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Abstract
This paper describes an integrated architecture for representing, reasoning with, and interactively
learning domain knowledge in the context of human-robot collaboration. Answer Set Prolog, a
non-monotonic logical reasoning paradigm, is used to represent and reason with incomplete com-
monsense domain knowledge, computing a plan for any given goal and diagnosing unexpected
observations. ASP-based reasoning is also used to guide the interactive learning of previously un-
known actions as well as axioms that encode affordances, action preconditions, and effects. This
learning takes as input observations from active exploration, reactive action execution, and human
(verbal) descriptions, and the learned actions and axioms are used for subsequent reasoning. The
architecture is evaluated on a simulated robot assisting humans in an indoor domain.

1. Introduction

Consider robots1 in an office or warehouse delivering objects to particular locations and people.
Information about such domains often includes commonsense knowledge, especially default knowl-
edge that holds in all but a few exceptional circumstances, e.g., “books are usually in the library,
but cookbooks are in the kitchen”. Domain knowledge may also include some information about
action preconditions and effects, and action capabilities, i.e., affordances. In complex domains, hu-
man participants may lack the time and expertise to provide comprehensive domain knowledge or
elaborate feedback, so robots will need to reason with incomplete domain knowledge and revise this
knowledge over time. The architecture described in this paper is a step towards these capabilities.
It implements the following theoretical tenets:

• Knowledge elements symbolically encode objects; relations modeling domain attributes and
actions at different levels of abstraction; and axioms composed of these relations.
• Knowledge elements are revised non-monotonically by reasoning with knowledge and observed

outcomes of actions that may be immediate or delayed.

1. We use the terms “robot”, “agent”, and “learner” interchangeably in this paper.
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• Affordances are relations defined jointly over the attributes of agents and the attributes of objects
in the context of particular actions.
• Reasoning, learning, and interaction are coupled; values of state-action pairs are revised using

observations obtained from active exploration and reactive action execution.

The combination of these tenets is novel, and our implementation exploits the complementary
strengths of declarative programming, probabilistic reasoning, and interactive learning. We ex-
plored subsets of these tenets in prior work (Sridharan & Meadows, 2017; Sridharan et al., 2017b).
Here, we focus on the interplay between representation, reasoning and learning, and abstract away
some aspects of our architecture: we merge some levels of representation and do not probabilisti-
cally model perceptual uncertainty. We describe the following capabilities of the architecture:

• Incomplete domain knowledge described in an action language is translated into a relational
representation in Answer Set Prolog (ASP) for inference, planning and diagnostics. ASP-based
reasoning also limits interactive learning to the relevant part of the domain.
• Previously unknown actions’ names, preconditions, effects, and objects over which they op-

erate, along with the associated affordances, are learned using decision-tree induction and re-
lational reinforcement learning by processing observations from active exploration, reactive
action execution, and verbal cues from humans.

The novelty in comparison with our prior work lies in learning actions along with the preconditions,
effects and affordances, and in doing so interactively through relational inference and reinforcement
based on active exploration, reactive action execution, and human (verbal) inputs. We evaluate
these capabilities on a simulated robot delivering objects to particular people or places in an indoor
domain. For instance, a robot equipped with our architecture and assisting humans in an office
could learn interactively that it cannot pick up heavy objects with its electromagnetic arm, and that
grasping a brittle cup will cause the cup to break. We measure the robot’s ability to acquire missing
knowledge, and the resultant ability to compute minimal and correct plans for assigned goals. We
begin by reviewing related work (Section 2) and describing our architecture (Section 3). We present
an experimental evaluation of the framework (Section 4) and offer closing thoughts (Section 5).

2. Related Work

Agents deployed in complex domains often have to represent and reason with incomplete domain
knowledge, and learn from observations. Early work used a first-order logic representation and
incrementally refined the action operators but did not allow for different outcomes in different con-
texts (Gil, 1994). Such approaches have difficulties with non-monotonic logical reasoning and
merging new, unreliable information with existing beliefs. Research in logics has provided non-
monotonic reasoning formalisms, e.g., with ASP (Erdem & Patoglu, 2012; Erdem et al., 2016).
Researchers have combined ASP with inductive learning to monotonically learn causal laws (Otero,
2003), and expanded the theory of actions in ASP to learn and revise system descriptions or do-
main knowledge (Balduccini, 2007; Law et al., 2018). Architectures such as SOAR reason with
hierarchical knowledge in first-order logic and process perceptual information probabilistically to
acquire domain knowledge (Laird, 2012). Cognitive architectures based on non-monotonic logic, or
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a combination of logic and probabilistic representations, have also been used to support reasoning
and learning in robotics (Scheutz et al., 2007; Zhang et al., 2015). However, approaches based on
classical first-order logic are often not expressive enough. Algorithms based on logic programming,
on the other hand, find it difficult to support one or more of the desired capabilities, such as efficient
and incremental learning of knowledge, learning from interactions, and reasoning with large prob-
abilistic components. Existing algorithms and architectures also do not support generalization over
learned knowledge as described in this paper.

Many formalizations have been proposed for representing, reasoning with, and learning affor-
dances (Zech et al., 2017). Existing approaches represent affordances as possible effects of actions
or behaviors (Guerin et al., 2013), or as emergent, functional, and/or contextual properties based on
attributes of the domain and the objects (Sarathy & Scheutz, 2016). These approaches have used
logics, probabilistic reasoning or a combination of both. We recently developed existing work to
provide a theory of affordances for cognitive systems (Langley et al., 2018), making claims related
to (a) representing knowledge of affordances; (b) using this knowledge for plan understanding or
plan generation; and (c) acquiring the knowledge of affordances. The architecture described in
this paper explores some of these claims, e.g., that affordances are relations defined jointly over
attributes of objects and agents in the context of specific actions.

