
Advances in Cognitive Systems 8 (2019) 73–92 Submitted 6/2019; published 12/2019 
 
 

© 2019 Cognitive Systems Foundation. All rights reserved. 

 

Instructable Cognitive Agents for 
Autonomous Evidence-Based Reasoning 

 

Gheorghe Tecuci TECUCI@GMU.EDU 
Steven Meckl SMECKL@GMU.EDU 
Dorin Marcu DMARCU@GMU.EDU 
Mihai Boicu MBOICU@GMU.EDU 
Learning Agents Center, George Mason University, Fairfax, VA 22030 USA 

Abstract 
This paper presents a general approach to the development of instructable cognitive agents for 
automated evidence-based reasoning. This is based on a framework, grounded in the scientific 
method, for generating and testing hypotheses that explain events of interest, and on an instructable 
agent shell that implements this framework. The agent shell is customized into two different 
systems, one for automated intelligence, surveillance, and reconnaissance and the other for 
cybersecurity. A domain expert teaches the agent through explained examples of investigations of 
alerts. The agent learns by generalizing these examples, being able to autonomously conduct similar 
investigations, as demonstrated in an experiment in the area of cybersecurity. 
 

1.  Evidence-Based Reasoning 

Evidence is any observable sign, datum, or item of information that is relevant in deciding whether 
a statement or hypothesis (e.g., a scientific or medical claim) is true or false. Throughout history, 
some of the greatest minds, including Aristotle (384BC–322BC), Galileo Galilei (1564–1642), 
Isaac Newton (1642–1727), John Locke (1632–1704), William Whewell (1794–1866), Charles 
Peirce (1839–1914), John Wigmore (1863–1943), and David Schum (1932–2018), have tried to 
understand and reason about the world through a process of discovery and testing of hypotheses 
based on evidence. We call this process evidence-based reasoning. 

 Evidence-based reasoning is at the basis of many problem solving and decision-making tasks 
in a wide variety of domains, including physics, chemistry, history, archaeology, medicine, law, 
forensics, intelligence analysis, cybersecurity, and many others. For example, in medicine, based 
on the patient’s complaints, a doctor generates possible diagnoses (hypotheses) that would explain 
them. She performs various medical tests that provide further evidence for or against the various 
hypothesized illnesses and, based on the obtained evidence, she determines the most likely illness. 
In forensics, observations at the site of an explosion in a power plant lead to the formulation of 
several possible causes. Analysis of each possible cause leads to the discovery of new evidence that 
eliminates or refines some of the causes, and may even suggest new ones. This cycle continues 
until enough evidence is found to determine the most likely cause. In science, a scientist imagines 
possible explanatory hypotheses of an unusual phenomenon. Then experiments are designed and 
performed that provide evidence to test the hypotheses. In law, an attorney makes observations in 
a criminal case and seeks to generate hypotheses in the form of charges that seem possible in 



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

74 

explaining these observations. Then, for the charge that appears to be justified, attempts are made 
to deduce further evidence to prove it. 

 Many books and papers have been written on the obvious complexity of such tasks (Schum, 
2001a). Each of them involves drawing defensible and persuasive conclusions from masses of 
information of all kinds that come from a variety of different sources. The evidence upon which 
conclusions eventually rest has five major characteristics that make these conclusions necessarily 
probabilistic in nature. The evidence is always incomplete no matter how much we have. It is 
commonly inconclusive in the sense that it is consistent with the truth of more than one hypothesis. 
Further, the evidence is frequently ambiguous and, in most situations, dissonant, some of it favoring 
one hypothesis while other evidence favoring other hypotheses. Finally, the evidence comes from 
sources having different levels of credibility. Arguments to test the considered hypotheses are 
necessary in order to establish and defend the three major credentials of evidence: its relevance, its 
credibility, and its inferential force or weight. These arguments, often stunningly complex, rest 
upon both imaginative and critical reasoning. 

 Our objective is to develop cognitive agents that can autonomously perform such complex 
tasks in a transparent manner. Such agents would have many and very useful applications. 
Consider, for example, the automatic monitoring of an industrial installation, such as a nuclear 
plant, where these agents continuously investigate any sign of potential abnormal activity. One 
could also imagine an evidence-based reasoning approach to the permanent monitoring of our 
personal health status based on temperature, heart rate, and other health indicators from personal 
devices such as smart watches and fitness bands. 

Over the past several years we have focused on two different EBR domains, Intelligence, 
Surveillance, and Reconnaissance (ISR) and Cybersecurity, developing two different systems that 
have led to a unifying computational EBR framework and agent architecture that may now be 
further generalized and applied to other domains. The first system is CAPIP, Cognitive Agent for 
Persistent Intelligence Processing, which reasons with evidence from MITRE’s Integrated 
Environment for Persistent Intelligence. CAPIP’s objective is to continuously monitor and 
understand the situation in a certain area of the world, predict the behavior and intent of the entities 
of interest, and identify threats. The second system is CAAPT, Cognitive Agent for Advanced 
Persistent Threats. This is integrated into a Cybersecurity Operations Center and automatically 
investigates cybersecurity alerts that may be caused by intrusions into our networks. 

We will first present the computational approach to evidence-based reasoning, which is at the 
basis of these agents, illustrating it with a CAPIP maritime ISR example. Next we present the 
architecture of an agent shell that can be instructed by a subject matter expert to perform evidence-
based reasoning. After this, we describe the use of this shell to develop CAAPT, as well as the 
results of an experiment of incrementally training CAAPT to detect advanced persistent threats. 

2.  Computational Approach to Evidence-Based Reasoning 

Developed in the framework of the scientific method, the computational approach to evidence-
based reasoning (EBR) views this process as ceaseless discovery of evidence, hypotheses, and 
arguments in a non-stationary world, involving collaborative computational processes of evidence 
in search of hypotheses, hypotheses in search of evidence, and evidentiary testing of hypotheses 
(see Figure 1). We will describe it in the context of a maritime ISR application where ships are 
monitored through an Automatic Identification System (AIS) that, according to the International 
Maritime Organization (2019), is designed to automatically provide information about a ship (e.g., 
the ship’s name, course and speed, classification, call sign, registration number) to other ships and 
to coastal authorities.  



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

75 

 

2.1  Evidence in Search of Hypotheses 

Let us assume that an agent monitoring the AIS data generates the alert that the AIS tracking signal 
for Ship1 was lost sometime between Time1 and Time 2 near Location1. The last signal received 
was at Time 1 and, at Time 2, when tracking was checked again, there was no signal. The question 
is: What hypotheses would explain this unusual event? Through abductive (imaginative) reasoning, 
which shows that something is possibly true (Peirce, 1955; Eco, 1983; Thagard, 1993; Schum, 
2001b), the EBR agent generates the set of alternative hypotheses from Figure 2 that may explain 
this observation.  

Because of the evidence E1 from the agent monitoring the AIS data, it is possible that the event 
described by E1actually happened. It is further possible that the AIS equipment of Ship1 was turned 
off intentionally by its crew, and this was done because Ship1 performed covert goods transfer with 
another ship (see the abductive inferences on the left side of Figure 2). Should the agent conclude 
that the covert goods transfer actually happens? No, because there are many other hypotheses that 
may explain the alert. For example, it is also possible that the AIS equipment was turned off 
intentionally by other individuals, or that it was damaged (see the middle part of this figure). Further 
up in Figure 2, if the AIS equipment of Ship1 was turned off intentionally by its crew, then it is 
indeed possible that Ship1 performs covert goods transfer, but it is also possible that it performs 
illegal fishing or that it tries to avoid tracking by pirates. These top-level hypotheses are the 
hypotheses of interest that need to be investigated to determine which of them is true. For this, 
however, one needs to discover more evidence, as discussed in the next section. 

