
Advances in Cognitive Systems 8 (2019) 53-71 Submitted 5/2019; published 12/2019

Reflecting After Learning for Understanding

Lee Martie LEE.MARTIE@IBM.COM

Mohammad Arif Ul Alam ARIF.ALAM@IBM.COM

Gaoyuan Zhang GAOYUAN.ZHANG@IBM.COM

MIT-IBM Watson AI Lab, IBM Research, 75 Binney Street, Cambridge, MA 02142 USA

Ryan R. Anderson RRANDERS@US.IBM.COM

IBM Cloud and Cognitive Software, 505 Howard St, San Francisco, CA 94105 USA

Abstract
Today, image classification is a common way for systems to process visual content. Although neu-
ral network approaches to classification have seen great progress in reducing error rates, it is not
clear what this means for a cognitive system that needs to make sense of the multiple and compet-
ing predictions from its own classifiers. As a step to address this, we present a novel framework
that uses meta-reasoning and meta-operations to unify predictions into abstractions, properties, or
relationships. Using the framework on images from ImageNet, we demonstrate systems that unify
41% to 46% of predictions in general and unify 67% to 75% of predictions when the systems can
explain their conceptual differences. We also demonstrate a system in “the wild” by feeding live
video images through it and show it unifying 51% of predictions in general and 69% of predic-
tions when their differences can be explained conceptually by the system. In a survey given to 24
participants, we found that 87% of the unified predictions describe their corresponding images.

1. Introduction

Learning in artificial intelligence is often framed as training one or more flavors of deep neural
networks (Goodfellow et al., 2016b). Advances in image classifiers, for example, rely mainly on
convolutional neural networks or generative adversarial networks (Goodfellow et al., 2014). Learn-
ing identity functions through autoencoders often involve training a multilayer perceptron or similar
techniques (Goodfellow et al., 2016a). While reinforcement learning can use tables (Sutton & Barto,
2018), scalable solutions often use deep neural networks, as in Mnih et al.’s (2013) work on playing
Atari video games.

In brief, a deep neural network for image classification is often created by tuning weights in a
neural network structure to optimize a loss function, such that one label from a given set is predicted
as most likely for an input. One consequence is that the understanding of images has been narrowed
to predicting a most likely label, given some input from a data distribution. Some well-known
examples of this are ImageNet classifiers, such as AlexNet (Krizhevsky et al., 2012), ResNet (He
et al., 2016), and SqueezeNet (Iandola et al., 2016), which have been trained on millions of images
over millions of parameters to predict the “correct” label from a thousand alternatives. Indeed,

c© 2019 Cognitive Systems Foundation. All rights reserved.



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Figure 1. Image A and B from ImageNet, where A is classified as “arctic fox” by AlexNet and “ox” by
ResNet, and B is classified as “desk” by AlexNet and “desktop computer” by ResNet.

ImageNet held a competition where classifiers were compared with each other according to their
error rate of predicting the correct label (top–1 error rate) and the error rate of predicting the correct
label in the top five predictions (top–5 error rate).

While ImageNet classifiers are reducing their error rates, it is not clear what error rate reduction
says about making sense of visual input. In particular, it remains unclear how a cognitive system
might know what it is looking at, especially after deployment when it cannot check “correctness”
against a test set. Further, while classifiers are traditionally pitted against one another in order
to find the best (Kaggle, Inc., 2019), we observe they often can output different “correct” labels
after learning, regardless of what the testing data suggests. For example, we took images A and B in
Figure 1 from ImageNet (Stanford Vision Lab et al., 2019) and asked AlexNet and ResNet to classify
it. For Image A, AlexNet classifies this image as “arctic fox,” and ResNet classifies this image
as “ox”. Strictly speaking, both classifiers are incorrect, and neither would know in production.
However, in some sense they are also correct (i.e., both an arctic fox and ox are mammals and
a mammal does appear in the image). For Image B, AlexNet classifies this image as “desk,” and
ResNet classifies this image as “desktop computer,” but the correct label, according to the ImageNet
challenge, is “desk” (Stanford Vision Lab, 2012). Again, both classifiers are correct in some sense
(i.e., both a desk and desktop computer occur in the image). As such, labels are more like views
of what is being seen and point to some encoded knowledge rather than a “correct” description. In
this paper, we adopt the word view to mean the encoded knowledge in a classifier that the predicted
label loosely describes.

Recent research acknowledges one label for a picture is limiting and multi-label classifiers,
such as YOLO (Redmon et al., 2016), provide more labels per image. However, a critical problem
remains. How can complementary or competing views, after they have already been learned, be
combined into some kind of higher-level knowledge that can be understood and reasoned over?
Such concept combinations appears to be a key component in how humans think (e.g., creating
abstractions and relationships) (Bayne & Chalmers, 2003; Shivhare & Kumar, 2016) and is critical
for using visual input to establish correct conditions for planning and verifying achievement of
goals. As such, this is a key question for understanding and building cognitive systems that include
frameworks for sense making.