Interactive task learning is a framework for acquiring domain knowledge using labeled exam-
ples or reinforcement signals obtained from domain observations, demonstrations, or human in-
structions (Chai et al., 2018; Laird et al., 2017). It can be viewed as building on early work on joint
search through the space of hypotheses and observations (Simon & Lea, 1974). Algorithms for
interactive task learning can be used to learn action models or search control rules that prevent par-
ticular actions from being considered under certain circumstances. Dynamic domains often require
a learner to explore actions whose outcomes may be delayed, and Reinforcement learning (RL) el-
egantly addresses the credit assignment problem in such cases. RL is also appropriate for learning
different types of knowledge that direct attention during both planning and learning. Approaches
such as relational reinforcement learning (RRL) have been developed for efficient generalization in
complex domains (Driessens & Ramon, 2003; Tadepalli et al., 2004). However, interactive learning
algorithms, including those that exploit relational representations and different function approxi-
mations, tend to focus on a single planning task at a time and do not support the commonsense
reasoning capabilities desired in robotics (Bloch & Laird, 2017; Driessens & Ramon, 2003). One
exception was our prior work that combined the principles of non-monotonic logical reasoning and
RRL to discover domain axioms (Sridharan & Meadows, 2017; Sridharan et al., 2017b). The archi-
tecture described in this paper significantly extends these capabilities to support interactive learning
of actions along with their preconditions, effects, and affordances, based on relational inference and
reinforcement using active exploration, reactive action execution, and verbal inputs.

3. The Reasoning Architecture

The architecture that forms the basis of our work uses commonsense domain knowledge, including a
description of domain dynamics in an action language, to construct tightly-coupled representations
at two resolutions, with the fine-resolution representation defined as a refinement of the coarse-
resolution representation (Sridharan et al., 2017a). For any given goal, coarse-resolution reasoning
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Figure 1. Non-monotonic logical inference with domain knowledge is used for (a) planning and diagnostics;
and (b) guiding interactive learning of generic versions of affordances, actions, and related axioms based on
observations obtained through active exploration and reactive action execution.

with commonsense knowledge provides a plan of abstract actions. Each abstract action is imple-
mented as a sequence of concrete actions using a partially observable Markov decision process that
reasons probabilistically over the relevant part of the fine-resolution representation. The observa-
tions obtained during this implementation are added to the coarse-resolution history for subsequent
reasoning. In this paper, we abstract away the reasoning at different resolutions and the proba-
bilistic modeling of perceptual uncertainty, to better focus on the interplay between representation,
reasoning, and learning. As shown in Figure 1, the system translates the relational representation
into an ASP program for planning and diagnostics. ASP-based reasoning also guides the interactive
learning of actions, affordances, and the preconditions and effects of actions, using observations
from active exploration, reactive execution, and human (verbal) input. The system uses the learned
knowledge for subsequent reasoning. We illustrate these capabilities with the following domain.

Example 1 [Robot Assistant (RA) Domain] A simulated robot finds, labels, and delivers objects to
people or places. Each place may have instances of objects such as desk, book, cup and computer.
Each human has a role (e.g., engineer, manager, salesperson). Object attributes include weight
(heavy, light), surface (brittle, hard), status (intact, damaged), and labeled (true, false).
The robot’s arm has a type (electromagnetic, pneumatic). The robot’s actions include pickup,
putdown, move, label, and serve. Some actions or axioms governing domain dynamics may be
unknown, for example:

• A pneumatic arm cannot be used to serve a brittle object.
• Serving an object to a salesperson causes it to be labeled.
• Object with a brittle surface cannot be labeled unless the robot has an electromagnetic arm.

For simplicity, any other robots in the domain are assumed to have identical capabilities and cannot
communicate with the learner. Humans and the learner can observe these robots. Humans can
verbally describe other robots’ activities, e.g., “Robot labeled the hard, hefty item” to help the
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learner acquire previously unknown knowledge. This domain becomes complex as the number of
ground instances of objects and their attributes increases, e.g., there were ≈18,000 combinations of
ground static attributes and ≈11 million combinations of ground fluent terms in an instantiation of
the domain that we use in our experiments.

3.1 Knowledge Representation and Reasoning

We first describe the action language encoding of the domain dynamics, and its translation to CR-
Prolog programs for knowledge representation and reasoning.

Action Language. Action languages are formal models of parts of natural language used for de-
scribing transition diagrams of dynamic systems. Our architecture uses action language ALd (Gel-
fond & Inclezan, 2013) to describe the transition diagrams of the domain. ALd has a sorted signa-
ture with statics, i.e., domain attributes whose truth values cannot be changed by actions, fluents,
i.e., domain attributes whose truth values can be changed by actions, and actions, a set of elemen-
tary operations. Fluents can be basic, which obey inertia laws and can be changed by actions, or
defined, which do not obey the laws of inertia and are not changed directly by actions. A domain
attribute or its negation is a literal. ALd allows three types of statements:

a causes lb if p0, . . . , pm (Causal law)

l if p0, . . . , pm (State constraint)

impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and p0, . . . , pm are domain literals.

