligence, 259, 110–146.

McCreath, E., & Sharma, A. (1997). ILP with noise and fixed example size: A Bayesian approach.
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (pp. 1310–
1315). Nagoya, Japan: Morgan Kaufmann.

Mooney, R. J., & Ourston, D. (1991). Theory refinement with noisy data. Technical Report AI-91-
153, Artificial Intelligence Laboratory, University of Texas at Austin, Austin, Texas.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8, 295–318.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245–286.

Oblak, A., & Bratko, I. (2010). Learning from noisy data using a non-covering ILP algorithm.
Proceedings of the Twentieth International Conference on Inductive Logic Programming (pp.
190–197). Florence, Italy: Springer.

Qomariyah, N. N., & Kazakov, D. (2017). Learning binary preference relations. Proceedings of
the Fourth Joint Workshop on Interfaces and Human Decision Making for Recommender Systems
(pp. 30–34). Como, Italy: CEUR.

Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7, 329–340.

Sakama, C., & Inoue, K. (2009). Brave induction: A logical framework for learning from incom-
plete information. Machine Learning, 76, 3–35.

Sandewall, E., & Jansson, C. (1993). Handling imperfect data in inductive logic programming. Pro-
ceedings of the Fourth Scandinavian Conference on Artificial Intelligence. Stockholm, Sweden:
IOS Press.

Sridharan, M., & Meadows, B. (2017). An architecture for discovering affordances, causal laws,
and executability conditions. Advances in Cognitive Systems, 5, 1–16.

Sridharan, M., Meadows, B., & Gómez, R. (2017). What can I not do? towards an architecture
for reasoning about and learning affordances. Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling (pp. 461–470). Pittsburgh, PA: ICAPS.

Srinivasan, A. (2001). The Aleph manual. Technical report, Machine Learning at the Computing
Laboratory, Oxford University, Oxford, UK. Retrieved 30 July, 2018, from https://www.
cs.ox.ac.uk/activities/machlearn/Aleph/.

Tjong Kim Sang, E. F., & Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task:
Chunking. Proceedings of the Fourth Conference on Computational Natural Language Learn-
ing, and the Second Workshop on Learning Language in Logic (pp. 127–132). Lisbon, Portugal:
Association for Computational Linguistics.

76