In this paper, we investigate the research question How can a cognitive system’s different views
be unified into higher-level knowledge after learning? We address this question and the value of
such a system with four main contributions:

54



REFLECTING AFTER LEARNING FOR UNDERSTANDING

• We present a novel approach and framework for creating cognitive systems that can reconcile
views through a process of convergence, where multiple views are collected and unified into
abstractions, relationships, or properties by leveraging reflection. We call our overall approach
symbolic mirroring and refer to the paradigm as the symbolic mirroring framework (SMF).
• Through a detailed planning example, we demonstrate the value of our approach by showing

how a system can unify its views (correct or not) to find a level of abstraction that identifies
conditions when executing a plan.
• We evaluate how well our approach can unify views in an exploratory laboratory study, where

we evaluate three different systems, in our framework, over 950 images from ImageNet. We
find that the systems can unify a substantial number of views when their differences can be
explained by differences in their abstractions. In particular, we find the programs were able to
unify views for 41% to 46% of the images and, among the views the programs could explain,
they could unify 67% to 75% (all p ≤ .001). In an exploratory field study, we find a system
in our framework can unify 51% of the views created from live video images and, among the
views that it could explain, the system could unify 69% (p = .041).
• In a survey given to 24 participants, we find they agreed that 87% (p ≤ .001) of the unified

views made by a system in our framework describe their corresponding images.

The construction of the cognitive systems we evaluate utilize several novel concepts introduced
in our symbolic mirroring framework (SMF). In particular, our framework introduces meta-points,
which support reflection on executed and unexecuted portions of a cognitive system by passing
parts of the system to higher-level processes called meta-operations. The meta-operation explain
provides an explanation when multiple views are not the same and the meta-operation converge
unifies these views into higher-level concepts through an algorithm based on domain knowledge
specified in the OWL description logic (Horrocks, 2005) and using the OWL reasoner, Pellet (Sirin
et al., 2007). In this way, meta-points and meta-operations act to bridge views from trained neural
networks to higher-level knowledge in symbolic approaches.

The rest of the paper provides the details of our research. Section 2 introduces our approach
and framework. Section 3 demonstrates why symbolic mirroring is useful for planning. Section
4 describes the experiment design for evaluating our approach, presents the results, and discusses
threats to validity. Section 5 discusses the results, Section 6 contrasts our work with related work,
and Section 7 concludes with a view on future work.

2. Symbolic Mirroring Approach and Framework

We designed our framework for building cognitive systems that can unify different views among
their classifiers into higher-level knowledge through a process of convergence called symbolic mir-
roring. The conjecture behind our approach is that convolutional neural networks contain hidden
knowledge describing input images, even when their predictions are incorrect. While knowledge
in neural networks suffers from an opacity problem, the symbolic mirroring technique attempts to
make this knowledge explicit for an input. The approach involves creating a knowledge base that
expresses abstractions, properties, and relationships in the domain that the classifiers’ labels reside
in order to “mirror” some of the knowledge inside the classifiers – hence the name symbolic mir-

55



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Figure 2. Example of our symbolic mirroring architecture, where knowledge in classifiers converges into a
higher level of abstraction.

roring. The top predictions from two classifiers are then mapped into the knowledge base to find
common abstractions, properties, and relationships. Our approach looks for common higher-level
knowledge in order to converge on concepts that the predictions of the classifiers suggest exists in
the image. Figure 2 presents an example of a symbolic mirroring architecture that our framework
supports. In this architecture, the program attempts to unify what each classifier understands about
the image by mapping their top labels (even if both are strictly wrong) onto instances (white boxes)
in a knowledge base, where a reasoner finds the closest ancestor (abstraction) of both instances. In
this example, the system decides it is looking at a mammal rather than an ox or an arctic fox.

The design of programs in our framework follows a composable graph design pattern, similar
to the composite and command pattern (Gamma et al., 1995), but where a node in the graph has a
function and annotations map the node into meta-knowledge (so it can be reasoned over at run time).
A directed edge from one node to the next specifies the execution order. When a node is executed,
its function is run and the return value of the function is assigned to the node. The value of one
node (or any assigned to it in the past) can be retrieved by another node’s function downstream as
an argument. The final specified graph is executed by the framework’s runtime system.

Two key node types in the framework are utilized in our programs to unify knowledge. In
particular, these are meta-points and meta-operations. Meta-points are nodes that take the entire
graph as input in order to perform some function (e.g., finding nodes of a particular type). They
support extending programs in a modular way, because they simply can be added to any program
and perform higher-level reasoning about it without the programmer needing to parameterize the
node for it to work with the rest of the program. Meta-operations perform some operations on parts
of the graph, but do not take the graph as input. For example, a meta-operation might make changes
to the program’s knowledge and/or graph structure but relies on arguments from meta-points or
other nodes. We next walk through the features of the framework illustrated with an example.

56



REFLECTING AFTER LEARNING FOR UNDERSTANDING

Figure 3. Automatically created graph of executing SMF program, where views of ResNet and AlexNet con-
verge into higher-level knowledge through reflection.

2.1 Features of the Symbolic Mirroring Framework

We designed an API that supports building SMF programs as first-class entities in Python so the
program itself can be reasoned over by the other meta-reasoning components in the program. Con-
sider the graph visualization of an executed program shown Figure 3, where we annotated the nodes
with their OWL class in the meta-knowledge (these appear in white boxes). The SMF runtime sys-
tem executes the program in Figure 3 starting at the start node, which simply transitions to the next
node, draw_self (a meta-point), indicated by an arrow pointing to the next node. Draw_self takes
the entire program graph as input (as do all meta-points) and then calls a function to draw the entire
program (including the node draw_self ) to a Web application (Figure 3 is the result). The next node

57



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Figure 4. Sample of ImageNet domain knowledge in OWL as displayed in Protégé.

to execute is the resnet50_v2 node, which feeds the image B shown in Figure 1 to a trained ResNet
classifier via a REST request. The resulting distribution is assigned to this node. The top prediction
resnet node retrieves the distribution of predictions from resnet50_v2 (indicated by the edge ending
in a circle) and executes a function to get the top prediction (in this case “desktop computer”). The
next node to be executed is alexnet, which also feeds image B in Figure 1 to a trained AlexNet clas-
sifier via a REST request. The value of the alexnet node is another distribution of predictions that
the top prediction alex node retrieves and, in turn, produces the top prediction (in this case “desk”).
The node replace space with _ retrieves this prediction and syntactically modifies it.