Domain Representation: Signature and Axioms. The domain representation consists of sys-
tem description D, which is a collection of statements of ALd, and history H. D has a sorted
signature Σ and axioms that describe the transition diagram τ . Σ defines the basic sorts, and
domain attributes and actions. For the RA domain, basic sorts such as place, robot, object,
entity, book, weight, and step (for temporal reasoning) are arranged hierarchically, e.g., robot and
object are subsorts of entity. Σ also includes ground instances of sorts, e.g., office, workshop,
kitchen, and library are instances of sort place. Domain attributes and actions are described in
terms of the sorts of their arguments. The fluents include loc(entity, place), the location of the
robot and objects, with the locations of humans and other robots (if any) modeled as defined flu-
ents whose values are obtained from external sensors; and in_hand(robot, object), which denotes
whether a particular object is in the robot’s hand. Static attributes include arm_type(robot, type),
obj_status(object, status) etc. Actions include move(robot, place), pickup(robot, object), and
serve(robot, object, person). The signature Σ also includes a relation holds(fluent, step) that
implies a particular fluent is true at a particular timestep.

Axioms of the RA domain capture the domain’s dynamics. These axioms include causal laws,
state constraints and executability conditions. For example:

move(rob1, L) causes loc(rob1, L)

serve(rob1, O, P ) causes in_hand(P,O)
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loc(O,L) if loc(rob1, L), in_hand(rob1, O)

impossible pickup(rob1, O) if loc(rob1, L1), loc(O,L2), L1 6= L2

The history H of a dynamic domain is usually a record of fluents observed to be true or false at a
particular time step, i.e., obs(fluent, boolean, step), and the execution of an action at a particular
time step, i.e., hpd(action, step). This notion was expanded to represent defaults describing the
values of fluents in the initial state (Sridharan et al., 2017a), e.g., “books are usually in the library
and if not there, they are normally in the office” is encoded as:

initial default loc(X, library) if book(X)

initial default loc(X, office) if book(X), ¬loc(X, library)

We can also encode exceptions to these defaults, e.g., “cookbooks are in the kitchen”.

Domain Representation: Affordances. We define affordances, i.e., action capabilities, as rela-
tions between attributes of robot(s) and object(s) in the context of particular actions. Negative (i.e.,
forbidding or dis-) affordances describe unsuitable combinations of objects, robots, and actions.
Positive affordances describe permissible uses of objects in actions by agents, including exceptions
to the executability conditions. We represent affordances in a distributed manner, as follows:

impossible A if aff_forbids(ID,A)

aff_forbids(idi, A) if . . .

impossible A if . . . , not aff_permits(ID,A)

aff_permits(idj , A) if . . .

The first two statements imply that action A cannot occur if it is not afforded, and specify the
conditions (i.e., attributes of robot and objects) under which the action is not afforded. The last
two statements imply that action A that is not considered during planning due to an executability
condition may have a positive affordance as an exception, and encode the exception. Note that each
action can have multiple indexed affordances; as discussed later, such a distributed representation
improves generalization and simplifies inference.

Reasoning with Domain Knowledge. The reasoning tasks of the robot associated with a system
description D and history H include planning, diagnostics and inference. To perform these tasks,
the domain representation is translated into a program Π(D,H) in CR-Prolog2, a variant of ASP
that incorporates consistency restoring (CR) rules (Balduccini & Gelfond, 2003). ASP is based
on stable model semantics, and supports default negation and epistemic disjunction, e.g., unlike
“¬a” that implies a is believed to be false, “not a” only implies a is not believed to be true, and
unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is not tautologous. ASP can represent recursive
definitions and constructs that are difficult to express in classical logic formalisms, and it supports
non-monotonic logical reasoning, i.e., the ability to revise previously held conclusions based on new
evidence. The program Π includes the signature and axioms ofD, inertia axioms, reality checks, and

2. We use the terms “ASP” and “CR-Prolog” interchangeably in this paper.
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observations, actions, and defaults from H. Every default also has a CR rule that allows the robot
to assume the default’s conclusion is false under exceptional circumstances, to restore consistency.
Π also includes other appropriate definitions and axioms, e.g., for planning, we add a definition of
goal, and axioms that force the system to identify and include actions in the plan until the goal is
achieved. Algorithms for computing the entailment, and for planning and diagnostics, then reduce
these tasks to computing answer sets of the CR-Prolog programs. Each such answer set represents
the set of inferred beliefs of an agent associated with the program.

Reasoning with incomplete or incorrect knowledge may overlook valid plans, find suboptimal
plans, or provide plans whose execution has unintended outcomes. For instance, suppose the robot
in the RA domain is asked to deliver textbook book1 to the office. It uses default knowledge
to compute a plan comprising four actions: (i) move(rob1, library); (ii) pickup(rob1, book1); (iii)
move(rob1, office); and (iv) putdown(rob1, book1). However, this plan does not succeed because,
unknown to the robot, its electromagnetic arm cannot pick up the heavy book. This exemplifies the
kind of knowledge we seek to enable the robot to learn. We next describe the interactive learning of
such knowledge.

3.2 Interactive Learning

In complex domains, learning previously unknown actions and related axioms in their most generic
forms may require many labeled examples, and it may be difficult to obtain such labeled examples.
Also, humans may not have the time and expertise required to provide labeled examples, and an
action’s effects may be observed immediately or after a delay. To address these challenges, our
architecture includes two schemes for interactive acquisition of labeled examples:

(i) active learning from verbal cues provided by humans; and
(ii) relational reinforcement learning that considers delayed rewards to mimic cumulative learning

based on observations from active exploration or reactive action execution.

