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Abstract 
The traditional symbolic versus subsymbolic dichotomy can be decomposed into three more basic 
dichotomies, to yield a 3D (2×2×2) space in which symbolic/statistical and neural/ML approaches 
to intelligence appear in opposite corners.  Filling in all eight resulting cells then yields a map that 
spans a number of standard AI approaches plus a few that may be less familiar.  Based on this map, 
four hypotheses are articulated, explored, and evaluated concerning its relevance to both a deeper 
understanding of the field of AI as a whole and the general capabilities required in complete 
AI/cognitive systems. 

1.  Introduction 
Science, in its broadest form, concerns understanding the “world,” itself in its broadest form.  Meta-
science then is a branch of science that focuses on understanding science as part of the world.  
Rosenbloom (2012), for example, showed how the computing sciences could be understood in 
terms of how they relate to both themselves and the physical, life, and social sciences.  In particular, 
a pair of primitive relationships – implementation and interaction – were together shown to yield a 
map of the computing sciences and its relationship to the other three domains.  The relationship 
between symbolic and neural approaches to artificial intelligence (AI) is also often characterized 
via one of these two relationships; that is, either as a neural implementation of symbolic processing 
(e.g., Cho, Rosenbloom, & Dolan, 1991; Smolensky & Legendre, 2006) or as separate neural and 
symbolic modules that interact (e.g., Jilk et al., 2008; Sun, 2016).  Alternatively, the two may 
simply be characterized as polar opposites on a grand symbolic-versus-subsymbolic dichotomy. 

From a symbolic, cognitive-systems perspective, understanding this relationship more deeply 
is more critical now than ever before, as the dramatic successes of the modern neural resurgence – 
in the form of what is now often called deep neural networks or deep learning – is leading it to an 
increasing domination of the overall conversation.  The initial goal of this article is to further such 
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an understanding by decomposing the traditional, but as it turns out rather coarse-grained, sym-
bolic-versus-subsymbolic dichotomy into three finer-grained ones.  Using the title notation, these 
are: (1) (non)symbolic; (2) (a)symmetric; and (3) (non)combinatory.  Each of these three, whether 
seemingly familiar or not, is given a particular definition later that yields an orthogonal dimension 
along which it turns out that numerous AI approaches can be characterized. 

These finer-grained dichotomies are first applied to understanding what will be referred to as 
symbolic/statistical versus neural/ML processing.  The former term acknowledges that traditional 
symbolic processing can be considered as a specialization of the broader notion of statistical rela-
tional processing (Getoor & Taskar, 2007), where the probabilities are limited to 0 and 1.  The 
recently proposed Common Model of Cognition (Laird, Lebiere & Rosenbloom, 2017) further ar-
gues that cognitive architectures – i.e., models of the fixed structures and processes that implement 
a mind (Langley, Laird, & Rogers, 2009; Kotseruba & Tsotsos, 2018) – require not only symbols 
but also quantitative metadata, such as probabilities and utilities.  The latter term recognizes that 
the recent AI boom is due primarily to large-scale applications of learning in neural networks.  Use 
of the term neural/ML is not intended to imply that all learning is necessarily neural in form, but it 
is intended to refer to the vast range of work in machine learning that currently is. 

Based on the 3D space engendered by the cross product of these finer-grained dichotomies, 
four hypotheses are then articulated, explored, and evaluated, although while varying considerably 
in how speculative they are and in how well they are evaluated. Together, the four hypotheses end 
up not only bearing on a better understanding of the original grand dichotomy, but also on the 
computational approaches that make up the field of AI as a whole and those approaches that must 
be part of complete cognitive systems.  The first two hypotheses focus on AI as a whole and provide 
the core of the contribution here, whereas the latter two hypotheses raise more speculative possi-
bilities for analyzing and understanding particular cognitive systems.  Only very preliminary eval-
uations are provided for the latter two, but the intent at this point with respect to them is mainly to 
make the case that they are worth further exploration. 

The first core hypothesis addresses the initial goal of better understanding the original grand 
dichotomy, by claiming that archetypical symbolic/statistical processing is characterized by the set 
of first terms in each of the three finer-grained ones and archetypical neural/ML processing by the 
set of second terms.  This may appear to make sense only for the first and third – which are dis-
cussed further in Sections 2 and 4, respectively – but the claim is that it is also true of the second, 
which will be explained and discussed further in Section 3.  Each dichotomy is analyzed in terms 
of a proposal for a central integrating idea that aids in both understanding and spanning it, plus 
additional sub-dichotomies that help to dissect the three main ones much as they themselves help 
dissect the single traditional dichotomy.  This hypothesis is by necessity evaluated informally, ac-
cording to whether by the end of Section 4 the arguments for these dichotomies are found to be 
compelling.  