The next node to execute is another meta-point, get classifiers, that is fed the entire graph. This
finds the values of executed classifiers by looking at the preceding executed graph and locating
nodes that are annotated with the OWL.Classifier class. Once the classifiers are identified, the rel-
evant parts of the executed program are retrieved downstream by the converge, explain, and show
my results nodes (indicated by edges ending with a circle, where dashed edges indicate only a de-
pendency exists). But the next node is Load my knowledge, which inputs domain knowledge for
ImageNet classes that is later used to reason about the classifiers’ views. Since ImageNet labels
describe common-sense concepts (e.g., computer, dog, and jacket), one author was able to create
domain knowledge specifying the abstractions, properties, and relationships of the ImageNet do-
main in OWL using Protégé (Musen, 2015). Figure 4 shows a portion of this knowledge in the
Protégé interface. In total, we created 139 classes (abstractions), 25 relationships, and nine proper-
ties. Each individual in the ontology can be assigned to a class or have inferred classes and can have
one or more relationships with another instance (called object properties in OWL) and have one or
more properties (called data properties in OWL).

Once the ontology is loaded, the explain node is the next to be executed. This meta-operation
explains why different views do not match in terms of their OWL classes. First, it maps the views to
individuals in the ontology by linking their labels to individuals. That is, it treats views as instances
of concepts that it knows about. If no concept is found, no explanation can be made. If the mapping

58



REFLECTING AFTER LEARNING FOR UNDERSTANDING

Table 1. Procedure for unifying views into higher-level knowledge.

Converge (Label: V1, Label: V2, Domain_Knowledge: DK, Reasoner: R)
# initialize to empty set
1: Higher_Level_Knowledge = {}
# matches the labels of the classifier with an individual in the ontology
2: OWL_Individual_1 = Match_View_With_Individual (V1, DK, R)
3: OWL_Individual_2 = Match_View_With_Individual (V2, DK, R)
# find the common properties between individuals (Properties)
4: Common_Properties =
Get_Properties (OWL_Individual_1, DK, R) ∩ Get_Properties (OWL_Individual_2, DK, R)
# find binary relationships between these individuals (Relationships)
5: Common_Relationships = Get_Relationships (OWL_Individual_1, OWL_Individual_2, DK, R)
# find common ancestors (Abstractions)
6: Common_Lowest_Common_Ancestor = Lowest_Level_Ancestor (
Ancestors (OWL_Individual_1, DK, R), Ancestors (OWL_Individual_2, DK, R))
# add to knowledge
7: Higher_Level_Knowledge =
Common Properties ∪ Common Relationships ∪ Common Lowest Common Ancestor
# return
8: Return Higher_Level_Knowledge

is made, the explain node looks to see if the instances are the same or not. If not, it returns an
explanation about how they differ by class. In our example, the explain node outputs “desk is a
kind of furniture and desktop computer is a kind of computing device.” Next, the converge node
takes in the parts of the program from the meta-point get classifiers and the domain knowledge
from the Load my knowledge node. Here, the converge node attempts to unify the views from the
classifiers into higher-level knowledge. Because the converge algorithm reasons about the system’s
inferences about what it is seeing (i.e., the classifiers’ views), the converge node involves a type of
meta-operation. We describe this general algorithm next.

2.2 Converge Algorithm

The converge algorithm is based on three principles: (1) multiple image classifiers provide multiple
views of an image, where each is encoded knowledge in the classifier and can be treated as an
instance of a concept; (2) views relate to each other in terms of common abstractions, relationships,
or properties that unify them into higher-level knowledge; and (3) labels loosely describe a view
and so views relate to each other in terms of how their labels relate to each other.

Table 1 gives a high-level walk through of how the converge algorithm unifies views by common
properties, abstractions, and relationships. Given two labels V1 and V2, domain knowledge DK, and
an OWL Reasoner R, the algorithm begins at line 1 by instantiating an empty set of knowledge that
will ultimately contain the convergences made. Lines 2 and 3 call the Match_View_With_Individual
function, which maps the views from classifiers onto instances that exist in domain knowledge,
DK using the views’ labels. For example, if V1 is the string “banana” and V2 is the string “chim-

59



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Table 2. SMF program output running on three ImageNet pictures.

Image ResNet AlexNet Explain Output Converge Output

Table
lamp

Dining
table

table lamp is a
kind of furniture
and dining table
is a kind of kind

of table

Furniture

CD
player Radio

CD player is a
kind of listening
device and radio

is a kind of
listening device

Listening device

Ox Plow

ox is a kind of
bovine family
and plow is a

kind of farming
device

Ox help farm
with Plow

panzee”, then each call to Match_View_With_Individual uses the reasoner R and knowledge DK to
issue a SPARQL (SPARQL Working Group, 2013) query to find an individual named “banana” or
“chimpanzee” and returns the found OWL individual (OWL_Individual_1 and OWL_Individual_2,
respectively).