Learning from Human Interaction. The first interactive learning scheme uses verbal input pro-
vided by humans describing the observed behaviors of other robots in the domain. This scheme
makes the following assumptions:

• Other robots in the domain have the same sensing and actuation capabilities as the learner;
• The human description of observed behavior focuses on one action at a time; also, this descrip-

tion may be ambiguous but it is not intentionally incorrect; and
• The learner can generate logic statements corresponding to the observed attributes of robot(s)

or object(s) in the domain.

These assumptions are reasonable for many robotics domains, and they significantly simplify the
learner’s interaction with humans.

The learner solicits human input when available and receives a transcribed verbal description of
an action and observations of the action’s consequences, e.g., the learner may receive “The robot
is labeling the fairly big textbook.” and labeled(book1). We use the Stanford log-linear part-of-
speech (POS) tagger (Toutanova et al., 2003). We employ a left, second-order sequence infor-
mation model to determine each word’s POS tag and append it to the word. In our example, the
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output is a string such as “The_DT robot_NN is_VBZ labeling_VBG the_DT fairly_RB big_JJ text-
book_NN”, where “VB” represents a verb, “NN” is a noun etc. The learner transforms this string to
〈word, POS〉 pairs, and transforms the sentence’s verb into first-person present-tense using rules
from a lemma list (Someya, 1998) and WordNet (Miller, 1995), e.g., 〈is, V BZ〉 〈labeling, V BG〉
becomes the verb “label”. The learner also marks each noun phrase as a sequence of zero or more
adjectival terms followed by a noun, discarding other interleaved words. Our example sentence’s
noun phrases are robot and big textbook. Nouns signify object sorts and adjectival terms signify
values of static attributes. To determine terms’ referents, WordNet relations such as linked synsets
are used to find a synonym that is also a domain symbol, e.g., “big” and “heavy” share a WordNet
synset, heavy is an attribute value, and book(book1) and obj_weight(book1, heavy) are domain
attributes. The matched sorts and attributes refer to particular objects. This approach requires static
attributes’ values to be disjoint sets, and each noun phrase to signify an existing object.

Next, the robot constructs an action literal label(rob1, book1) from the verb and object ref-
erents, and the arguments’ lowest-level sorts are assumed to indicate the action’s signature, e.g.,
label(#robot,#book). If this candidate action does not match any known action literal, the robot
lifts the literal, its arguments and the observed action consequences. This forms the basis for con-
structing candidate causal laws and generalizing over time. For instance:

label(rob1, book1) causes labeled(book1)

is lifted to:
label(R,B) causes labeled(B)

On the other hand, if the new literal matches an existing one, the common ancestor of each ar-
gument’s sort is considered, e.g., if the learner finds that newly discovered label(#robot,#cup)
matches with label(#robot,#book), it will generalize to label(#robot,#object). This learning
scheme adapts existing natural language processing methods to work with our representation. It
helps the learner acquire a previously unknown action’s signature and a related causal law. How-
ever, the learner may still not know axioms that govern the domain dynamics related to this action.
This missing knowledge is acquired as described below.

Relational Reinforcement Learning. The second learning scheme enables axiom discovery by
active exploration of particular transitions, or by exploration in response to unexpected and unex-
plained transitions.

Basic RL Formulation: To explore a particular transition, the resultant state is set as the goal of a
reinforcement learning (RL) problem, i.e., the objective is to find state-action pairs most likely to
lead to this (and other similar) states. The underlying MDP is defined by a set of states (S), set of
actions (A), state transition function Tf : S×A×S′ → [0, 1], and reward functionRf : S×A×S′ →
<. Similar to classical RL formulations, Tf andRf are unknown to the agent. Each state has ground
atoms formed of the domain attributes (i.e., fluent terms and statics), and a boolean literal describing
whether the most recent action had the expected outcome. Each action is a ground action of the
system description. In robotics domains, the functions Tf and Rf are typically constructed from
statistics collected in an initial training phase; Tf is a probabilistic model of the uncertainty in state
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transitions, while Rf provides instantaneous rewards for executing particular actions in particular
states. The RL formulation is constructed automatically from the system description—Sridharan
et al. (2017a) describe a method for translating an ASP-based system description to a representation
for probabilistic sequential decision making.

The values of state-action pairs are estimated in a series of episodes, until convergence, using
the Q-learning algorithm (Sutton & Barto, 1998). In each episode, the agent executes a sequence
of actions chosen by an ε-greedy algorithm with eligibility traces. The combinations of states and
actions invalidated by existing axioms are not explored. An episode terminates when a time limit
is exceeded or the target action succeeds. The physical configuration of objects is then reset to its
state from the beginning of the episode, and a new episode begins.

Reducing Search Space: The basic RL formulation becomes computationally intractable for com-
plex domains, even with more sophisticated RL algorithms. We address this problem in our archi-
tecture by automatically restricting learning to the object constants, domain attributes and axioms
relevant to the transition under consideration. In other words, only parts of the system description
that influence or are influenced by the transition of interest are included in the MDP underlying the
RL formulation, which significantly reduces the search space. This notion of relevance is based on
the following desiderata regarding the relations that may appear in a discovered axiom:

• For any static attribute that may exist in the body of the discovered axiom, we wish to explore
all possible elements in the range of the attribute, e.g., for action serve(rob1, cup1, person1),
all possible weights of cup1 and roles of person1 are explored.
• For any fluent that may appear in the body of the axiom, we wish to explore only those elements

in the range of the fluent that occur in the state before or after the state transition. Any other
element cannot, by design, be influenced by this transition anyway.

ASP-based reasoning is used to implement these broad requirements and automatically construct
the system description D(T ), the part of D relevant to the transition T . To do so, we first define
the object constants relevant to the transition of interest. These definitions are adapted from the
definitions introduced in Sridharan et al. (2017a).