In some domains, particularly in intelligence analysis, the starting point of the EBR process 
may not be an observation, but an intelligence question whose possible answers are the hypotheses 
to be investigated, as depicted in the left side of Figure 1.  

 
 

Figure 1. The main processes of evidence-based reasoning. 

Probability of Hypotheses

New Evidence

Evidence in search
of hypotheses
Abduction

E possibly H

Evidentiary testing
of hypotheses

Induction
E probably H

Hypotheses in
search of evidence

Deduction
H necessarily E

Alternative Hypotheses

Observation or Question

What is the 
probability of 

each hypothesis?

What evidence
would favor or 

disfavor this hypothesis?

What hypotheses 
would explain

this observation?     

What are possible
answers to this

question?

What evidence would
be observable if 

the hypothesis
were true?



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

76 

2.2  Hypotheses in Search of Evidence 

To discover new evidence, the agent puts each of the generated hypothesis to work, guiding the 
collection of relevant evidence. The question is, What evidence would be observable if this 
hypothesis were true? Through deductive reasoning, which shows that something is necessarily 
true, it decomposes the hypothesis into simpler and simpler hypotheses, and uses the simplest 
hypotheses to generate new lines of inquiry and discover new evidence. The reasoning might go as 
follows: If H were true then the sub-hypotheses H1, H2, and H3 would also need to be true. But if 
H1 were true then one would need to observe evidence E1, and so on (see the blue, middle side, of 
Figure 1). This process leads to the discovery of new evidence. 

A broader question that guides the discovery of evidence is, What evidence would favor or 
disfavor this hypothesis? Figure 3 illustrates this hypothesis decomposition process: One could 
infer that the AIS equipment of Ship1 was turned off intentionally by its crew by arguing that Ship1 
was operating normally, that the AIS reception was working, and that the AIS tracking signal was 
lost for Ship1. Further down, one can argue that Ship1 was operating normally by arguing that no 
distress signal was received from it. To support this, one would collect evidence from the AIS 
Status Checker, and so on.  

The decomposition tree from Figure 3 is a favoring argument for the top hypothesis and that is 
why it is under the left (green) square. There may be additional favoring arguments, as well as 
disfavoring arguments, the latter ones under the right (red) square. These arguments will end in 
evidence collection requests that will return evidence to test the top hypothesis, as discussed next.  

2.3 Evidentiary Testing of Hypotheses 

The agent uses the discovered evidence to test the generated alternative hypotheses from Figure 2. 
The tree structure in Figure 3 is a type of Wigmorean probabilistic inference network where the 
probabilities of the bottom hypotheses are assessed based on the collected evidence, and the prob- 

 
 

Figure 2. Evidence in search of hypotheses. 

AIS equipment1 of Ship1
turned off intentionally 

sometime between Time1 
and Time2 near Location1 by 

others, not the Crew1

Ship1 performs covert 
goods transfer with 
another ship near 

Location1 within 120.0 
minutes after Time2

Ship1 performs illegal 
fishing around Location1 

soon after Time1

AIS equipment1 of 
Ship1 damaged 

sometime between 
Time1 and Time2 

near Location1

Ship1 tries to avoid 
tracking by pirates 
around  Location1 
soon after Time1

E1: AIS tracking signal1 
lost for Ship1 sometime 

between Time1 and 
Time2 near Location1

AIS equipment1 of Ship1
turned off intentionally 

sometime between 
Time1 and Time2 near 

Location1 by Crew1



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

77 

abilities of the upper level hypotheses are assessed based on the probabilities of their subhypotheses 
(Wigmore 1913; Schum, 2001a; Tecuci et al., 2016a). These Wigmorean networks naturally 
integrate logic and Baconian probability (Cohen, 1977; 1989) with Fuzzy qualifiers (Zadeh, 1983), 
such as “barely likely,” “likely,” or “almost certain,” (see Table 1), being able to deal with all the 
five characteristics of evidence, namely incompleteness, inconclusiveness, ambiguity, dissonance, 
and credibility level (Schum, 2001a; Tecuci et al., 2016b, pp. 159-172). This integrated logic and 
probability system uses the min/max probability combination rules common to the Baconian and 
the Fuzzy probability views. These rules are much simpler than the Bayesian probability 
combination rule, which is important for the human understandability of the analysis. One can 
directly assess the probability of a hypothesis based on an item of evidence by assessing the three 
credentials of evidence: credibility, relevance, and inferential force, as shown in Figure 4. The 
credibility of evidence answers the question, “Which is the probability that the evidence is true?” 
The source of E2 in the figure is the collection agent “AIS Status Checker using Check Distress 

 
 

Figure 3. Hypothesis in search of evidence. 

AIS equipment1 of Ship1 turned off intentionally sometime 
between Time1 and Time2 near Location1 by Crew1

&

Ship1 operating 
normally

AIS tracking signal1 lost 
for Ship1 sometime 
between Time1 and 

Time2 near Location1

No distress signal 
received from 

Ship1 around 60
min of Time1

AIS area collection 
equipment1 works 
around 15 min of 

Time2

AIS signal 
propagation 

works

AIS signal propagation 
not affected by weather 
at Location1 around 15

min of Time2

AIS signal propagation 
not affected by 

jamming around 15
min of Time2

&

&

AIS reception works 
around 15 min of Time2

E1: AIS Tracking 
signal1 lost for 

Ship1 at Time1 near 
Location1. Source: 
Lost Ship Algorithm

Collect evidence 
from AIS Status 
Checker using 
Check Distress 

Signal for Ship1
around 60 min of 

Time1

Collect evidence 
from AIS Status 
Checker using 
Check AIS Area 

Collection 
Equipment 

around 15 min of 
Time1 Collect evidence from 

AIS Status Checker 
using Check Weather 

Impact on AIS 
Collection around 15

min of Time1

Collect evidence from 
AIS Status Checker 

using Check Jamming 
Impact on AIS Signal 
Propagation around 

15 min of Time1



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

78 

Signal,” with known accuracy of 85-90% (very likely) associated with this sensor. The relevance 
of evidence to a hypothesis answers the question, “What would be the probability of the hypothesis 
if the evidence were true?” In this case, if E2 is true then H is true, and thus the relevance is certain.  

The inferential force or weight of the evidence on the hypothesis answers the question, “What 
is the probability of the hypothesis, based only on this evidence?” Obviously, an irrelevant item of 
evidence will have no inferential force, and will not convince us that the hypothesis is true. An item 
of evidence that is not credible will have no inferential force either. Only an item of evidence that 
is both very relevant and very credible may convince us that the hypothesis is true. Consistent with 
both the Baconian and the Fuzzy min/max probability combination rules, the inferential force of an 
item of evidence on a hypothesis is determined as the minimum between its credibility and its 
relevance which, in this illustration is very likely. 

Table 1. Probability scale. 
 

L11 100% certain 
L10 95-99% almost certain 
L09 90-95% very likely+ 
L08 85-90% very likely 
L07 80-85% very likely- 
L06 75-80% more than likely+ 
L05 70-75% more than likely 
L04 65-70% likely+ 
L03 60-65% likely 
L02 55-60% likely- 
L01 50-55% barely likely 
L00 0-50% lacking support 

 

 

 
 

Figure 4. The credentials of evidence. 