Given the first core hypothesis, symbolic/statistical and neural/ML approaches can be situated 
at opposite corners of a 3D space with eight (2×2×2) total cells, but with a whole structured space 
of intermediate points that share one or more choices with each of them (Table 1).  The second core 
hypothesis is then that this space frames a novel form of map over a range of approaches that can 
help understand both the overall topology of AI and the core commonalities and differences among 
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the approaches that populate the map (Section 5).  It is important to note, though, that this hypoth-
esis does not claim that every AI approach fits within some cell of this map.  Some approaches may 
require combinations of cells, whereas others may fall completely outside of the map.  Both possi-
bilities are worth further investigation, and a bit more will be said about them later, but the focus 
here is on the map’s spanning a substantial enough swath of approaches within individual cells.  

This hypothesis is evaluated by fleshing out all eight cells with standard AI approaches when-
ever possible and with less well-known ones as necessary.  This is not an exhaustive analysis of all 
AI approaches – investigating such a possibility will be left for future work – but each cell will 
ultimately contain one or more AI approaches that are distinct from those in the other cells.  Fur-
thermore, the structure of the map will highlight a number of key commonalities and differences 
among the approaches. 

Several prior maps have been proposed that bear a family resemblance to the one here, at least 
three of which include a variant of (a)symmetry (Anderson & Lebiere, 1998; Sun, 2016; Rosen-
bloom, 2019), although the first two under other names – procedural versus declarative and action 
-centered versus non-action-centered – with the third including a discussion of how the other two 
can be viewed as variants of (a)symmetry.  The first two also include variations on (sub)symbolic, 
one under this name and the other as explicit versus implicit.  The first of these prior maps also 
includes a third dimension, for performance versus learning, but the focus in this article is almost 
exclusively on performance, with the task of extending the map to learning left to future work. 

One additional source of agreement among these three earlier maps is that they are to be used 
in analyzing particular cognitive architectures – ACT-R, CLARION, and Sigma, respectively – 
rather than for mapping the space of AI approaches.  In this way they also bear a relationship to 
prior taxonomic and componential analyses of cognitive architectures, such as those found in 
Kotseruba and Tsotsos (2018).  However, both of these latter forms of structures are weaker pre-
dictively than maps.  Taxonomies do not include more choices than are needed for the initial set of 
ideas and thus do not naturally generate empty regions where unknown possibilities may be found.  
Componential analyses do not naturally provide the systematic structuring that yields insights into 
commonalities and differences among the elements. 

The core purpose here shares with these prior efforts the goal of developing a map rather than 
either a taxonomy or a componential analysis, but it differs in focusing on the structure of the field 
of AI rather than on the structure of individual cognitive architectures.  At least one prior map 

Combinatory Symbolic Subsymbolic 
Symmetric Symbolic/Statistical  
Asymmetric   

 
Noncombinatory Symbolic Subsymbolic 
Symmetric   
Asymmetric  Neural/ML 

 

Table 1. 3D map based on the cross product of the dichotomies, with separate planes for combinatory 
versus noncombinatory. 
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(Minsky, Singh, & Sloman, 2004) does share this core purpose, but its dimensions concern proper-
ties of tasks that are hypothesized to distinguish subspaces over which different AI approaches are 
most effective, rather than aspects of how the approaches themselves function.  Whether such dif-
ferent forms of maps over the space of AI approaches can ultimately be related in a useful manner 
poses an interesting question for future consideration. 

The other purpose, of understanding individual cognitive architectures, does turn out to still 
play a role in this article in inspiring the two additional hypotheses.  The first such hypothesis is 
that every complete cognitive system – i.e., one with full human-level intelligence – must support 
some approach in each cell of Table 1.  This follows the general path of the previous work, although 
establishing the necessity of such a map can itself be quite involved.  For now, we will simply note 
that two of the three dichotomies here align approximately with two of the previous efforts, with 
only (non)combinatory being new as a distinct dichotomy. 

In Section 6, this additional hypothesis is explored with respect to the Sigma cognitive system 
(Rosenbloom, Demski, & Ustun, 2016a), which is of particular interest in this context because of 
the broad range of AI approaches it can embody supra-architecturally (Rosenbloom, 2015) – that 
is, based on the architecture plus knowledge and skills encoded within it – that are capable of op-
erating in parallel without either interfering with each other above the architecture or requiring a 
separate module for each within the architecture.  This analysis yields a map that is similar in kind 
to the other three just mentioned, but its focus goes beyond just what is natively provided by the 
architecture to also include key supra-architectural capabilities that are part of the larger cognitive 
system it supports. 