Definition 1 [Relevant object constants]
Let T = 〈σ1, atg, σ2〉 be the transition of interest. Let relCon(T ) be the set of object constants of
Σ of D identified using the following rules:

1. Object constants from atg are in relCon(T );
2. If f(x1, . . . , xn, y) is a literal formed of a domain attribute, and the literal belongs to σ1 or σ2,

but not both, then x1, . . . , xn, y are in relCon(T );
3. If the body B of an axiom of atg contains an occurrence of f(x1, . . . , xn, Y ), a term whose

domain is ground, and f(x1, . . . , xn, y) ∈ σ1, then x1, . . . , xn, y are in relCon(T ).

Object constants from relCon(T ) are said to be relevant to T . Consider σ1 with loc(rob1, office),
loc(cup1, office), and loc(person1, office), and atg = serve(rob1, cup1, person1). The object
constants relevant to T include rob1, cup1, person1, and office.
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Figure 2. Illustrative example of a binary decision tree (BDT) with nodes representing tests of domain literals.
The BDT is constructed incrementally over time.

Definition 2 [Relevant system description]
The system description relevant to the transition T = 〈σ1, atg, σ2〉, i.e., D(T ), is defined by signa-

ture Σ(T ) and axioms. The signature Σ(T ) is constructed to comprise the following:

1. Basic sorts of Σ that produce a non-empty intersection with relCon(T ).
2. All object constants of basic sorts of Σ(T ) that form the range of a static attribute.
3. The object constants of basic sorts of Σ(T ) that form the range of a fluent, or the domain of a

fluent or a static, and are in relCon(T ).
4. Domain attributes restricted to basic sorts of Σ(T ).

Axioms of D(T ) are those of D restricted to Σ(T ). For atg = serve(rob1, cup1, person1) in our
current example,D(T ) does not include other robots, cups or people in the domain. It can be shown
that for each transition in the transition diagram of D, there is a transition in the transition diagram
of D(T ). States of D(T ), i.e., literals comprising fluents and statics in the answer sets of the ASP
program, are states in the RL formulation, and actions are ground actions of D(T ). Also, it is
possible to pre-compute or reuse some of the information used to construct D(T ) for any given T .

Once the D(T ) relevant to the target transition T has been identified, the RL formulation is
constructed as before to compute the values of state-action combinations. The extent to which com-
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Table 1. Overall control loop used by the architecture for learning and reasoning.

Input: Π(D,H); goal description; initial state σ1.
Output: Control signals for robot to execute.

1 planMode = true, learnType = 0
2 while true do
3 Add observations to history.
4 ComputeAnswerSets(Π(D,H))
5 if planMode then
6 if existsGoal then

// Goal exists, consistent model, execute plan
7 if explainedObs then
8 ExecutePlanStep()
9 else

// Initiate Q-RRL
10 planMode = false, learnType = 1
11 end
12 else

// Initiate active learning
13 planMode = false, learnType = 2
14 end
15 else

// Interrupt learning if needed
16 if interrupt then
17 planMode = true

// Continue learning
18 else if learnType == 1 then
19 ContinueRRL()
20 else if learnType == 2 then
21 if verbalCue then
22 ContinueActiveLearn()
23 else
24 ContinueActiveRRL()
25 end
26 end
27 end

puting D(T ) reduces the search space depends on the relationships between the domain attributes
and axioms. For instance, although there are several thousand static attribute combinations and
more than a million object configurations in our instantiation of the RA domain, computing D(T )
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often reduces the space of attribute combinations to as few as 12 for the serve action. However, in
other domains with complex relationships between objects, including certain variants of the classic
blocks world problem in which different physical arrangements of objects with different attributes
are equivalent, exploration may need to be further limited to a fraction of this restricted state space.
Furthermore, Q-learning does not generalize to relationally equivalent states.

To further limit the search space and promote generalization to relationally equivalent states, we
incorporate an approach inspired by the RRL-TG algorithm (Driessens & Ramon, 2003). Our ap-
proach uses experiences obtained during RL trials to construct a binary decision tree (BDT) whose
nodes represent tests of domain literals—Figure 2 shows part of a BDT. Unlike the destructive
branching of RRL-TG, our approach models the partial description of a state-action pair as a path to
a leaf where the remaining state information is stored. When Q-value variance is reduced by adding
a test at a leaf, the BDT is expanded and used to compute policies in subsequent RL episodes.
To learn generic versions of the axioms, our approach explores different values of static and flu-
ent literals. ASP-based reasoning automatically selects relevant combinations to make exploration
tractable, and sampling is used if the search space is still too large. Unlike traditional RRL methods,
the learned Q-values now represent values across potentially different MDPs.

After the learned Q-values converge, the system constructs axioms from the BDT, selecting
the partial state-action description implied by a path to a leaf only if it is associated with a high
value accrued at the leaf over multiple episodes. All subsets of the selected descriptions’ literals
become candidate axioms. Because each candidate axiom could correspond to different branches of
the BDT, the learner estimates each candidate’s quality by randomly drawing a number of samples
without replacement from the descriptions. For each sample, it considers additional literals stored
at the leaves, and revises candidates that match the sample. Each candidate axiom then records the
amassed Q-value, variance, and number of training samples that influenced it.