For both OWL individuals found, Line 4 calls the Get_Properties for OWL_Individual_1 and
OWL_Individual_2 and returns their intersection. Each Get_Properties function issues a SPARQL
query, using R on DK, to find any properties that exist in DK (either existing in the ontology or
inferred by R) for an individual and returns the properties. Next, Line 5 calls the Get_Relationships
function which finds relationships between the individuals by issuing SPARQL queries for such
relationships (either existing in the ontology or inferred by R). Continuing with our example, if the
relationship chimpanzee eats banana is in the ontology, then it will be returned. Next, line 6 finds the
lowest common ancestor between two individuals. It does this first by getting the ancestors (either
existing in the ontology or inferred by R) for each individual by calling the Ancestors function,
which, through a recursive call of SPARQL queries (each getting the ancestors of the last ancestors),
returns an ordered list of closest to furthest ancestor for the individual. Both lists of ancestors are
then passed to the Lowest_Level_Ancestor function which scans both lists to find the closest shared
ancestor. Finally, on lines 7 and 8, the union of properties, relationships, and abstractions is returned.

60



REFLECTING AFTER LEARNING FOR UNDERSTANDING

Table 3. Images mapped to state in the world by classifier and SMF program. We obtained the typewriter
from ImageNet and orangutan from Depositphotos (2019).

Initial State P1 Initial State P2 Goal State P2

Images

ResNet
Output orangutan typewriter typewriter

AlexNet
Output langur typewriter spider monkey

SMF
Output primate typewriter

spider monkey has
typewriter⇒ primate

has typewriter

To give an understanding of the knowledge produced from this algorithm, we ran three images from
ImageNet through the example program in Figure 3 and provide the output in Table 2, where the
rightmost column has the results from running the converge algorithm.

3. An Example of SMF Program Usefulness

The ability to unify different views of trained image classifiers into higher-level knowledge should
improve the ability to formulate and execute plans. In particular, symbolic mirroring finds the level
of abstraction on which multiple views agree so the system can avoid asserting incorrect conditions
in the world. Establishing correct conditions controls for erroneously executing plans on false pre-
conditions and verifying achievement of postconditions. Combining the SMF program described in
Figure 3 with Graphplan (Blum & Furst, 1997), we demonstrate how symbolic mirroring can take
opposing views from classifiers and unify them into a description that correctly describes conditions
for planning. This is a crucial ability for a system that has no ground truth to reference, as occurs in
novel data sets.

Suppose, for simplicity, that the system’s goal is to instruct a primate to retrieve a nearby type-
writer. The first action it must take is to perceive the world for any primates and typewriters. In
this scenario, the system looks at locations P1 and P2 and perceives the images as shown in Table 3
(Initial State Image P1 and P2). Further, suppose the system has the preconditions and operations as
shown in Table 4’s first two columns for finding a plan using the Graphplan syntax. We now walk
through several reasons why symbolic mirroring is important in this scenario.

SMF Programs Can Generate Plans on General Conditions. First, suppose our SMF program
did not unify different views from classifiers, but rather used just one classifier (ResNet or AlexNet)

61



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Table 4. World facts and planning operators specified in Graphplan.

World Facts Operators Plan Found

(P1)
(P2)

(preconds (at primate P1)
(at typewriter P2))

(effects (has-typewriter))

(operator
GOTO
(params (<x>) (<y>))
(preconds (at primate <y>))
(effect (del at primate <y>)
(at primate <x>)))

(operator
GRAB-TYPEWRITER
(params (<y>))
(preconds (at typewriter <y>)
(at primate <y>))
(effects (has-typewriter)))

# go to P2 from P1
1 GOTO_P2_P1

# grab typewriter at P2
2 GRAB-TYPEWRITER_P2

with Graphplan. In the case of ResNet, the program would perceive an orangutan and a typewriter
(as indicated in the ResNet row in Table 3). As such, it could not use a plan that works on primates
in general, but rather would need a separate plan for orangutans and for each other type of primate
it could possibly predict (at least nine). The same is true for a program that includes only AlexNet,
since it is also an ImageNet classifier. We would need to specify many more operators, conditions,
and goals for these kinds of programs to generate plans. That is, such programs are unable to gen-
erate plans on more general conditions. However, the full SMF program, with symbolic mirroring,
will be able to establish the preconditions (as shown in Table 4) by unifying orangutan and langur
into primate.

SMF Programs Avoid Incorrect Plans. Second, suppose we added domain knowledge back
into the simplified program discussed above. That is, the SMF program is now composed of one
classifier (ResNet or AlexNet), Graphplan, and the ImageNet domain knowledge. For the program
that uses ResNet, it could use a reasoner to infer that an orangutan is a primate to establish the
preconditions and use the operators in Table 4 in order to generate a plan. The same is true for
the program that uses AlexNet. However, if the domain knowledge is very detailed and complete
(as desired), then many other conditions would also become true. For the ResNet example, plans
contingent on the existence of an animal, primate, orangutan, or omnivore all could be tried. For
the AlexNet example, plans contingent on the existence of an animal, primate, langur, or herbivore
could be attempted. This could be disastrous if the classifier does not have an accurate view. For
example, a system relying only on AlexNet might execute a feeding plan for langurs (an herbivore)
for what is actually an orangutan (an omnivore), which could lead to health problems. However,
the full SMF program, with symbolic mirroring, finds the closest abstraction (primate) that fits both
orangutan and langur, so it would only attempt a plan contingent on primate or an ancestor.

SMF Programs Can Establish Goal Conditions. Third, suppose we again have a program com-
posed of one classifier, Graphplan, and domain knowledge. In this scenario, suppose that it pro-
duces the plan shown in the Plan Found column of Table 4. Upon executing this plan, the program

62



REFLECTING AFTER LEARNING FOR UNDERSTANDING

cannot visually confirm the goal has been obtained. After executing line 2 of the plan (GRAB-
TYPEWRITER_P2), the program using ResNet can only confirm that a typewriter is at P2, as
shown in Table 3. The program using AlexNet will assert that a spider monkey is at P2, as shown
in Table 3. However, the SMF program can unify both classifier’s views into the assertion that a
spider monkey has a typewriter through the relationship has in its domain knowledge. The system
could then use this relationship to infer that a primate has a typewriter, because spider monkey has
the ancestor class primate.