The second additional hypothesis goes beyond the first by proposing that every complete cog-
nitive system must support not just some approach in each cell, but an approach within each cell 
that captures the essence of what makes it distinctly useful, and has thus justified individual re-
searchers or whole communities focusing on it in isolation.  For example, although linear, subsym-
bolic, activation-passing networks sit in the bottom-right cell of the table, they achieve nothing like 
the power provided by deep learning, and thus would not be considered to have captured the essence 
of what makes this cell useful.  Capturing these essences across the whole table is beyond the scope 
of this paper; however, as with the previous hypothesis, a preliminary application to Sigma will be 
explored, at the end of Section 6, by analyzing which of the AI approaches in the map are, or 
potentially could be, available to it.  Section 7 then summarizes and concludes. 

2.  Symbolic versus Subsymbolic 
A classical definition of symbols concerns entities that can be combined into expressions (Newell 
& Simon, 1976).  Notions of designation and interpretation are also then included that enable ex-
pressions to represent, and for what is represented to be viewed as a program to be executed.  Clas-
sical subsymbolic representations instead center on entities, i.e., units, that neither designate nor 
represent but do have associated numbers.  In distributed formulations, it is typically specific vec-
tors of associated numbers that represent (e.g., Pennington, Socher, & Manning, 2014). 

The goal driving the development of the Common Model of Cognition is to achieve a commu-
nity consensus concerning the structures and processes that jointly yield human-like minds.  As 
part of the current consensus, the Common Model provides the proposed central integrating concept 
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here of dyads of symbolic data and quantitative metadata: <d, m>.  However, the notion of symbol 
in the Common Model is weaker than Newell and Simon’s, including only that symbols are primi-
tive elements that can be combined.  Here, we weaken this even further, to a primitive element to 
which quantitative metadata can be attached (with the combinatory aspect separated out into its 
own dichotomy).  The metadata may consist of probabilities or activations, as are of concern in 
Section 3, or other kinds of numeric annotations. 

Given the idea of dyads, there are three sub-dichotomies that help further understand the 
(sub)symbolic dichotomy.  The first concerns how much of a dyad’s meaning is determined by the 
symbol/data versus the number/metadata.  In a pure symbol system, all of the meaning is in the 
symbol.  The number, should it be present, is just 0 or 1, for false or true in a probabilistic interpre-
tation.  In contrast, in a pure neural system, the symbols would simply be placeholders identifying 
positions within a vector, with the meaning all conveyed by the numbers at their particular positions 
in the vector. 

There are however, intermediate points along this sub-dichotomy – making it in reality more 
of a metric dimension – such as probabilistic graphical models that combine meaningful symbols 
with probabilities (Koller & Friedman, 2009), local connectionist networks that combine meaning-
ful symbols with activations (McClelland & Rumelhart, 1981), and one-hot encodings that have 
non-zero metadata at only one location (Harris & Harris, 2012).  Whether a dyad should be consid-
ered symbolic versus subsymbolic thus effectively comes down to how much of its meaning is in 
its data versus its metadata.  Still, the entire dyad is always assumed to exist, even if/when some 
parts are implicit. 

The second sub-dichotomy concerns whether there is nonlinearity in the processing of the data 
versus the metadata.  Data nonlinearity in general consists of the classical discrete changes at the 
heart of symbol processing, such as replacing a symbol in an expression with another, combining 
multiple expressions, or firing rules that generate new expressions.  Metadata nonlinearity typically 
involves continuous, or even differentiable, nonlinear changes in numerical values; for example, 
via a sigmoid, RELU, tanh, or softmax.  In one form, data nonlinearity can be viewed as step func-
tions – from 0 to 1 or vice versa – in metadata; however, it can also go beyond this to the creation 
and deletion of elements to which metadata can be attached.  

This sub-dichotomy is closely related to the first, as the locus of nonlinearity tends to follow 
the locus of meaning.  But whether there is nonlinearity in the data or the metadata, or both, full 
intelligence appears to require it somewhere – implying a potentially interesting hypothesis in its 
own right, but not one that will be explored further here.  Standard symbol processing is, in partic-
ular, impossible without data nonlinearity.  Likewise, Choi and Darwiche (2018) discuss how 
metadata nonlinearity enables neural networks to significantly outperform Bayesian networks by 
increasing their expressibility for function fitting.  