H: No distress signal received from 
Ship1 around 60 min of Time1

certain

E2: No distress signal received from 
Ship1 around 60 min of Time1

Source: AIS Status Checker using 
Check Distress Signal
Credibility: very likely

very likely

Credibility of E2

Relevance of E2

Inferential force of E2

Probability of hypothesis

very likely



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

79 

  
Because in the situation from Figure 4 we have only one item of favoring evidence, its 

inferential force on the hypothesis is also the probability of the hypothesis. In general, however, 
the probability of the hypothesis would be the result of balance of probabilities between the 
combined inferential force of the favoring evidence items and the combined inferential force of the 
disfavoring items. Notice that, as shown at the bottom of Figure 1, EBR is a recursive process 
where, for example, the discovery of new evidence may lead to the generation of new hypotheses 
or the modification of the existing ones which, in turn, may lead to the discovery of new evidence. 

3.  Instructable Agent Shell 

This computational approach to EBR is the basis of an instructable agent shell whose architecture 
is shown in Figure 5. Its two main components are a mixed-initiative Learning and Reasoning 
Assistant and an autonomous Multi-Agent Reasoner. We describe both components in this section. 

3.1  Learning and Reasoning Assistant 

As illustrated in the left-hand side of Figure 5, the subject matter expert teaches the Learning and 
Reasoning Assistant how to conduct an investigation of an alert, by following the EBR process 
discussed in Section 2. As a result, the agent learns to generate hypotheses from alerts, to discover 
relevant evidence, and to test the hypotheses based on the discovered evidence. 

The Learning and Reasoning Assistant employs a hybrid knowledge representation consisting 
of an ontology and various types of rules. However, even before being taught, the Learning and 
Reasoning Assistant already has a significant amount of general knowledge from the science of 
evidence. This includes an ontology of evidence with different types of tangible and testimonial 
evidence (e.g., real tangible evidence, demonstrative tangible evidence, unequivocal testimonial 
evidence, equivocal testimonial evidence, unequivocal testimonial evidence based upon direct 
observation, unequivocal testimonial evidence obtained at second hand). It also includes reasoning 
rules for assessing the credibility of the various types of evidence. For example, to assess the 
credibility of an item of unequivocal testimonial evidence based upon direct observation one needs 
to assess the competence, the veracity, and the accuracy of the source of this evidence item. These 
credibility credentials are further decomposed into simpler credibility credentials. For example, to 

 
 

Figure 5. Instructable agent shell for evidence-based reasoning. 

Surveillance
Manager

Reference
Knowledge Base (KB)

Learning and 
Reasoning Assistant

Hypothesis 
Generation Agent

Evidence
Agent

Hypotheses
Analysis Agent

Alert
Agent

Hypothesis
Generation KB Queue

Evidence Collection 
KB Queue

User Review 
KB Queue

Collection
Manager

Re
po

si
to

ry
  M

an
ag

em
en

t 
Se

rv
ic

e

Hypothesis Analysis 
KB Queue

Hypotheses
Analysis Agent

Hypothesis
Analysis Agent

Collection
Agent

Collection
Agent

Collection
Agents

Surveillance
Agent

Surveillance
Agent

Surveillance
Agents

Environment
(ISR or

Cybersecurity or
Healthcare,

etc.)

User Notification 
and Review Service

Probabilities 
of hypotheses

Competing hypotheses 
that may explain the alert

Collection requests 
and returned evidence

Learning to 
generate 

hypotheses

Learning to 
discover 
evidence

Learning to 
test 

hypotheses 

Alert (ISR, Cybersecurity,
Healthcare, etc.)



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

80 

assess the accuracy of the source one needs to assess the source’s observational accuracy and the 
source’s objectivity, and so on, down to the level of elementary credentials that need to be assessed 
based on other items of evidence. 

In addition to its domain-independent knowledge, the agent is provided with a domain (e.g., 
ISR or cybersecurity) ontology consisting of a hierarchy of concepts and instances in that domain, 
together with their properties and relationships, as illustrated in Figure 6. The ontology language is 
an extension of RDFS (W3C, 2004; Allemang & Hendler, 2011; Obrst, Chase, & Markeloff, 2012) 
with additional features for learning and evidence representation (Tecuci et al., 2016a). 
 The learned rules are general IF-THEN structures expressed using the concepts from the 
ontology. They are learned from explained examples provided by the expert through the 
employment of the Disciple-EBR multistrategy learning approach, which integrates learning from 
examples, learning from explanations, and learning by analogy and experimentation, in a mixed-
initiative interaction with the expert. Successive versions of this approach are presented in Tecuci 
(1998) and Tecuci et al. (2002, 2005, 2008, 2016a). 

To illustrate the learning process, consider the analysis structure from the top of Figure 3, 
without the Collect evidence requests and the evidence item E1. First, the agent interacts with the 
ISR expert to determine the important features of the instances from the argument fragment, that is 
those features that are required for the argument’s correctness with respect to the agent’s ontology. 
They include the features that link the instances appearing only in the sub-hypotheses (e.g., “AIS 
tracking signal1”) with the instances appearing in the top-level hypothesis (i.e., “AIS equipment1,” 
“Time1,” and “Time2”), as shown in the bottom left of Figure 6. They also include the features that 
connect the instances from the top hypothesis, representing its meaning with respect to the 
ontology, such as “Ship1 has as crew Crew1.” 

In the current implementation, the agent displays a list with all the instances from the 
argumentation fragment, the expert selects instances from this list, and the agent guides the expert 
in browsing the ontology fragments connecting those instances, and selecting the important ones. 
For the example in Figure 3, the selected ontology fragment is shown at the bottom of Figure 6 
inside the dotted rectangle: The AIS tracking signal1 of Ship1 with Crew1 was lost between Time1 

 
 

Figure 6. Ontology fragment with example explanation. 

time

Ship1

Time1

location

commercial ship

ship

passenger ship

vessel

oil tanker

cargo ship

fishing ship water taxi

cruise ship

military ship

geographic location

map location

GPS location

standard time

UTCGMT

Crew1

agent

vessel crew

collective agent

AIS equipment1

AIS equipment

vessel-based
AIS equipment

Time2

Location1

AIS tracking
signal1

tracking signal

AIS tracking
signal

has as crew

signal tracking
equipment



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

81 

and Time2, when the ship was at Location1. These ontology fragments justify the correctness of 
the argumentation fragment in Figure 3, called the explanation of this reasoning example.  

Then the agent generates the rule from Figure 7. The tree pattern from the right-hand side is 
obtained by replacing each instance from the reasoning example (e.g., “Crew1”) with a variable 
(i.e., C1). The upper bound of the applicability condition from the left-hand side of Figure 7 is the 
maximal generalization of the instances (and their features) from the example and the explanation, 
in the context of the agent’s ontology illustrated in Figure 6. The lower bound of the applicability 
condition is the corresponding minimal generalization.  
 The possible generalizations of an instance are their super-concepts from the ontology. These 
generalizations are restricted by the definitions of the features that are related to that instance, that 
is, by the domains and the ranges of these features. The domain of a feature, such as “reception 
from,” is the set of instances that may have that feature (i.e., “signal”). The range of this feature is 
the set of its possible values (i.e., “equipment”). Consider, for example, the “AIS equipment1” 
instance that was replaced with A1 in the rule. As shown in Figure 6, this instance is the value of 
two features, “reception from” and “has as equipment.” Therefore, any generalization of this 
instance should be in the ranges of these features. As a result, the maximum generalization of “AIS 
equipment1” is “tracking equipment,” obtained as the intersection between the maximum 
generalization of this instance in the ontology (i.e., “object,” the top concept of the ontology, not 
shown in Figure 6), the range of the feature “has as equipment” (i.e., “equipment,” a super-concept 
of “tracking equipment,” also not shown in Figure 6), and the range of the feature “reception from” 
(i.e., “tracking equipment”). Similarly, the minimal generalization of “AIS equipment1” is “vessel-
based AIS equipment,” obtained as the intersection between the minimum generalization of this 
instance in the ontology (i.e., “vessel-based AIS equipment”), the range of the feature “has as 
equipment”, and the range of the feature “reception from.” 