4. Exploratory Studies

As a first step in understanding the process of developing systems in our SMF, how they perform on
ImageNet data sets, and the generality of symbolic mirroring in them, we ran an exploratory study
on three different programs. They are all variations on Figure 3, where program RA uses classifiers
ResNet and AlexNet, RS uses ResNet and SqueezeNet, and AS uses AlexNet and SqueezeNet.
While there are many classifiers to choose from, we selected ResNet, AlexNet, and SqueezeNet to
see if larger or smaller differences in the top–1 accuracies (77.11, 54.92, 56.11) had an effect on the
number of different views. Further, they are some of the best known and evaluated image classifiers
in research. We provided each program with the meta-knowledge and domain knowledge described
in Figure 4. We also performed a brief field study in which we fed live images to an SMF program
while walking around. This tested the system on a data distribution that differed from training and
provided an idea of the practicality of using SMF in real environments.

4.1 Study Designs

In order to mimic some of the situations in which a SMF system might be created, we created RA,
RS, and AS under five design conditions:

• The author who created the domain knowledge (as shown in Figure 4) was given the thousand
ImageNet labels beforehand and approximately three days to create domain knowledge in OWL
using Protégé. This placed a realistic constraint on how complete the knowledge could be before
the program was run.
• Another author chose 950 pictures distributed by ImageNet into the categories of animals (250),

electronics (250), food (250), and furniture (200).
• The categories were shown to the author of the domain knowledge (but not the pictures) so that

he might focus some of his attention here, but there was no strict requirement. The author of the
knowledge also received 20 example images for each category to help in creating relationships,
properties, or abstractions.
• While the abstractions and properties were based on possible labels from a classifier, the rela-

tionships were inferred by the author who created the domain knowledge by looking at example
images. These relationships might not actually exist in the test set, a concern that we address
with an evaluation in Section 4.4.
• The classifiers used in these programs were “off the shelf” from Gluon (Apache Software Foun-

dation, 2019) and were not specially trained for this experiment. This helped us evaluate sym-
bolic mirroring orthogonal to learning.

63



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Table 5. Explained and unified results (percentages rounded) in laboratory study.

ID
Top–1
Acc.
Diff.

Different
Views
Total

Unified
Total

Disunited
Total

Explained
Total

Not
Explained

Total

Unified
Total in

Explained

Disunited
Total in

Explained

RA 22.2 369 (39%) 159 (43%) 210 (57%) 239 (65%) 130 (35%) 159 (67%) 80 (33%)

RS 21 384 (40%) 158 (41%) 226 (59%) 220 (57%) 164 (43%) 158 (72%) 62 (28%)

AS 1.2 349 (37%) 161 (46%) 188 (54%) 215 (62%) 134 (38%) 161 (75%) 54 (25%)

For the field study, we extended RA in Figure 3 so that the images fed through it were from a live
video camera and we added a speech synthesizer so that it would speak aloud the views it unified.
We did this by adding a few more nodes to the program graph of RA. We walked around in an office
setting and recorded the number of unified views.

4.2 Study Results

We next present the results from the laboratory and field studies. We measured the performance
of the programs by the percentage of unified views and explanations they created. We also include
results from a survey conducted to measure if the unified views made by a SMF program actually
describe something in the images fed to it (a type of “accuracy”). We include significant (α = .05)
p values by applying Chi-squared on 2×1 contingency tables.

Table 5 presents the results for programs RA, RS, and AS. The Top–1 Acc. Diff. column pro-
vides the differences between the reported top–1 accuracies for the classifiers used in the programs.
Different Views Total provides the total amount of views that differ by label created from 950 differ-
ent images, Unified Total gives the number of different views unified, and Disunited Total reports
the total number of differing views that were not unified. Explained Total gives the number of
explained differences between views, while Unexplained Total provides the number of views that
could not be explained because they had no mapping into knowledge (i.e., there are missing classes
in the knowledge base). Unified Total in Explained gives the number of views unified among the
explained and Disunited Total in Explained gives the number of views not unified among the ex-
plained. We do not present Unified Total in Unexplained because they were 0% for each row, which
means that, if differing views were unexplained, they could not be unified.

We found that between 41% to 46% of views were unified and between 54% to 59% remained
disunited (p ≤ .001 for RS and p ≤ .008 for RA). We also found that 57% to 65% of different
views were explained for each program (all p ≤ .004), and that among these 67% to 75% were
unified for each program (all p ≤.001). In addition, we found that the accuracy differences between
the classifiers used in each program have only a small impact on the number of different views
produced (the maximum difference between the quantity of different views was 3%).

Table 6 gives the breakdown among the unified views (159, 158, 161) in terms of the kinds of
convergences that happened by abstraction, properties, and relationships. In some cases, views were
unified by more than one method, as given in the Multiple Unified Total column: this is why the

64



REFLECTING AFTER LEARNING FOR UNDERSTANDING

Table 6. Frequency of unified views by type results (percentages rounded) from laboratory study.

ID Abstractions
Total

Properties
Total

Relationships
Total

Multiple
Unified Total Unified Total

RA 149 (79%) 30 (16%) 10 (5%) 30 (16%) 189

RS 143 (78%) 26 (14%) 15 (8%) 25 (14%) 184

AS 149 (78%) 31 (16%) 12 (6%) 33 (17%) 192

Unified Total column has numbers greater than 159, 158, and 161, respectively. We found the most
common way to unify views was through abstraction (i.e., lowest common ancestors), followed by
unifying through common properties and relationships. We present a few results from each category
in Table 7 from RA as illustrations.