Candidate axioms with sufficient support are validated, i.e., tested under simulated conditions
designed to match that transition which triggered learning. Candidates that do not pass these tests
are removed from further consideration. For instance, if a learned executability condition is correct,
executing the action when literals in the body are true should not provide the expected outcome.
Note that these tests are guaranteed to not mistakenly remove any valid axioms, although they may
not eliminate all false positive candidates. The final candidates are lifted by replacing ground terms
with variables, and added to the ASP program as axioms for subsequent reasoning. We refer to our
RRL approach as “Q-RRL”.

Table 1 describes the overall control loop for reasoning and learning in our architecture. The
baseline behavior (lines 5-17) is to plan and execute actions to achieve the given goal as long as a
consistent model of history is can be computed (lines 7-9). If such a model cannot be constructed, it
is attributed to an unexplained, unexpected transition, and the robot triggers Q-RRL (lines 9-12) to
discover the corresponding unknown axioms (lines 20-21). If there is no active goal to be achieved,
the robot triggers active learning (lines 13-16) using Q-RRL (lines 25-27) or verbal descriptions
obtained from a human participant (lines 23-25) to learn previously unknown actions or axioms.
When in the learning mode, the robot can be interrupted if needed (lines 18-19), e.g., to pursue a
new goal. An implementation of the control loop and the components described above can be found
online: https://github.com/bmeadows/actionaxiomlearning.

88



DOMAIN KNOWLEDGE FOR HUMAN-ROBOT INTERACTION

4. Experimental Setup and Results
In this section, we describe the results of experimentally evaluating four distinct hypotheses:

• H1: Verbal descriptions enable active learning of actions and causal laws, which serve as the
foundation for further learning;
• H2: Q-RRL enables reliable discovery of axioms related to known or learned domain actions;
• H3: Learned knowledge improves the quality of plans computed for any given goal; and
• H4: Reliability of learning domain knowledge degrades gracefully with increase in environ-

mental noise.
We describe execution traces in support of hypothesis H1, and provide quantitative results in sup-
port of hypothesesH2,H3 andH4. Although human input is used to learn actions, it is not essential
for learning the axioms; they can be learned from experiences accumulated over time.

4.1 Experimental Setup
We first: (a) experimentally set the values of parameters in Q-RRL; (b) learned model parameters
used in the experimental trials; (c) defined parts of the domain knowledge to be acquired; and (d)
selected performance measures and determined how their values were to be computed.

The values of the Q-RRL parameters were determined experimentally by trading off accuracy
of estimated policies against processing time. For instance, learning rate and exploration preference
were set to 0.1 because it resulted in a good trade-off between exploration and exploitation in the
RL episodes. Also, up to 10 validation tests were conducted to evaluate candidate axioms.

We ran realistic simulation experiments using domain knowledge and statistics of action out-
comes. For instance, we had the physical robots execute different actions (e.g., move between places
or pick up objects) and recorded the outcomes. These statistics were used to construct Tf and Rf

used in the simulation environment. Of course, both Tf and Rf were not known to the learner.
The ASP program used in the experimental trials corresponded to the RA domain of Example 1.

We simulated different number of objects of different sorts, and randomly selected the location
of these objects in the rooms. To simplify analysis of results, candidate axioms were constrained
to have no more than two negated and two non-negated atoms of domain attributes—increases this
limit also increases the computational effort of learning. We report results of experiments conducted
to discover two actions (serve and label), and the corresponding axioms:

1. Serving an object to a salesperson causes it to be labelled (causal law);
2. A person who is not an engineer cannot be served a damaged object (executability condition);
3. A robot with a pneumatic arm cannot serve a brittle object (negative affordance);
4. A damaged object cannot be served to a person who is not an engineer, unless it is labeled

(positive affordance);
5. An object with a brittle surface cannot be labeled by a robot (executability condition);
6. A damaged object cannot be labeled by a robot with a pneumatic arm (negative affordance);
7. Labelling a light object with a pneumatic arm causes it to be damaged (causal law); and
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8. An object with a brittle surface cannot be labelled by a robot, unless the object is heavy and the
robot has an electromagnetic arm (positive affordance).

The first four axioms correspond to action serve; the others correspond to action label. The action
and an associated causal law were acquired from verbal descriptions. Q-RRL was then used to learn
one causal law, one executability condition, one positive affordance and one negative affordance for
each of the two actions. Axioms for each action can be discovered concurrently.

We used precision and recall as the key performance measures. Axioms were required to exactly
match the ground truth to be counted as true positives; under-specifications (e.g., some missing
literals) and over-specifications (e.g., unnecessary literals) were considered false positives. Plan
quality was measured as the ability to compute a minimal plan to achieve the desired goal. Each
value of these measures reported below was averaged over 1000 repetitions (e.g., for each axiom).

4.2 Execution Trace

The following execution trace supports H1 by illustrating learning of actions and the objects those
actions operate on, using verbal cues from human participants.

Execution Example 1 [Learning from human input]
Suppose the robot in the RA domain does not know actions label and serve, or the related axioms.
For each action, the agent receives five grammatically-correct descriptions of the action being ap-
plied by another robot; these statements uphold our assumptions but otherwise vary arbitrarily. First
consider the action label:

• The learner receives “A robot is labeling the lightweight cup” and the observation labeled(cup1).
It parses the statement, matches it to the domain, lifts it to label(#robot,#cup), and infers:

label(R,B) causes labeled(B)

• Next, the learner receives “Robot labeled one computer”, and labeled(comp1). It learns the
signature label(#robot,#computer) and generalizes over the learned signatures to obtain
label(#robot,#object).
• Further input descriptions are automatically reconciled either when specific sorts are subsumed

by more general ones, e.g., when it learns from “The pneumatic robot labels the light breakable
cup”, or parsing the input results in an exact match for the action description, as in “Next the
robot labeled the hard, hefty item”.