There is an intriguing body of recent work that seeks to replace standard forms of data nonlin-
earity with (differentiable) metadata nonlinearity, as for example in the form of Neural Turing Ma-
chines (Graves, Wayne, & Danihelka, 2014).  Yet, even when this is done, critical additional forms 
of data nonlinearity turn up, whether for experience replay (Lin, 1992), search over state spaces 
(Silver et al., 2018), or other uses.  Given this, and the background assumptions here, it remains 
critical to continue direct explorations of both forms of nonlinearity. 
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The third sub-dichotomy concerns whether the meaning of the data is defined via declarative 
versus procedural semantics.  In logic, semantics provides meaning for syntactic elements in terms 
of the possible worlds in which the elements are true.  The notion of declarative semantics follows 
closely on this but can be thought of more broadly in terms of a fixed, a priori meaning specification 
that is unaffected by how the elements are used.  With procedural semantics, in contrast, the mean-
ing of syntactic elements is an implicit consequence of how they are used. 

As with logics, symbolic systems prototypically embody declarative semantics.  Subsymbolic 
systems prototypically embody procedural semantics, as when hidden units in a neural network are 
ascribed meaning only through a post-learning analysis.  However, rules, which are typically con-
sidered symbolic, often have procedural semantics – at least in how they are used as productions in 
cognitive systems rather than in their logical usage as implications or Horn clauses – where the 
meaning of an element is principally determined by how it is (re)used across the system.  Likewise, 
pixels, which are typically considered subsymbolic, do have a fixed meaning, in terms of the prop-
erties of light in a particular location. 

Taking these three sub-dichotomies together, symbolic systems canonically focus on meaning 
as fixed interpretations of (nonlinearly transformed) data, whereas subsymbolic systems focus on 
emergent interpretations of (nonlinearly transformed) metadata.  However, given how these sub-
dichotomies correlate, it can still make sense to view symbolic systems as simply deriving their 
meaning largely from data and subsymbolic systems from metadata. 

A particularly illustrative example here is Markov networks versus Boltzmann machines (Ack-
ley et al., 1985).  The former are forms of probabilistic graphical models, like Bayesian networks, 
but they use symmetric rather than asymmetric links between nodes and define functions over 
cliques of nodes.  The latter are symmetric neural networks – in contrast to the asymmetry of feed-
forward neural networks – that are closely related to Hopfield networks (Hopfield, 1982).  Mecha-
nistically, Markov networks and Boltzmann machines are indistinguishable (Jordan & Sejnowski, 
2001), but the former is viewed as symbolic because it has declarative data semantics whereas the 
latter is viewed as subsymbolic because it has procedural metadata semantics.  A second example 
concerns rules, which as just mentioned have procedural data semantics but discrete data changes 
and (typically) no numbers, and so are viewed as symbolic even without declarative semantics. 

3.  Symmetric versus Asymmetric 
Variants of the (a)symmetric dichotomy – such as shallow versus deep [reasoning] (Hart, 1982), 
heteroassociative versus autoassociative [networks] (Rizzuto & Kahana, 2001), declarative versus 
procedural [memories], action-centered versus non-action-centered [subsystems] (Sun, 2016), and 
model-based versus function-based [approaches] (Choi & Darwiche, 2018) – have been around for 
many years, although it has only recently been articulated in this form, with these earlier variants 
all then being mapped onto it (Rosenbloom, 2019).  It is this form then that enables the central 
integrating concept.  Consider a graph with nodes, plus links along which dyads may flow.  The 
directionality of dyad flow along such links – and in particular whether in both directions versus 
only one – yields the proposed central integrating concept.  

Logics and probabilistic graphical models provide canonical symmetric examples, with infer-
ence conceived of as dyad flow.  In particular, the semantics behind standard logics permits 
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deduction in any direction over logical sentences and the semantics of probabilistic graphical mod-
els requires the symmetric flow of messages, as in the sum-product algorithm (Kschischang, Frey, 
& Loeliger, 2001), to yield correct marginals or modes over the included random variables.  Even 
when there are asymmetric notations included – such as for implications in logic and directed arcs 
in Bayesian networks (Pearl, 1988) – they denote an asymmetry in the semantics that is not reflected 
in inference direction.  Implications can be used deductively in both directions and can in fact be 
converted into equivalent symmetric notations.  Likewise, sum-product message passing is sym-
metric across the directed arcs in Bayesian networks. 

In contrast is the asymmetric/unidirectional flow of dyads in rules and feedforward neural net-
works.  Backwards flow is possible in such structures, in support for example of abduction, plan-
ning, or learning, but the meaning of the reverse flow is quite different – in logical terms, it is not 
deductive.  For example, backward flows in rules are abductive and in neural networks they repre-
sent errors, instead of standard dyads, that support induction via backpropagation.  Such backward 
flows may be considered as additional forward flows, but of a different sort along distinct asym-
metric paths.  Fitting this pattern are both backpropagation (Rosenbloom, Demski, & Ustun, 2017) 
and abduction in Sigma, based on unidirectional arcs of forward-backward processing, and bidi-
rectional RNNs (Schuster & Paliwal, 1997). 