The learning agent uses the partially learned rules in reasoning to generate new reasoning 
fragments in future situations. The expert may accept some reasoning fragments as correct, and the 

 
 

Figure 7. Hypothesis analysis rule learned from the example in Figure 3. 

Upper bound

S1 is vessel
has as crew C1
has as location L1
has as equipment A1

C1 is agent

L1 is location

A1 is tracking
equipment

A2 is signal
reception from A1
is alive at T1
is dead at T2

T1 is time

T2 is time

Lower bound

S1 is cargo ship
has as crew C1
has as location L1
has as equipment A1

C1 is vessel crew

L1  is map location

A1  is vessel-based 
AIS equipment

A2 is AIS tracking signal
reception from A1
is alive at T1
is dead at T2

T1 is standard time

T2 is standard time

A1 of S1 turned off intentionally sometime 
between T1 and T2 near L1 by C1

&

S1 operating 
normally

A2 lost for S1
sometime between 
T1 and T2 near L1

No distress 
signal received 
from S1 around 

60 min of T1
AIS area collection 
equipment1 works 

around 15 min of T2

AIS signal 
propagation

works

AIS signal propagation 
not affected by weather 

at L1 around 15 min of T2

AIS signal propagation 
not affected by jamming 

around 15 min of T2

&

&

AIS reception works 
around 15 min of T2

Applicability condition



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

82 

agent will use them as new positive examples of the rule. Those that are rejected represent negative 
examples. These examples and their explanations are used to refine the rule. In particular, positive 
examples lead to the generalization of the lower bound condition until it covers them. A negative 
example may either lead to the specialization of the upper bound condition until it no longer covers 
it, or to the learning of an except when condition, also with an upper bound and a lower bound. The 
except when condition should not be satisfied for the rule to be applicable. In time, the lower bound 
and the upper bound conditions converge toward one another and, possibly, to an exact applicability 
condition. The goal is to improve the applicability condition of the pattern so that it only generates 
correct reasoning fragments. Through a natural expert-agent interaction, this mixed-initiative 
learning method will lead to learning rules with complex applicability conditions to accurately 
represent the knowledge of the expert. Notice that, although Disciple-EBR (Tecuci et al., 2016a) 
implements these rule refinement operators, they are not yet implemented in CAPIP and CAAPT. 

 Other types of rules (i.e., alert rules, abductive rules, and collection rules) and patterns (i.e., 
context-independent hypotheses patterns and collection tasks patterns) are learned in a similar way. 
In particular, from the reasoning structure in Figure 3, the agent learned the hypothesis analysis 
rule in Figure 7, five context-independent hypotheses patterns (corresponding to the top and the 
first four of the leaves of the pattern in Figure 7), four collection tasks (corresponding to the specific 
collection requests in Figure 3), and four collection rules (each reducing a context-independent 
hypothesis to a collection task).  

3.2  Autonomous Multi-Agent Reasoner 

The result of teaching the agent is the Reference Knowledge Base (KB), shown at the top of Figure 
5, that enables the autonomous Multi-agent Reasoner to perform EBR. The agents of the Multi-
Agent Reasoner are copies of the corresponding EBR modules of the Learning and Reasoning 
Assistant except that they are configured to run autonomously. Notice that the architecture may 
include multiple copies of an agent (e.g., the Hypothesis Analysis Agent) to speed up the overall 
analysis process. 

The Multi-Agent Reasoner is connected to the application environment through the 
Surveillance Manager and the Collection Manager. The Surveillance Manager receives alerts from 
a variety of domain-specific surveillance agents. It then creates uniform representations of such 
alerts and sends them to the Alert Agent. For each received alert, the Alert Agent creates a situation 
KB containing the ontological representation of the alert, and places these KBs into a queue for the 
Hypothesis Generation Agent, called the Hypothesis Generation KB Queue (see Figure 5). The 
Hypothesis Generation Agent uses the learned abductive rules from the Reference KB to generate, 
in each KB, the competing hypotheses that may explain the corresponding alert (such as those in 
Figure 2), and places the updated KBs into the Hypothesis Analysis KB Queue for the Hypothesis 
Analysis Agents.  

Each of these Analysis Agents uses the learned analysis rules to determine the probabilities of 
the competing hypotheses through an iterative process of hypothesis decomposition and evidence-
based assessment synthesis that was partially illustrated in Figure 3 and Figure 4. Initially, the 
Analysis Agent decomposes the competing hypotheses from a KB into simpler subhypotheses, 
defines evidence collection requests for the simplest sub-hypotheses, and places the KB into the 
Evidence Collection KB Queue for the Evidence Agent. The Evidence Agent translates the evidence 
collection requests (e.g., the Collect evidence requests in Figure 3) into standard representations 
and sends them to the Collection Manager that further translates them into specific API calls to 
Collection Agents. The results returned by the Collection Agents are translated by the Collection 
Manager and sent to the Evidence Agent to be ontologically represented into the corresponding KB 



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

83 

that is re-placed into the Hypothesis Analysis KB Queue. The Analysis Agent then attempts to 
further extend the analysis. This Analysis–Collection–Analysis loop is repeated until there are no 
new evidence collection requests. At this point the Analysis Agent assesses the probabilities of the 
competing hypotheses and the KB is placed into a queue for potential user review.  

The user supervises this process through the User Notification and Review Service that 
generates an alert when a KB is ready for review. This service facilitates an “on the loop” 
supervision of the autonomous agents by providing real-time situation awareness to the user: which 
are the competing hypotheses being currently investigated and what is the status of the 
corresponding analyses; what are each of the agents currently working on, and which analyses are 
waiting for processing in each of the queues; which evidence collection responses were the most 
recently received from collection agents, and which evidence collection requests are currently being 
worked on by collection agents; and finally, which analyses were completed and are waiting for 
the user’s review. The user is notified not only when a hypothesis is confirmed, but also when a 
conclusion could not be reached due to an incomplete analysis. The user will be able to inspect the 
incomplete analysis to determine whether that was due to unavailable evidence or due to the 
encountering of a hypothesis for which the agents require additional training.  

All the situation knowledge bases are created by the autonomous agents under the Reference 
Knowledge Base to inherit the ontology and the learned rules it contains, and they are managed in 
turn by the Repository Management Service. The next section presents the use of this shell in the 
cybersecurity domain. 