Next, in the context of the serve action:

• The learner observes in_hand(p1, book1) to be true and receives “A robot serves a manual to
the manager”. It produces the action description serve(#robot,#book,#person) and extracts
the causal law:

serve(R,O, P ) causes in_hand(P,O)

• Next, the learner observes in_hand(p0, cup1) to be true and receives “The pneumatic robot is
serving the breakable cup to the clerical person over there”. Generalizing over the two examples
results in serve(#robot,#object,#person). The remaining sentences, “Robot serves ledger
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to clerical person” and “A robot served a lightweight cup to an expert”, fit the inferred structures
and do not change them.

For both actions, two examples were sufficient to reach the required level of generality to model
the action and an initial causal law. A key advantage of learning from verbal cues is that only
a small number of examples are needed to learn the actions and the objects that they operate on.
This is especially useful when actions have irreversible effects. The disadvantage is that humans
are expected to provide correct descriptions of the behaviors they observe, although the robot can
revise any incorrect information learned and included in the ASP program.

During the evaluation of H1, we considered learning incorrect knowledge, or failing to learn,
from the human input as failures. The learner will fail if given incorrect inputs, e.g., “A robot serves
a manual to the manager” with the observation of in_hand(rob1, book1). The learner will learn
incorrect knowledge if the POS tagger provides incorrect tags when the input strings are ambiguous,
e.g., “The robot serves the cat food”. Also, a mismatch between verbal cues and WordNet synsets
will result in failures, e.g., “lighter” will not map to “light” if the string “The robot is attaching a
label to the lighter cup” is provided as input.

Despite these limitations, the distributed representation of knowledge supports some key capa-
bilities. First, it simplifies inference and information reuse, e.g., if a cup has a graspable handle,
this relation also holds true for other objects with handles. If an affordance prevents the robot from
picking up a heavy object, this information may be used to infer that it cannot open a large window.
This relates to research in psychology which indicates that humans can judge action capabilities of
others without actually observing them perform the target actions (Ramenzoni et al., 2010). Sec-
ond, it becomes possible to respond efficiently to queries that require consolidation of knowledge
across different attributes of objects or robots, and to develop composite affordance relations, e.g.,
a hammer may afford an “affix objects” action in the context of a specific agent because the handle
affords a pickup action and the hammer affords a swing action, for the agent. Finally, learning from
verbal descriptions can be used to provide more meaningful explanations of decisions.

4.3 Quantitative Evaluation
Next we describe the results of evaluating hypotheses H2 and H3 in a simulated environment.

H2: Q-RRL enables reliable discovery of axioms. We explored the ability of Q-RRL to support
the learning of previously unknown axioms related to a known or newly learned action. Table 2
summarizes results averaged over the four axioms for each action, showing that Q-RRL attains high
recall and precision, especially after the candidate axioms are validated. The accuracy of discover-
ing the axioms for serve is lower than that for label because the action serve is more complex, i.e.,
it has more arguments than the action label. There were very few differences in the values of per-
formance measures for causal laws, executability conditions and negative affordances. The recall
and precision measures were a little lower for positive affordances because axioms corresponding
to positive affordances are more complex: they add context to an executability condition to make an
action applicable which would be inapplicable without that context. Furthermore, note that human
input is not essential for the learning of axioms with Q-RRL – a robot can learn the axioms from
experiences accumulated over time through active observation or reactive action execution.
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Table 2. Accuracy when Q-RRL was used to discover multiple axioms corresponding to two specific actions:
label and serve. Q-RRL provides high recall and precision, especially after candidate axioms are validated.

Action Recall Precision Precision (validated)
label 0.92 0.82 0.96
serve 0.88 0.70 0.95

H3: Learning improves plan quality. Next, we explored the effects of the discovered axioms on
the system’s ability to generate minimal plans that provide the correct outcome. For each axiom
of each target action, we conducted 1000 paired ASP-based planning trials with and without the
corresponding target axiom in the system description. Each trial used a randomized scenario that
required the target action to achieve the goal. We found that adding the learned executability con-
ditions or negative affordances to the ASP program resulted in 13% (serve) or 23% (label) fewer
plans. Executability conditions and negative affordances preclude certain actions in some contexts,
i.e., these results indicate that the acquired knowledge improved the quality of the computed plans
by eliminating plans that were incorrect or suboptimal. In a similar manner, learning and including
knowledge of previously unknown positive affordances in the ASP program resulted in 17% (serve)
or 23% (label) more plans. Recall that knowledge of positive affordances enables the consideration
of previously unknown state transitions. Since planning (in our architecture) includes minimality
constraints, these results imply that the robot can choose from a broader set of options during execu-
tion, potentially using additional heuristics or costs associated with different actions. For instance,
the robot may have figured out that it can push a particular object with its arm, and may chose to
use this action to move the object because pushing the object consumes less energy than lifting and
carrying the object. Additional trials in which we included or removed all the learnable axioms
collectively resulted in a difference of 19% (serve) or 58% (label) in the plans found. We verified
that all the plans computed after including the target axioms were minimal and correct, i.e., of the
best quality possible. These results indicate that learning axioms eliminates incorrect or suboptimal
plans, and helps compute plans that would not be computed in the absence of the learned axioms.

In the paired trials that included or excluded the causal laws extracted from the verbal cues,
there was no measurable difference in the number of plans found. This is expected; a causal law for
serve produces outcomes which impact the applicability of other actions, and similarly for label.
A similar situation will arise for any scenario in which the plan produced does not repeat the action
influenced by the causal law. In alternative runs that involved planning for a random goal, we
observed that the presence or absence of causal laws had an impact on the number of plans found.