Similar conclusions arise from contrasting learning in probabilistic graphical models versus 
feedforward neural networks.  In the former, learning can occur locally at nodes in the network 
based on messages arriving in all directions along its symmetric arcs (Russell et al., 1995; Rosen-
bloom et al., 2013).  Normal bidirectional processing in graphical models maintains a single se-
mantics for messages in both directions along links – representing distributions over the variables 
on the link – while thus enabling message computations at nodes to occur in ignorance of their 
direction. Processing in both directions is essentially deductive. 

In neural networks, learning can also occur locally at nodes in the network.  This is typically 
conceived of as sending distinct messages – based on errors – backwards along the same links, but 
in a manner that enables them to be distinguished from the forward messages.  However, it can also 
be conceived of as interacting flows forward along one path and backwards along another (Rosen-
bloom, Demski, & Ustun, 2017).  In this latter formulation, the nodes are distinct along the two 
paths, but the backward nodes at which learning occurs are tied to the forward nodes so that what 
is learned from the backward path impacts the weights in the forward path.  Both probabilistic and 
neural learning can thus occur locally via gradient descent at nodes in the network. 

A related sub-dichotomy concerns probabilistic versus activational metadata.  Probabilities are 
fundamentally likelihoods that an event will occur or that a fact will be true.  When summed over 
all possibilities, the total likelihood equals one, although unnormalized, non-negative distributions 
may also be considered as “potential” probability distributions.  Activations originated as numeric 
levels on neuron outputs, although the term is also now used more broadly in cognitive science to 
denote levels of interest or importance.  Depending on how they are conceived, activations may 
range over real numbers or just non-negative or positive numbers.  Despite that probabilities and 
activations can both yield forms of quantitative metadata, and that normalization or softmax can 
convert the latter to the former, much remains different between the probabilities found in standard 
AI systems and the activations typically found in neural and other cognitive approaches.  
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The relationship of this sub-dichotomy to (a)symmetry stems from the need for symmetry in 
full probabilistic reasoning, such as is found in probabilistic graphical models, whereas activation 
processing is typically asymmetric.  There are, however, recent examples of asymmetric processing 
of probabilities, such as via arithmetic circuits (Darwiche, 2002) and sum-product networks (Poon 
& Domingos, 2011), which can provide particularly efficient probabilistic computations for a re-
stricted subset of the entire space of problems specifiable via probabilistic graphical models, much 
as how description logics (Baader et al., 2003) relate to full first-order logic.  There are also sym-
metrical neural approaches – such as Boltzmann machines – although, given their mapping onto 
Markov networks, they may in reality be using probabilities rather than activations, with this im-
plicit use of probabilities and their well-defined semantics being what enables coherent symmetric 
processing.  Together, this dichotomy and its sub-dichotomy yield a distinction between symmetric, 
probabilistic processing versus asymmetric, activational processing. 

4.  Combinatory versus Noncombinatory 
The final dichotomy concerns the flexibility with which dyads can be combined, getting at the 
combinatory aspect deferred from Section 2.  In its simplest form, this bears on whether dyads can 
be combined in arbitrary ways, as presupposed in traditional symbol processing, versus only in a 
fixed set of ways, as in neural networks. 

There are both representational and reasoning aspects to this dichotomy, each of which yields 
a relevant sub-dichotomy.  The easiest way to understand the representational sub-dichotomy is to 
consider predicate versus propositional logic.  The atomic formulas to which truth is assigned in 
the latter are limited to unitary elements – i.e., symbols such as A – whereas in the former they are 
predicates – or relations – over tuples of terms, such as Above(id:A value:B).  Shared ele-
ments among relations can also yield structured networks of them.  The reasoning sub-dichotomy 
concerns whether there is a first-order, lifted, or variablized aspect to the processing versus it all 
being grounded in constants.  Canonical symbol systems thus comprise (symbolic) relations with 
variablized processing.  Canonical neural systems comprise (subsymbolic) propositions with 
grounded processing that is limited by how the elements are interconnected.    Combinatory repre-
sentation and processing may lead to combinatorics, in the traditional sense of computational com-
plexity, but it need not do so, and combinatorics itself is not the focus here. 