4.  CAAPT: Cognitive Agent for Advanced Persistent Threats 

Modern cyber defense is done in a cybersecurity operations center where analysts monitor alerts 
and log data from available information sources, each having differing levels of credibility, and use 
them to make a determination about the presence or absence of intrusion activity (Zimmerman, 
2014). However, the large and increasing number of alerts and the time required for their manual 
analysis creates a very complex, expensive, and non-sustainable security environment for network 
defense organizations which are faced with a shortage of cybersecurity analysts and an average 
analyst cost that keeps going up. 
  Among the biggest challenges faced by cybersecurity operations centers are those from the 
Advanced Persistent Threats (APTs). These are computer network exploitation groups (many of 
them state sponsored) that leverage superior resources, knowledge, and tactics to gain and maintain 
access to targeted networks, and adapt to defenders’ efforts to resist them.  

4.1  Overview of CAAPT 

In an attempt to addressing these problems, we have developed CAAPT. Its architecture is shown 
in Figure 5. The Learning and Reasoning Assistant is directly instructed by a cybersecurity expert 
how to investigate cybersecurity alerts. The Reference KB resulting from this training enables the 
Multi-agent Reasoner to investigate alerts autonomously, as the cyber expert would, but in 
transparent manner that allows a natural and easy “on the loop” supervision by a cyber operator 
(bottom right of Figure 5). At the same time, CAAPT can also operate interactively, with “user in 
the loop”, as a trusted collaborator of the human analyst (upper left of Figure 5). The CAAPT’s 
environment is a cybersecurity operations center. The surveillance agents consist of a variety of 
detection systems, including network-based and host-based intrusion detection systems, anti-virus 
software, endpoint detection and response tools, or complex detection rules built into security 
information and event management systems.  



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

84 

As the cyber attack group in our study we selected APT1, the name given by Mandiant (2013) 
to a group of APT actors, attributed to China’s People’s Liberation Army unit 61398, who led a 
years-long campaign of cyber espionage dating back to at least 2004. We chose APT1 because of 
the abundance of freely available information about it. Reports show an evolution of malware used 
by them over the eight years they were known to operate. The malware evolution chain used in our 
research started with the Auriga implant, and then evolved over time to Bangat, Seasalt, and Kurton. 
Available threat intelligence provides very detailed information on the files, unique strings, 
Registry keys, persistence mechanisms, and network indicators created during an attack. Using this 
information, we manually developed attack scenarios recreating the patterns of indicators originally 
created by each malware program. Attack models were then tested in isolated virtual machines by 
infecting hosts with APT1 malware and running CAAPT against them. 

As indicated, CAAPT is a customization to the cybersecurity domain of the presented approach 
to autonomous evidence-based reasoning. For example, Figure 8 shows fragments of the various 
types of knowledge represented in the ontology. General networking knowledge represents network 
devices and protocols, and how they relate to each other in a modern networking environment. Alert 
knowledge represents what specific information is learned when a security alert is raised by a 
cybersecurity operations center’s security infrastructure. Knowledge of the network environment 
covers information specific to the network the cybersecurity operations center is charged with 
monitoring. Attacker knowledge is based on either publicly available threat intelligence or is the 
result of manual analysis of a threat. Forensic artifact knowledge includes knowledge of the data 
used or left behind by the malware used by an attacker group and where to look for it on a network.  

Figure 9 illustrates CAAPT’s hypotheses generation process. At the bottom is the alert received 
by the Surveillance Manager from a surveillance agent, in this case the BRO intrusion detection 
system (Paxson, 1999). The Surveillance Manager creates a uniform representation in JSON of this 

 
 

Figure 8. Fragment of the cybersecurity ontology. 

has as 
external 

name has as 
external 

name

has as 
external 

name

source IP1

destination IP1

destination port 1

source port1

connection 1

outbound
connection

has as source IP

has as source port

has as destination port

has as destination IP

named port

port

DNS portIPv4 address

IP address

APT1

APT group

Bangat

malware

Seasalt

hacker group

address

domain

program 1

has as connection
has as external name

c:\windows\temp\svchost.exe

connection

has as path name

physical address

MAC address

General networking knowledge

Alert
knowledge

Forensic 
artifact

knowledge

Attacker knowledge

Knowledge of network 
environment

IPv6 address

svchost.exe

has as process ID 176

has as external name
10.10.1.10

has as external name
10.10.7.1

75611

has as external name
53

domain1has as domain

has as 
external 

name

a-jsm.infobusinessus.org

Auriga

program

gain foothold phase

APT1 gain foothold phasehas as phase

network

Alpha Network

ha
s a

s s
ub

ne
t

DMZ subnet 1

Security subnet 1

Corporate subnet 1

corporate subnet1 
starting IP

corporate subnet1 
ending IP

subnet

has as starting IP address assignment

has as ending IP address assignment

10.10.1.10

10.10.1.255

Kurton



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

85 

alert and sends it to the Alert Agent. From this alert, the Alert Agent creates a situation KB 
containing both the evidential representation of the alert (i.e., “E1: Suspicious connection1 from 
10.10.1.11 …”) and the ontological representation of the alert (shown in the middle right of Figure 
9), and places this KB into the Hypothesis generation KB queue (see Figure 5).  
 The Hypothesis Generation Agent uses the learned abductive rules from the Reference KB to 
generate the competing hypotheses from the top of Figure 9 that may explain the alert, and places 
the updated KB into the Hypothesis analysis KB queue. Notice that there are three generated 
hypotheses: an intrusion hypothesis (connection1 is part of an APT1 intrusion) and two false 
positive hypotheses (connection1 was generated by network security intelligence gathering; 
connection1 involves an inactive APT1 server). An Analysis Agent uses the learned analysis rules 
to determine the probabilities of the competing hypotheses through an iterative process of 
hypothesis decomposition and evidence-based assessment synthesis that Figure 10 illustrates.
 APT detection requires reasoning over a large set of weak indicators of compromise (IOCs), 
such as unique strings, filenames, and Registry keys, that must be aggregated to infer the presence 
of an intrusion. For example, there are two main indicators of the hypothesis from the top of Figure 
10: connection1 involves an APT1 command and control server (APT1 C2 server), and the program 
that made connection1 is an APT1 malware (APT1 malware). The problem is that, in a given 
situation, the agent may find evidence for the presence of only the first indicator, only the second 
one, or the presence of both. The * operator corresponds to the disjunction of these three 

 
Figure 9. Cybersecurity hypothesis generation. 

{ "alertTime":"12\/23\/2018 12:18:07 PM",
"requestType":"IDSAlertTrigger",
"destinationIP":"10.10.7.1",
"destinationPort":{"number":53, 

"portType":"DNS port"},
"domain": “a-jsm.infobusinessus.org”,
"idsAlertType": “ThreatIntel”,
"sourceIP":"10.10.1.11",
"sourcePort":{"number":75611, 

"portType": None},
"threatGroup": "APT1“   }

E1: Suspicious connection1 from 
10.10.1.11 (port 75611) to 

10.10.7.1 (port 53) at 12/23/2018 
12:18:07 PM, using known APT1
domain a-jsm.infobusinessus.org

connection1 from 10.10.1.11 
(port 75611) to 10.10.7.1 (port 53) 
at 12/23/2018 12:18:07 PM, using 

known APT1 domain 
a-jsm.infobusinessus.org, is part of 

APT1 intrusion

connection1 from 10.10.1.11 (port 
75611) to 10.10.7.1 (port 53) at 

12/23/2018 12:18:07 PM, using known 
APT1 domain a-jsm.infobusinessus.org,

was generated by network security 
intelligence gathering

connection1 from 10.10.1.11
(port 75611) to 10.10.7.1 (port

53) at 12/23/2018 12:18:07 PM, 
using known APT1 domain 
a-jsm.infobusinessus.org,

involves an inactive APT1 server

source IP1 has as external name

connection1

has as source IP

has as destination port

has as domain

has as source port
destination IP1

has as destination IP

has as external name

has as external namesource port1

has as external namedestination port1

DNS port

port

has as external name
domain1

has as start time

time1 has as external name

uses as domain

IPv4 address

domain

time APT1

APT group

outbound connection

10.10.1.10

10.10.7.1

75611

53

a-jsm.infobusinessus.org

12/23/2018 12:18:07 PM

IPv4 address

#types  time    string  src addr port    dest addr port string  enum enum source
1539721936.038446 CuNusc2j8mL2LV49tl  10.10.1.11 75611   10.10.7.1 53 app.blackcake.net Intel::DOMAIN   DNS::IN_REQUEST APT1



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

86 

possibilities. The probabilities inside the two overlapping circles from the top of Figure 10 show 
the relevance of these three cases to the truthfulness of the top hypothesis: 

• The relevance of the “APT1 C2 server” indicator alone is L08 (85-90%) very likely.  
• The relevance of the “APT1 malware” indicator alone is L09 (90-95%) very likely+.  
• The relevance of these two indicators together is L11 (100%) certain. 