For the field study, a person held a camera that fed images from an office environment into the
RA program (as described in Figure 3) but modified so that it took live video images. In total, the
system processed 55 images from the camera. Figure 5 presents the ordering of these results, where
“S” means no differing views were generated, “U” means differing views were unified, “D” means
differing views were not unified, and “D*” means differing views that had an explanation were not
unified. We found 39 (71%) differing views occurred. Of the 39 differences, 20 were unified (51%)
and 19 (49%) were not. Some 29 (74%) of the differing views had explanations (counting “U” and
“D*”). Of these, 20 views (69%) were unified and nine (31%) remained disunited (p = .041).

4.3 Survey Results on Unified Views

In order to understand if the unified views actually make sense as descriptions of images, we con-
ducted a survey to evaluate a kind of “accuracy” for the program RA. Traditionally, accuracy of a
classifier is measured before deployment with a test set, but an SMF program uses classifiers that
have already been deployed and the system is being used regularly.

In an online survey, we asked 24 people (three authors and 21 volunteers recruited over a com-
pany channel) to evaluate if unified views described their corresponding images or not. Specifically,
we asked each participant Does the word or phrase listed to the left of each picture describe some-
thing in the picture? for 40 unified views and their corresponding images. They indicated their
answer with a button labeled “agree” or “disagree.” For each participant, ten unified views made by
program RA, were chosen at random from each category (furniture, food, electronics, and animals),
so all categories were represented. We decided to ask only 40 questions, rather than 159 for all

Figure 5. Ordered encoding of unified, disunited, and explained views in field study results.

65



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Table 7. Three ImageNet examples from laboratory study by each type of convergence.

Image ResNet AlexNet Explain Output Converge Output

Backpack Purse

backpack is a
kind of carrying
device and purse

is a kind of
carrying device

Carrying device
(abstraction)

Crib Quilt
crib is a kind of

bed and quilt is a
kind of bedding

Quilt lays on
furniture crib
(relationship)

Ice
Cream

Mashed
Potato

ice cream is a
kind of sweets

and mashed
potato is a kind

of prepared
potatoes

Is edible
(property)

Food family
(abstraction)

unified views made by RA, because the length of the survey would then have been prohibitively
long. In total, we asked 960 questions across the 24 participants.

We found that for 839/960 (87%) of the questions, the participants agreed the unified views
described something in the image (p ≤ .001). By category, participants agreed the unified views de-
scribed their corresponding images for 222/240 (92.5%) of the animal images (p ≤ .001), 209/240
(87%) of the furniture images (p ≤ .001), 203/240 (84.5%) of the food images (p ≤ .001), and
205/240 (85.4%) of the electronic images (p ≤ .001).

4.4 Threats to Study Validity

While our results are promising, there are threats to its validity. For external validity, our study is
limited to a common-sense domain (ImageNet labels) and we did not seek expert opinion on the
domain knowledge created. Thus, the results may not apply to expert areas, but common-sense
reasoning in cognitive systems is important (Davis & Marcus, 2015). Further, while the laboratory
study provided control for us to take measurements without noise, we had to give up the realism of
the study by using the ImageNet data set. However, we attempted to compensate for this with a field
study that demonstrated the approach in a real environment on a different data distribution. Since
the laboratory and field study told similar stories, we are confident in our results.

For internal validity, the abstractions and properties in the domain knowledge were inferred
from the labels of the classifiers that were known to exist in the test set. However, by the developer

66



REFLECTING AFTER LEARNING FOR UNDERSTANDING

inferring the relationships from the few example images he had might mean they do not exist in
the test set. To see if they did, we conducted a survey among seven people (four authors and three
volunteer, five male and two female) who took an online survey presenting each with a relationship
produced from the laboratory study, the associated image, and a choice of “relationship exists”
or “relationship does not exist” (creating 37 questions total). We asked them to use their own
judgement when choosing and we provided no definition of relationship. We found that, for 29
(78%) of the images, most participants agreed the relationship existed in the image. This gives us
confidence that, when a relationship was used to unify views, the relationship likely existed.

5. Discussion

The results suggest our approach and framework can help build cognitive systems capable of unify-
ing views into higher-level knowledge after learning. While 54% to 59% of results were not unified
in the laboratory study, the results also showed that 41% to 46% were unified in the laboratory
study and 51% unified in the field study. For systems processing thousands to millions of images,
this could have a large impact. Further, the system greatly improves when differing views were
explained (i.e., views could be mapped into the domain knowledge classes), where the system could
unify 67% to 75% of views in the laboratory study and 69% in the field study. This suggests that
a cognitive system built with our SMF can gain a unified understanding of 41% to 75% of images
being processed (possibly millions).

The survey results (87% of unified views are descriptive) suggest that the symbolic mirroring
approach often produced accurate descriptions. However, it also means that views with incorrect
labels were unified into words or phrases people thought were descriptive of the corresponding
images. This implies that the symbolic mirroring approach is a means to describe the knowledge
encoded in classifiers themselves and could help reveal what is learned in a classifier rather than
relying only on its predicted label.

The results also suggest two important and potentially powerful developer methods of improving
cognitive systems. First, as we saw in Table 5, if the system could explain differing views, then its
chance of unifying them improved greatly. This suggests that developers could continually add
instances of concepts to the domain knowledge every time their program encountered a view from
a classifier that it had not encountered before. Tools for recording when the cognitive system does
not know how to unify views or is “confused” will be needed. Second, as discussed in Subsection
4.4, the author of the domain knowledge could infer relationships from relatively few examples and
these relationships often existed in the test set. This suggests developers could add relationships to
domain knowledge with relatively few image examples, an interesting contrast to the millions of
examples used by machine learning today.