The proposed central integrating concept here is lifted dyadic tensors (Table 2).  In such a 
representation, 0D tensors correspond to propositions, whereas nD tensors correspond to n-ary tu-
ples.  The values along each dimension of a tensor are the symbols – as defined weakly in Section 
2 but used more strongly here in Table 2 – that can be in that dimension’s position in the tuple, with 
the locations within the tensor, such as Red\Square in Table 2 – or even (color:Red 

Color\Shape Square Circle 
Red .3 .4 
Blue .2 .1 

Table 2. 2D tensor, or binary tuple, with a single joint distribution over the instances. 
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shape:Square) – serving as instances of the relation.  Metadata is associated with each such 
instance – such as 0.3 for Red\Square – yielding a tensor of dyads. 

Such a representation can span symbolic relations, neural tensors (Smolensky & Legendre, 
2006), distributed vectors (Jones & Mewhort, 2007), semantic pointers (Eliasmith, 2013), and vec-
tor symbolic architectures (Levy & Gayler, 2008).  It can also represent individual neural units via 
0D tensors, or vectors (1D tensors) of units corresponding to whole layers, or even arrays (2D 
tensors) of units for special cases like vision.  When lifted – as in (color:x shape:Square) 
– whole dimensions may be represented by single variables, and sets of dyads that are processed 
identically may be processed as if they were single elements.  

As with the other dichotomies, not all “symbol” systems are combinatory nor are all “neural” 
systems noncombinatory.  For the former, consider arithmetic circuits and sum-product networks, 
which are both symbolic, but which compute results in time that is linear in the size of their prede-
fined networks.  For the latter, consider either the tensor approaches to neural modeling already 
discussed or convolutional neural networks (LeCun et al., 1989).  A convolutional network for 
vision, for example, defines a tile – i.e., a rectangular subregion of pixels – as an array (a 2D tensor), 
with a variable origin that lets it align with arbitrary sub-regions of the image. 

5.  Map of Standard AI Approaches 
Table 3 shows the 3D map from Table 1, as filled in with a range of mostly standard AI approaches.  
Classical symbol systems – including statistical relational ones – do show up at the opposite corner 
from classical (including deep) neural networks.  However, all of the other cells are also filled, 
albeit some with approaches that have not yet been mentioned and which may be less familiar to 
cognitive-systems audiences, such as the subsymbolic, combinatory approaches of relational Boltz-
mann machines (Kaur et al., 2017) and neural networks (Blockeel & Bruynooghe, 2003), and graph 
neural networks (Gori, Monfardini, & Scarselli, 2005).  The work on relational Boltzmann ma-
chines was in fact only tracked down after an initial map was created with a blank cell for 

Combinatory Symbolic Subsymbolic 

Symmetric First-Order Logic, 
Statistical Relational Relational Boltzmann Networks 

Asymmetric Rules, 
Analogical Mapping 

Tensors 
Relational and Graph NNs 

 
Noncombinatory Symbolic Subsymbolic 

Symmetric Probabilistic Graphical, 
Constraint Propagation 

Hopfield and Boltzmann 
Networks  

Asymmetric Arithmetic Circuits,  
Sum-Product Networks Feedforward and Recurrent NNs 

 

Table 3. 3D map filled in with a range of standard AI approaches. 
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subsymbolic, asymmetric, combinatory approaches.  Other less obvious opposites are also apparent 
in this more fleshed out map, such as relational Boltzmann machines versus sum-product networks, 
and constraint propagation versus tensors.  What to make of such additional opposites, beyond their 
nonobviousness, remains to be determined. 

This map is almost certainly incomplete as it stands, intended as it is to only be illustrative at 
this point of the diversity of approaches and their relationships, rather than exhaustive.  Left to 
future work is exploring AI approaches more systematically, including those that may not fit so 
nicely.  Still, what is already there arises from across many of the central paradigms in the history 
of AI.  Also, it is already clear that some of what is missing appears to be non-elemental, in the 
sense of requiring a combination of approaches from across cells.  For example, the map includes 
analogical mapping in the symbolic, asymmetric, combinatory cell, where information from a 
source analogue is transferred to the new situation, but the full analogy process also requires a prior 
retrieval of candidate analogues and selection of one among them, with this other problem more 
akin to declarative memory access and thus to the symmetric approaches.  Similarly, solving con-
straint satisfaction problems typically requires not only constraint propagation – a symbolic, sym-
metric, noncombinatory process – but also conditioning, a combinatoric search process in which 
candidate assignments of values to variables are explored when the propagation process fails to 
resolve all of the ambiguity existing within the problem. 

The map also highlights key similarities and differences among these approaches.  Consider, 
for example, how it displays that for every symbolic approach there is a corresponding subsymbolic 
approach and vice versa.  Or consider the L-shaped path from probabilistic graphical models 
through arithmetic circuits to feedforward networks, which captures the essence of Choi and Dar-
wiche’s analysis of the similarities and differences between the endpoints of this chain.  The sym-
metric versus asymmetric dichotomy is also intriguing, in distinguishing pairs of approaches that 
seem similar but that embody crucial differences that have not always been easy to articulate. 