H4: Performance degrades gracefully with environmental noise. To measure performance
degradation as a function of environmental noise, we introduced a probability with which the learner
could encounter simulated actuator noise with an action during learning. This noise took the form of
a fixed chance for an action’s outcomes to include the removal or addition of a single random fluent
of the state. We varied noise from 0 − 20%. At each discrete step in this interval, we performed
1000 trials for each target axiom. We observed a steady decline in precision and recall of axiom
discovery with the increase in noise, as summarized in Table 3.
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Table 3. Accuracy in the presence of actuator noise. Recall and precision decrease smoothly with the increase
in the probability of encountering an actuator error while executing an action.

Noise Recall Precision Precision (validated)
0% 0.89 0.76 0.95
2% 0.85 0.59 0.81
4% 0.81 0.50 0.73
6% 0.77 0.44 0.66
8% 0.72 0.37 0.59
10% 0.69 0.33 0.53
12% 0.67 0.30 0.48
14% 0.64 0.27 0.44
16% 0.61 0.24 0.40
18% 0.57 0.22 0.36
20% 0.56 0.20 0.34

Many of the false positives acquired were overly-specific variants of correct axioms. These are
common when the learner observes a target axiom to fail due to noise. Without noise, 26% of false
positives are over-specifications, but this increases to 41% at 10% noise, and 47% at 20% noise.
Validation testing cannot adequately remove all these over-specifications, as they are in a sense
correct: after validation, 78–80% of the observed errors are over-specifications. Also, consistently
1–2% of false positives are re-wordings (i.e., logical equivalences) of some target axiom. An eval-
uation scheme assigning a weaker penalty for over-specifications and logical equivalences in the
discovered axioms would result in a slower decrease in precision with increasing levels of noise.

Our evaluation also included other findings that we did not elevate to the level of hypotheses.
For instance, we found that using the ASP-based inference to guide learning makes learning signif-
icantly more efficient. We also observed that the relational representation significantly speeds up
reinforcement learning in comparison with not using the relational representation.

4.4 Uncertainty, Scaling, and Computational Effort
Recall that uncertainty in perception (i.e., symbol or observation) has been abstracted away in the
architecture described above. This simplification helped us focus on the interplay between represen-
tation, reasoning, and learning, but there is uncertainty in both perception and actuation when robots
are used in dynamic, partially observable domains. However, since the underlying knowledge rep-
resentation and reasoning architecture supports non-monotonic logical reasoning and probabilistic
reasoning (Sridharan et al., 2017a), we can easily introduce probabilistic models of the uncertainty
in perception. Introducing such models will change the mathematical formulation of learning from
repeated trials and delayed rewards (as in Section 3.2) from an MDP to a POMDP. Although such a
formulation will significantly increase the computational effort involved in learning domain knowl-
edge, we hypothesize that learning will remain tractable because our approach uses ASP-based
reasoning to automatically limit learning to the relevant parts of the domain. We leave further ex-
ploration of this idea as a direction for future research.
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Next, we consider our architecture’s scalability to more complex domains, e.g., domains with
many objects and complex relationships between objects. ASP-based reasoning has been shown
to scale well to large domains with many objects and axioms (Erdem et al., 2016). The other
key component of our architecture comprises two schemes for learning domain knowledge (see
Section 3.2). The first scheme based on human verbal input involves minimal computational effort,
and it can be used for real-time processing of verbal inputs. In the second scheme based on RRL,
each episode of learning is not computationally expensive, but it may take multiple episodes for the
values (of state action combinations) to converge and candidate axioms to be generated, especially
if the knowledge being acquired is a complex relationship between different attributes. The actual
learning time can thus vary significantly depending on the domain. However, our RRL approach
provides an elegant means for acquiring labeled training samples associated with a measure of
relative merit, in the presence of delayed action effects. Our RRL approach also incorporates a
notion of relevance and exploits the underlying relational representation, e.g., ASP-based reasoning
is used to guide learning. Furthermore, experimental results indicate that our RRL approach shows
promise for scaling to domains with many objects and more complex relationships between objects.
We leave further exploration of the scalability of our approach as a direction for future research.

5. Conclusions

This paper described an architecture for representing, reasoning with, and interactively learning ac-
tions’ names, preconditions, effects, and the objects over which these actions operate, along with
associated affordances. We used Answer Set Prolog, a declarative language, to represent incomplete
domain knowledge, and to perform non-monotonic logical reasoning with this knowledge for plan-
ning and diagnostics. We also demonstrated the use of ASP-based reasoning to guide the interactive
learning of actions and axioms. This learning was achieved using decision-tree induction and rela-
tional reinforcement learning from observations obtained through active exploration, reactive action
execution, and verbal descriptions from humans. Experimental results in the context of a simulated
robot assisting humans in an indoor domain indicate that our architecture supports: (i) reliable and
computationally efficient reasoning; (ii) learning of actions and axioms corresponding to different
types of knowledge; (iii) improvement in the quality of plans computed for any given goal when the
learned actions and axioms are included in the system description; and (iv) smooth degradation of
performance with increasing levels of environmental noise.

In the future, we will explore the learning of actions and axioms in more complex domains
and evaluate the architecture on physical robots, which will require the further development and
integration of an existing component that reasons about perceptual uncertainty probabilistically. The
long-term objective is to enable robots assisting humans to represent, reason with, and interactively
revise different descriptions of incomplete domain knowledge.
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