We should note that, in the current version of CAAPT, these probabilities are elicited from the 
cybersecurity expert and represented in the learned rules. 

 
Figure 10. Evidence-based hypothesis analysis. 

 

The program that made connection1
from 10.10.1.11 (port 75611) to 
10.10.7.1 (port 53) at 12/23/2018 

12:18:07 PM is APT1 malware

*

connection1
involves an active 
APT1 command 

and control  server

a-jsm.infobusinessus.org
is registered at a 

dynamic DNS provider

a-jsm.infobusinessus.org
is an active domain at time 
12/23/2018 12:18:07 PM

connection1 from 10.10.1.11 (port 75611) to 10.10.7.1 (port 53) at 12/23/2018 12:18:07 PM, 
using known APT1 domain a-jsm.infobusinessus.org, is part of APT1 intrusion

*

L11 L11

L08

L08

The domain registrar for 
a-jsm.infobusinessus.org

is on a list of known 
dynamic DNS providers

E3: a-jsm.infobusinessus.org 
has dynadot.com as known 

dynamic DNS provider

L11

L11

L11

svchost.exe with process ID 176 that made
connection1 from 10.10.1.11 (port 

75611) to 10.10.7.1 (port 53) at 
12/23/2018 12:18:07 PM is APT1 malware

svchost.exe with 
process ID 176 has 

Auriga features

svchost.exe with process ID 176 that made 
connection1 is the  Auriga malware on the 

host computer 10.10.1.11

*

Auriga file system artifacts 
present on the host 

computer 10.10.1.11

L11

L11
L11

L08

APT1
m

alw
areAP

T1
C2

  s
er

ve
r

L11 L09

L01

dynam
ic 

DN
S

ac
tiv

e 
do

m
ai

n

L08 L03

E2: Domain 
a-jsm.infobusinessus.org  
is mapped to routable IP 
address 69.195.129.72 at 

time 12/23/2018 
12:18:07 PM 

L08

L11

L08

L11

L08

L11L05

L07

file system
 

artifacts

m
al

w
ar

e
fe

at
ur

es

L09 L08

……



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

87 

In this example, both indicators have been detected with probability L08 (85-90%) very likely. 
Therefore their combined relevance to the top hypothesis is L11 (100%) certain. The probability of 
the top hypothesis is assessed as L08 (85-90%) very likely, the minimum between the probabilities 
of the two indicators and their combined relevance. The left branch in Figure 10 shows the analysis 
of the “APT1 C2 server” indicator. First it is decomposed into two sub-indicators: (1) “a-
jsm.infobusinessus.org is an active domain at time 12/23/2018 12:18:07 PM” and (2) “a-
jsm.infobusinessus.org is registered at a dynamic DNS provider” that is further reduced to “The 
domain registrar for a-jsm.infobusinessus.org is on a list of known dynamic DNS providers.” The 
items of evidence E2 and E3, each with credibility and relevance L11 (100%) certain, are found for 
these indicators, and therefore their probabilities are assessed as certain. Their combined relevance 
to the “APT1 C2 server” indicator is L08 and thus the probability of this indicator is L08. 

4.2  Evaluation of CAAPT 

Evaluating a system like CAAPT or CAPIP is challenging due to a lack of standardized data for 
use in comparing it against other systems or approaches. It is also challenging due to a lack of 
systems similar to them. It is a novel approach, both with respect to autonomous evidence-based 
reasoning in general and with respect to APT detection in particular. As such, the only reasonable 
approach to compare CAAPT would be to manual analysis by an expert, but even this is problematic 
because of lack of data on manual analysis.  

We designed and performed experiments to test both the training of CAAPT and its ability to 
detect configuration changes in the same malware and new malware versions as the attackers’ tool 
set evolved over time. The experiment simulated a subset of the historical evolution of APT1 
malware: Auriga → Auriga variants → Bangat → Bangat variants → Seasalt → Seasalt variants 
→ Kurton → Kurton variants. This enabled us to test five claims:  

• Ability to automatically detect the training malware: Once trained with a malware, CAAPT 
can automatically detect it. This creates a baseline for the evaluation. 

• Ability to detect variants of the training malware: Once trained with a malware (e.g., Auriga) 
CAAPT can automatically detect new variants of it (i.e., Auriga variants). 

• Some ability to detect evolved malware: Once trained with some members of a malware family 
(e.g., Auriga and Bangat of APT1), it may be able to detect an intrusion by a new member of 
the (APT1) family. 

• Limited incremental training needed to detect a new malware from the same family (e.g., 
limited incremental training needed to detect Bangat, after it was trained to detect Auriga). 

• Efficient and high quality analysis: CAAPT can rapidly detect APT1 intrusions through a 
rigorous and transparent analysis, as judged by the training expert. 

 We started the evaluation experiment with developing a cyber ontology (see Figure 8) and with 
training CAAPT to analyze the Auriga malware of APT1 (see Figure 10), based on the expertise of 
one of us (Steven Meckl). After that we tested CAAPT’s detection capabilities in three scenarios: 

(a) With the Auriga intrusion used in training (to create a baseline for the evaluation). 
(b) With an intrusion by a variant of Auriga. This variant used a different APT1 domain to trigger 

the security alert, and the malware process %SYSTEMROOT%\Temp\svchost.exe did not 
contain unique APT1 strings. 

(c) With a Bangat intrusion. Bangat does not have the library files riodrv32.sys and netui.dll, uses 
a different regular expression for its temporary file names, stores its data files in different 
folders, and uses different Windows Service names for its persistence mechanisms. 



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

88 

In the second phase of the experiment we have extended the ontology and trained CAAPT to detect 
the Bangat malware used in the testing of the first phase. This process was repeated with Seasalt 
(third phase) and Kurton fourth phase). The main results are summarized in Table 2, phase by 
phase, and discussed in the following with respect to the above five claims.  

 The first column of Table 2 lists the malware detected by CAAPT in each phase of the 
experiment, when the intrusion was made by the malware shown in the leading row of the other 
columns. Consider, for example, the second row in Table 2. CAAPT detected an Auriga intrusion 
with probability L08 when the intrusion was made by the Auriga used in training, with the same 
probability of L08 when the intrusion was made by the variant of the Auriga used in training, and 
with probability of L06 when the intrusion was made by Bangat. 