6.  Applying the Map to Sigma 
Cognitive and AGI (artificial general intelligence) architectures (Kotseruba & Tsotsos, 2018; 
Goertzel, 2014) may span multiple of the cells in Table 3, although not necessarily replicating all 
of the approaches listed for them.  Consider the Common Model of Cognition, which is the original 
source of the (sub)symbolic central integrating idea.  It also supports forms of both sides of the 
(a)symmetry dichotomy, in terms of (symmetric) declarative memory and (asymmetric) procedural 
memory (Rosenbloom, 2019).  It further supports combinatory structures, although in an ideally 
noncombinatoric cognitive cycle – limited to ~50 msec per cycle in people – while enabling com-
binatoric search across cycles.  In this section we apply this map to analyzing the Sigma cognitive 
architecture – one of the three that most heavily influenced the initial version of the Common Model 
– along with relevant supra-architectural capabilities that, in conjunction with the architecture itself, 
begin to form a more complete cognitive system. 

6.1  Overall Structure of Sigma 

Sigma is structured into two architectures, one graphical and the other cognitive, both of which 
yield languages within which knowledge and skills can be expressed.  The lower-level, graphical 
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architecture is an extended version of factor graphs and the sum-product algorithm (Kschischang, 
Frey, & Loeliger, 2001; Rosenbloom, Demski, & Ustun, 2016b).  Factor graphs are a general form 
of graphical model that subsumes both Bayesian and Markov networks, and that can be used in 
solving arbitrary multi-variate functions, not just probabilistic ones.  The sum-product algorithm is 
a general message-passing method for solving graphical models. 

The cognitive architecture enables expressing knowledge and skills at a higher level based on 
a deep combination of ideas from rules and probabilistic reasoning.  The graphical architecture, in 
a sense, implements the cognitive architecture, in that knowledge and skills in the cognitive lan-
guage are compiled down to graphs that are solved via the extended sum-product algorithm. 

In this way, this combination is analogous to a variety of layer pairs in standard computer sys-
tems, such as the combination of high-level and assembler languages, or computer and microcode 
architectures.  It is also like Alchemy (Domingos & Lowd, 2009), which compiles probabilistic 
first-order logic into Markov networks, and Choi and Darwiche’s approach of compiling Bayesian 
networks into arithmetic circuits.  Alchemy, however, only supports symmetric symbolic pro-
cessing, compiling from the combinatory cell of this type to the noncombinatory one, by – unless 
there is lifting – generating an exponential amount of structure that is processed in time that is linear 
in the size of the resulting structure.  Choi and Darwiche instead compile from the symbolic, non-
combinatory, symmetric cell to the corresponding asymmetric one, a process that ends up being 
complicated by this (a)symmetry mismatch. 

In contrast to such approaches, the full table is potentially available in both of Sigma’s lan-
guages, enabling broad scope with simple within-cell compilation.  This, furthermore, occurs in a 
manner that directly leverages the similarities and differences among the cells, rather than requiring 
distinct modules for each.  The remainder of this section analyzes Sigma in terms of (1) the third 
hypothesis, by looking at how its two architectures/languages support the three dichotomies, and 
thus potentially enable at least something in each cell and (2) the fourth hypothesis, by exploring 
the specific approaches in Table 3. 

Figure 1. Message passing via the sum-product algorithm for the marginal on the concept (k) in the factor 
graph for p(k,l,c) = p(k)p(l|k)p(c|k).  [Reproduction of Figure 44 from Rosenbloom et al. (2016a).] 
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6.2  Graphical Architecture/Language 

As mentioned in the previous section, Sigma’s graphical architecture originated with factor graphs 
and the sum-product algorithm (Figure 1).  Factor graphs are undirected bipartite graphs with factor 
nodes representing the factors into which the overall function is decomposed and variable nodes 
connecting them based on shared variables.  The sum-product algorithm computes marginals over 
the graph’s variables by passing messages between adjacent factor and variable nodes.  Because 
this enables factor graphs to represent arbitrary numeric functions, rather than just probabilistic 
ones, this initial version could already exploit data/metadata dyads to generically span the 
(sub)symbolic dichotomy.  However, factor graphs are symmetric and noncombinatory, and so by 
themselves neither support the asymmetric rows in the map nor any of the symmetric combinatory 
approaches in its top plane.  