In the laboratory study setting, the author creating the domain knowledge was given the four
categories animals, electronics, food, and furniture to help focus his development. However, many
of the views in the experiment did not map into these categories, as seen by the number not explained
because of missing knowledge. This suggests that differing views from classifiers can vary widely
across categories, which means that “conceptually wide” domain knowledge is needed to account
for conceptual differences among the different views.

67



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

6. Related Work

Our research contrasts with previous work in meta-reasoning along two dimensions. First, we have
investigated meta-reasoning as a sense-making mechanism to unify the visual world by bridging
neural networks with symbolic approaches. Second, we have provided a modular framework for
using meta-reasoning and meta-operations in a more flexible way than the classic approach.

Meta-reasoning has been described as an essential component of general intelligence, where it is
often argued that it is critical for choosing different ways to think given finite resources, as in humans
(Epstein & Petrovic, 2011; Griffiths et al., 2019). One example is changing game strategies in new
settings. For example, adaptation in response to the external environment has been demonstrated by
agents reasoning over models of their own strategies (Goel & Jones, 2011; Rugaber et al., 2013) and
altering those models to meet external demands. One aspect of these agents is their representation of
themselves in the Task Method Knowledge Language (Murdock & Goel, 2008), which lets the agent
reason over its goals and methods. Similarly, meta-reasoning has been applied to self-monitoring
and self-repair when anomalous situations arise (Schmill et al., 2011).

From an interactive perspective, a question and answer system has been designed to answer
“common sense” kinds of questions about itself (Morbini & Schubert, 2011). This approach is
particularly appealing from a debugging point of view, where explanations can provide understand-
ing and link events (Cox, 2011). In image processing, work on pipeline selection has used meta-
reasoning for choosing alternatives based on context (Robertson & Laddaga, 2011), much as in
Auto ML (Feurer et al., 2015). In contrast, our work applies meta-reasoning to unify viewpoints
of the visual world into higher-level knowledge structures that the system can use in a variety of
applications (e.g., planning or explanation). In particular, in Section 3, we demonstrated how our
approach can be used to avoid incorrect conditions in planning and to detect goals. Further, it is a
step closer to building systems that think in a more unified, human-like way (Bayne & Chalmers,
2003; Shivhare & Kumar, 2016) than the disjoint predictions of image classifiers.

Gilpin et al. (2018) demonstrated a monitoring technique to analyze captions from image clas-
sifiers and determine if they are reasonable. Their method involved mapping each part of speech
from the captions onto slots in frames that represent primitive actions. In contrast, our work is at
the lower level of the perception. In particular, symbolic mirroring unifies different views in terms
of abstractions, properties, or relationships, which can then be monitored for reasonableness with
systems like those demonstrated by Gilpin et al.

While there are a variety applications for meta-reasoning, architectures are often presented in a
uniform way that includes a ground level, an object level, and a meta-level (Russell & Wefald, 1991).
Yet this separation has an impact in the design of these systems in two ways. First, operations in
each level must be treated as one type, but common reasoning methods will often cut across layers.
Indeed, some have claimed “. . . metareasoning and reasoning are entangled in such a way that it is
impossible to separate” (Robertson & Laddaga, 2011). Second, the runtime system must have three
separate modes and one intermediate mode – making it hard to seamlessly switch between levels.
This also has the consequence that the execution of the ground or object levels are separate (making
it harder to intervene and control execution from the meta-level). In this work, we introduced meta-
points and meta-operations as nodes in a graph, where each node can be any arbitrary function that
switch from any level at any execution point.

68



REFLECTING AFTER LEARNING FOR UNDERSTANDING

7. Conclusion

In this paper, we identified the problem of unifying different views of classifiers into high-level
knowledge after learning. We developed a general approach, symbolic mirroring, and a framework
that leverages meta-reasoning in order to unify different views from classifiers into higher-level
symbolic knowledge. Through a planning example, we demonstrated how an SMF program avoids
generating plans based on incorrect assertions, how it supports general planning operations, and how
it helps identify goal conditions. In an exploratory laboratory study, we found that SMF programs
unified 41% to 46% of the views of images and, among the views that could be explained, unified
67% to 75% of these. Further, in an exploratory field study, we found the SMF program unified 51%
of the views from live video images and, among those that could be explained, the system could
unify 69% of them, showing the approach can work on a different data distribution than ImageNet
and “in the wild”. Further, a survey of 24 people suggested that 87% of the unified views made by
the SMF program described the images it processed.

Our future work will proceed in two directions. From the lower level, we will investigate what
kinds of predictions from image classifiers work better in our approach. Rather than using image
classifiers that predicate complex objects (e.g., dog or jacket), we will see if simpler predictions
(e.g., edge or square) from different classifiers can be unified into more complex objects using
symbolic mirroring. In a sense, we will be investigating the balance between the complexity of
predictions with the complexity of knowledge and reasoning needed to unify predictions. From the
higher level, we will explore how to unify abstractions, relationships, and properties into higher-
level stories that have temporal components (as in the field study) or that are created from a single
image. In particular, we will see how to take unified views from sequential video frames and unify
them into descriptive sentences. Applications could extend to letting a system understand the ethical
implications of a story it creates from images.

Acknowledgements

We would like to thank the MIT-IBM Watson AI Lab, Nicola Palmarini, Grady Booch, and the
reviewers for their support and insight in shaping this research.