Ability to automatically detect the training malware. As shown in column 2 of the table, 
CAAPT detected the intrusion with the malware used in training with probability L08 (85-90%) 
for Auriga, Bangat and Seasalt, and with probability L07 (80-85%) for Kurton. 

Ability to detect variants of the training malware. As shown in column 3 of the table, CAAPT 
detected the intrusion with a variant of the malware used in training with the probability of L08 for 
the Auriga, Bangat, and Seasalt variants, and with probability of L07 for the Kurton variant. 

Table 2. Summary of the CAAPT experimental results. 
 

1.Intrusion Intrusion by the Auriga 
used in training 

Intrusion by variant of 
Auriga used in training 

Intrusion by  
Bangat  Detection 

Auriga L08 (85-90%) very likely L08 (85-90%) very likely L06 (75-80%) 
APT1 L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely 
Duration 143 seconds 121 seconds 119 seconds 
2.Intrusion Intrusion by the Bangat 

used in training 
Intrusion by variant of 
Bangat used in training 

Intrusion by  
Seasalt  Detection 

Auriga L06 (75-80%)  L06 (75-80%)  L01 (50-55%) barely likely 
Bangat L08 (85-90%) very likely L08 (85-90%) very likely L01 (50-55%) barely likely 
APT1 L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely 
Duration 265 seconds 228 seconds 274 seconds 
3.Intrusion Intrusion by the Seasalt 

used in training 
Intrusion by variant of 
Seasalt used in training 

Intrusion by  
Kurton  Detection 

Auriga  L01 (50-55%) barely likely L01 (50-55%) barely likely L01 (50-55%) barely likely 
Bangat  L01 (50-55%) barely likely L01 (50-55%) barely likely L03 (60-65%) likely 
Seasalt  L08 (85-90%) very likely L08 (85-90%) very likely L00 (0-50%) lacking support 
APT1  L08 (85-90%) very likely L08 (85-90%) very likely L08 (85-90%) very likely 
Duration 382 seconds 406 seconds 344 seconds 
4.Intrusion Intrusion by the Kurton 

used in training 
Intrusion by variant of 
Kurton used in training 

 
Detection 
Auriga  L01 (50-55%) barely likely L01 (50-55%) barely likely 
Bangat  L03 (60-65%) likely L03 (60-65%) likely 
Seasalt  L00 (0-50%) lacking support L00 (0-50%) lacking support 
Kurton  L07 (80-85%) L07 (80-85%) 
APT1  L08 (85-90%) very likely L08 (85-90%) very likely 
Duration 587 seconds 631 seconds 

 
 



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

89 

Some ability to detect evolved malware. As shown in column 4, after being trained to detect 
Auriga and invoked to analyze an intrusion using Bangat, CAAPT still reported an APT1 intrusion 
with probability L08 (85-90%), but the probability of being Auriga was lower L06 (75-80%). In 
the case of analyzing Seasalt after being trained on Auriga and Bangat, CAAPT still detected an 
APT1 intrusion with probability L08 (85-90%), but the probability of being Auriga or Bangat was 
only L01 (50-55%). A similar result was obtained in the case of analyzing Kurton: After being 
trained on Auriga, Bangat, and Seasalt, CAAPT still detected an APT1 intrusion with probability 
L08 (85-90%), but the probability of being Auriga was L01 (50-55%), of being Bangat was L03 
(60-65%), and of being Seasalt was L00 (0-50%).  

Several remarks about the estimated probabilities are appropriate. Notice that, in the first phase 
of the experiment (first four rows in Table 2), the sum of the probabilities of “Auriga intrusion” 
and “APT1 intrusion” is over 100%. This is because these two hypotheses are not disjoint. Indeed, 
“APT1 intrusion” means any intrusion performed by the APT1 attacker group, using any of their 
malware tools, including Auriga. Notice also that, as expected, in each of the four phases of the 
experiment, the probability of “APT1 intrusion” is greater than or equal to the probability of the 
intrusion with any of the considered members of the APT1 family (i.e., Auriga, Bangat, Seasalt, 
and Kurton). 
 Let us now consider the results of the second phase of the experiment, shown in rows 5 to 9 of 
Table 2. Notice in column 2 that the probability of “Auriga intrusion” is L06 (75-80%) and the 
probability of “Bangat intrusion” is L08 (85-90%). This is not a contradiction because these two 
hypotheses are not disjoint. The Bangat malware is an evolution of the Auriga malware and 
therefore it has many features in common with Auriga. When checking for an intrusion with Auriga, 
the system looks for the presence of the features of the Auriga malware on the infected computer, 
but some of these features are also the features of Bangat, so it is possible that the computer is 
infected by both Auriga and Bangat. Therefore, Auriga intrusion with probability L06 (75-80%) 
covers the case where the Auriga intrusion is accompanied by a Bangat intrusion. Similarly, Bangat 
intrusion with probability L08 (85-90%) is based on the detected Bangat features on the host 
computer which also includes some Auriga features. Thus, this probability also covers the case 
when there is both a Bangat an Auriga and intrusion.  

Limited incremental training needed to detect a new malware from the same family. Table 3 
shows the evolution of the ontology during agent training. Column 2 shows the number of domain-
independent ontological elements present in the initial knowledge base. To model the detection of 
the Auriga malware, the ontology was extended with 48 concepts, 27 instances, 13 feature 
definitions, and 32 facts, for a total of 135 new elements. However, modeling the Bangat malware 
required only 53 additional elements (no new concepts, three new instances, ten new feature 

Table 3. The evolution of the ontology during agent training. 
 

  Initial KB + Auriga + Bangat + Seasalt + Kurton Total 
Concepts  72  48  0  0  0  120 
Instances  76  27  3  4  0  110 
Features  17  13  10  10  7  57 
Facts  32  47  40  40  32  191 
Total  197  135  53  54  39  478 

 



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

90 

definitions, and 40 new facts). Similarly, modelling Seasalt and Kurton required the extension of 
the ontology with only 54 and 39 new elements, respectively. After training, the final ontology 
contained only 478 elements, with over 40% of them being part of the initial knowledge base. 

Table 4 shows the number of new knowledge elements learned during each phase of the 
experiment. As a result of the initial training of CAAPT to detect Auriga, it learned 28 context-
independent hypotheses patterns, two alert rules, two abductive rules, 13 hypotheses analysis rules, 
15 collection tasks, and 15 collection rules, for a total of 75 learned elements. Eight collection 
agents were also defined. However, further training of CAAPT to detect Bangat resulted in only 
one new context-independent hypothesis pattern, one new hypotheses analysis rule, one new 
collection task, and one new collection rule. Thus, a total of only four new elements needed to be 
learned to detect Bangat. For Seasalt, which is a more significant evolution of Bangat, a total of 27 
new elements needed to be learned and one new collection agent defined. Finally, for Kurton 
however, only three new elements needed to be learned.  

Overall, CAAPT had to learn only 40 context-independent hypotheses patterns, two alert rules, 
two abductive rules, 23 hypotheses analysis rules, 21 collection tasks, and 21 collection rules, in 
order to detect intrusions from the four families of the APT1 malware discussed above: Auriga, 
Bangat, Seasalt, and Kurton (nine collection agents were also defined).  

Efficient and high quality analysis. The Duration rows in Table 2 provide the total run times to 
detect an intrusion. This time increased from around two minutes, when CAAPT was checking for 
Auriga intrusions only, to around ten minutes when CAAPT was checking for Auriga, Bangat, 
Seasalt, and Kurton intrusions. However, most of this time was spent by waiting for the Collection 
Manager to return the results requested from the collection agents. The actual run time for the 
development and evaluation of the reasoning trees (see Figure 10) only increased from around two 
seconds, when CAAPT was checking for Auriga intrusions only, to around six seconds when 
CAAPT was checking for Auriga, Bangat, Seasalt, and Kurton intrusions. Additionally, the training 
expert judged the generated reasoning trees as correct, rigorous and very clear. 

5.  Conclusions 

We have presented a general approach to the development of instructable cognitive agents for 
automated evidence-based reasoning, a process modelled as continuous discovery of evidence, 
hypotheses, and arguments. This approach was implemented in a learning agent shell for evidence-
based reasoning consisting of a mixed-initiative learning and reasoning assistant, and an 
autonomous multi-agent reasoner. A subject matter expert teaches the learning and reasoning 

Table 4. The evolution of the rules during agent training. 
 

 Auriga + Bangat + Seasalt + Kurton Total 
Hypothesis patterns  28 1  10 1  40 
Alert rules  2 0  0 0  2 
Abductive rules  2 0  0 0  2 
Hypothesis analysis rules  13 1  7 2  23 
Collection tasks  15 1  5 0  21 
Collection rules  15 1  5 0  21 
Collection agents  8 0  1 0  9 
Total elements  83 4  28 3  118 

 
 

 
 



 INSTRUCTABLE AGENTS FOR EVIDENCE-BASED REASONING  

91 

assistant by demonstrating and explaining each reasoning step involved in the investigation of a 
specific alert. As a result, the assistant learns rules for generating hypotheses that explain alerts, 
rules for discovering relevant evidence, and rules for testing the hypotheses. Specialized 
collaborative agents use the learned rules to automatically conduct alert investigations. The 
generality of the proposed approach is supported by the development of two autonomous agents, 
one for ISR and the other for cybersecurity. Experimental results of training and testing the 
cybersecurity agent show that, after being trained to detect a specific malware, the agent was able 
to detect variants of that malware, and that it only required limited incremental training to detect 
other members of the family of that malware. 
 We plan to research more advanced evidence-based reasoning methods. This includes a more 
efficient approach to automatic hypothesis generation as a multi-step abductive process where each 
abductive step involves generating competing hypotheses, collecting evidence, and testing these 
hypotheses, to significantly prune the hypothesis space. It also includes a more advanced method 
for hypothesis testing, through a natural and easy to understand integration of logic and multi-
probabilistic reasoning views, to more accurately assesses both the probability of each hypothesis 
and the confidence in this probability. We plan to further develop the rule learning and refinement 
approach, and improve the methods for learning different types of rules, particularly the alert rules 
and the evidence collection rules that involve the generation of ontology fragments. We also plan 
to further develop the agent shell, the ISR agent, and the cybersecurity agent, and to explore other 
applications of the presented approach, such as personal health monitoring and fraud detection in 
financial services. 

Acknowledgements 

Tom Bartee developed the MITRE’s Integrated Environment for Persistent Intelligence that was 
integrated with CAPIP. Chirag Uttamsingh contributed to several related EBR projects of the 
Learning Agents Center. We are also grateful to the anonymous reviewers for their very helpful 
comments. The research reported in this paper was performed in the Learning Agents Center and 
was supported in part by the Air Force Research Laboratory under contract number FA8750-17-C-
0002, by MITRE Corporation under research agreement number 114615, by the National Science 
Foundation under grant number 1611742, and by George Mason University. The views and 
conclusions contained in this document are those of the authors and should not be interpreted as 
necessarily representing the official policies or endorsements, either expressed or implied, of the 
U.S. Government. 

References 

Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist: Effective modeling 
in RDFS and OWL. Waltham, MA: Morgan Kaufmann. 

Cohen, L. J. (1977). The probable and the provable. Oxford, UK: Clarendon Press. 
Cohen, L. J. (1989). An introduction to the philosophy of induction and probability. Oxford, UK: 

Clarendon Press. 
Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco, 

& T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce, 198-220. Bloomington, IN: 
Indiana University Press. 

International Maritime Organization. (2019). Automatic Identification Systems. Retrieved May 
22, 2019, from http://www.imo.org/en/OurWork/Safety/Navigation/Pages/AIS.aspx. 



G. TECUCI, S. MECKL, D. MARCU, AND M. BOICU 

92 

Mandiant (2013). APT1: Exposing One of China’s Cyber Espionage Units. Retrieved August 24, 
2019, from https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-
report.pdf. 

Obrst, L., Chase, P., & Markeloff, R. (2012). Developing an ontology of the cyber security domain. 
Proceedings of the Seventh International Conference on Semantic Technologies for 
Intelligence, Defense, and Security (pp. 49–56). Fairfax, VA: CEUR.  

Paxson, V. (1999). Bro: A system for detecting network intruders in real-time. Computer Networks, 
31, 2435–2463. 

Peirce C. S. (1955). Abduction and induction, 1901. In J. Buchler (Ed.), Philosophical writings of 
Peirce, 150-156. New York, NY: Dover Publications. 

Schum, D. A. (2001a). The evidential foundations of probabilistic reasoning. Evanston, IL: 
Northwestern University Press. 

Schum, D. A. (2001b). Species of abductive reasoning in fact investigation in law. Cardozo Law 
Review, 22, 1645–1681. 

Tecuci, G. (1998). Building intelligent agents: An apprenticeship multistrategy learning theory, 
methodology, tool and case studies. San Diego, CA: Academic Press.  

Tecuci, G., Boicu, M., Marcu, D., Stanescu, B., Boicu, C., Comello, J., Lopez, A., Donlon, J., & 
Cleckner W. (2002). Development and deployment of a Disciple agent for center of gravity 
analysis. Proceedings of the Eighteenth National Conference of Artificial Intelligence and the 
Fourteenth Conference on Innovative Applications of Artificial Intelligence (pp. 853–860). 
Edmonton, Alberta: AAAI Press.  

Tecuci, G., Boicu, M., Boicu, C., Marcu, D., Stanescu, B., & Barbulescu, M. (2005). The Disciple-
RKF learning and reasoning agent. Computational Intelligence, 21, 462–479.  

Tecuci, G., Boicu, M., Marcu, D., Boicu, C., & Barbulescu, M. (2008). Disciple-LTA: Learning, 
tutoring and analytic assistance. Journal of Intelligence Community Research and Develop-
ment, July. Retrieved September 4, 2019, from http://lac.gmu.edu/publications/2008/Disciple-
LTA08.pdf. 

Tecuci, G., Marcu, D., Boicu, M., & Schum, D.A. (2016a). Knowledge engineering: Building 
cognitive assistants for evidence-based reasoning. New York, NY: Cambridge University 
Press.  

Tecuci, G., Schum, D. A., Marcu, D., & Boicu, M. (2016b). Intelligence analysis as discovery of 
evidence, hypotheses, and arguments: Connecting the dots. New York, NY: Cambridge 
University Press.  

Thagard, P. R. (1993). Computational philosophy of science. Cambridge, MA: MIT Press. 
Wigmore, J. H. (1913). The problem of proof. Illinois Law Review, 8, 77–103. 
W3C (2004). RDF Schema 1.1. Retrieved July 7, 2019, from http://www.w3.org/TR/rdf-schema/. 
Zadeh, L. (1983). The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy 

Sets and Systems, 11, 199–227. 
Zimmerman C. (2014). Ten strategies of a world-class cybersecurity operations center. Bedford, 

MA: The MITRE Corporation. 