References
Apache Software Foundation (2019). Gluon Model Zoo. Retrieved May 21, 2019, from https:
//mxnet.incubator.apache.org/api/python/gluon/model_zoo.html.

Bayne, T., & Chalmers, D. J. (2003). What is the unity of consciousness? In A. Cleeremans (Ed.),
The unity of consciousness: Binding, integration, and dissociation, 23–58. Oxford, UK: Oxford
University Press.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90, 281–300.

Cox, M. T. (2011). Metareasoning, monitoring, and self-explanation. In M. T. Cox & A. Raja
(Eds.), Metareasoning: Thinking about thinking, 131–149. Cambridge, MA: MIT Press.

69



L. MARTIE, M. ALAM, G. ZHANG, AND R. ANDERSON

Davis, E., & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM, 58, 92–103.

Depositphotos, Inc. (2019). Stock Photos, Royalty Free Images, Vectors, Footage. Retrieved July
6, 2019, from https://depositphotos.com/.

Epstein, S. L., & Petrovic, S. (2011). Learning expertise with bounded rationality and self-
awareness. In M. T. Cox & A. Raja (Eds.), Metareasoning: Thinking about thinking, 43–57.
Cambridge, MA: MIT Press.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient
and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
& R. Garnett (Eds.), Advances in neural information processing systems 28, 2962–2970. Mon-
treal, Canada: Curran Associates.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable
object-oriented software. Boston, MA: Addison-Wesley Longman Publishing Co.

Gilpin, L. H., Macbeth, J. C., & Florentine, E. (2018). Monitoring scene understanders with con-
ceptual primitive decomposition and commonsense knowledge. Advances in Cognitive Systems,
6, 45–63.

Goel, A. K., & Jones, J. (2011). Metareasoning for self-adaptation in intelligent agents. In M. T.
Cox & A. Raja (Eds.), Metareasoning: Thinking about thinking, 151–165. Cambridge, MA: MIT
Press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016a). Autoencoders. In I. Goodfellow, Y. Bengio, &
A. Courville (Eds.), Deep learning, 493–516. Cambridge, MA: MIT Press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016b). Deep learning. Cambridge, MA: MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., et al. (2014). Generative adversarial nets.

Proceedings of the Twenty-Seventh International Conference on Neural Information Processing
Systems (pp. 2672–2680). Cambridge, MA: MIT Press.

Griffiths, T. L., Callaway, F., Chang, M., Grant, E., & Lieder, F. (2019). Doing more with less: Meta-
reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences,
29, 24–30.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceed-
ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
Las Vegas, NV: IEEE Computer Society.

Horrocks, I. (2005). OWL: A description logic based ontology language. In P. van Beek (Ed.),
Principles and practice of constraint programming - CP 2005, 5–8. Springer Berlin Heidelberg.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016).
SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. From
http://arxiv.org/abs/1602.07360.

Kaggle, Inc. (2019). Competitions | Kaggle. Retrieved May 21, 2019, from https://www.
kaggle.com/competitions.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convo-
lutional neural networks. Proceedings of the Twenty-Fifth International Conference on Neural
Information Processing Systems (pp. 1097–1105). Lake Tahoe, Nevada: Curran Associates.

70



REFLECTING AFTER LEARNING FOR UNDERSTANDING

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing Atari with deep reinforcement learning. From http://arxiv.org/abs/
1312.5602.

Morbini, F., & Schubert, L. (2011). Metareasoning as an integral part of commonsense and au-
tocognitive reasoning. In M. T. Cox & A. Raja (Eds.), Metareasoning: Thinking about thinking,
267–282. Cambridge, MA: MIT Press.

Murdock, J. W., & Goel, A. K. (2008). Meta-case-based reasoning: Self-improvement through
self-understanding. Journal of Experimental & Theoretical Artificial Intelligence, 20, 1–36.

Musen, M. A. (2015). The Protégé project: A look back and a look forward. AI Matters, 1, 4–12.
From https://doi.org/10.1145/2757001.2757003.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time
object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (pp. 779–788). Las Vegas, NV: IEEE Computer Society.

Robertson, P., & Laddaga, R. (2011). Metareasoning for multispectral satellite image interpretation.
In M. T. Cox & A. Raja (Eds.), Metareasoning: Thinking about thinking, 101–117. Cambridge,
MA: MIT Press.

Rugaber, S., Goel, A. K., & Martie, L. (2013). GAIA: A CAD environment for model-based
adaptation of game-playing software agents. Procedia Computer Science, 16, 29–38.

Russell, S., & Wefald, E. (1991). Principles of metareasoning. Artificial Intelligence, 49, 361–395.
Schmill, M. D., Anderson, M. L., Fults, S., Josyula, D., et al. (2011). The metacognitive loop and

reasoning about anomalies. In M. T. Cox & A. Raja (Eds.), Metareasoning: Thinking about
thinking, 183–198. Cambridge, MA: MIT Press.

Shivhare, R., & Kumar, C. A. (2016). On the cognitive process of abstraction. Procedia Computer
Science, 89, 243–252.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL
reasoner. Web Semantics, 5, 51–53.

SPARQL Working Group (2013). SPARQL 1.1 Query Language. Retrieved June 28, 2019, from
https://www.w3.org/TR/sparql11-query/.

Stanford Vision Lab (2012). ImageNet large scale visual recognition competition 2012 (ilsvrc2012).
Retrieved May 21, 2019, from http://image-net.org/challenges/LSVRC/2012/
index.

Stanford Vision Lab, Stanford University, & Princeton University (2019). ImageNet. Retrieved
July 6, 2019, from http://www.image-net.org/download-images.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). Cam-
bridge, MA: MIT Press.

71