Asymmetry has been introduced by leveraging the proposed central integrating concept for 
(a)symmetry; in other words, by allowing selective omission of messages along one direction of 
what would normally be symmetric links.  This does break the clean semantics of factor graphs for 
asymmetric regions, but still supports them in symmetric regions while providing a key aspect of 
rules, neural networks, and other asymmetric structures.  This approach to spanning (a)symmetry 
differs from approaches based on distinct modules – whether for Bayesian networks and arithmetic 
circuits (Choi & Darwiche, 2018) or for declarative and procedural memories (Laird, Lebiere, & 
Rosenbloom, 2017) – by enabling mixing across the dichotomy at the very fine granularity of indi-
vidual links in the graph. 

With respect to the data-versus-metadata nonlinearity sub-dichotomy, Sigma incorporates two 
additional extensions to its factor graphs, one for each form of nonlinearity.  For data nonlinearity, 
at the end of each cognitive cycle it can alter the functions in factor nodes that form the Common 
Model’s notion of a working memory for use in the next cycle, corresponding to what standard rule 
systems do between cycles.  For metadata nonlinearity, an approach akin to that in Choi and Dar-
wiche has been leveraged, whereby special-purpose factor nodes may hold nonlinear metadata 
transforms, whether for rule negation – the original reason for adding this capability – or for the 
nonlinearity required in feedforward/deep neural networks.  

To enable a full combinatory capability, one further extension is necessary: extending the factor 
graphs to statistical relational by leveraging the (non)combinatory integrating idea of lifted dyadic 
tensors.  Such tensors can express probability distributions over sets of random variables – with 
one dimension per variable – or delineate the relational instances that match a rule condition.  Via 
tensor products, they can also compute the compatible bindings across sets of rule conditions.  The 
representational aspect of this lifting is supported by enabling consideration of all elements along 
a tensor dimension, as if a variable existed for that dimension.  The processing aspect is supported 
by enabling each location along a tensor dimension to represent an arbitrary span of symbols along 
that dimension, as long as the metadata values for that span are within epsilon of each other for 
each combination of symbols along the other dimensions, thus enabling entire sets of comparable 
elements to be processed in one step. 
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6.3  Cognitive Architecture/Language 

Sigma’s cognitive architecture/language is based on predicates and conditionals.  Predicates have 
names plus zero or more typed arguments.  They define the varieties of dyadic tensors usable by 
the system, whether (subsymbolic) tensors or (symbolic) relations.  Conditionals combine the con-
ditionality found in both asymmetric structures, such as rules and neural networks, and symmetric 
structures such as graphical models and constraint networks.  They consist of combinations of pred-
icate patterns – conditions, actions and condacts (which symmetrically blend both conditions and 
actions) – plus functions.  The predicate patterns and associated data types in essence specify the 
symbols/data and relations, with variables usable for representational lifting, while the functions 
specify the quantitative metadata. 

With just conditions and actions – which asymmetrically match to working memory and change 
it – rules result, such as the simple one in Table 4(a) (all conditionals shown here are simplified for 
readability).  With just condacts plus functions, fragments of factor graphs result (as in Table 4(b)).  
Nothing about either of these conditionals demands meaningful data rather than metadata, although 
data certainly is more critical for the former and metadata for the latter.  Likewise, nothing about 
conditions, actions, condacts, or functions restricts their combinations in conditionals to be purely 
symmetric or asymmetric.  Combinatory processing itself arises directly from variable usage. 

Table 4(c) shows a rule-like manner in which the forward portion of a neural-network layer can 
be encoded via a condition and an action, but with also a function (which, in contrast to the one in 
Table 4(b), is asymmetric and activational rather than symmetric and probabilistic).  In this lifted 
format, a single conditional with a 1D function can represent a full neural-network layer; although 
it could instead have been decomposed into a set of propositional conditionals with 0D functions, 
one for each connection. 

 (a) CONDITIONAL Transitive-Above 
    Conditions: Above(id:a value:b) 

Above(id:b value:c) 
    Actions: Above(id:a value:c) 
 
 
(c) CONDITIONAL Layer1-Forward 
    Conditions: Input(arg:i) 
    Actions: Hidden(arg:h) [s] 
    Function(i, h): -1.739:(0, 0) … [v] 
 
 
 

(b) CONDITIONAL Concept-Legs 
    Condacts: Concept(object:o value:c) 

Legs(object:o value:l) 
    Function(c, l): .9:(table, 4) … 

Table 4. Example conditionals for a rule, a leg of a naïve Bayes classifier, and a layer of a neural network. 
(a) Transitive rule for Above predicate with variables connecting conditions and actions. (b) Leg of a naïve 
Bayes classifier for the conditional probability distribution P(#Legs | Concept). (c) Forward input layer of 
a two-layer neural network.  s inserts a sigmoid node in the action graph.  v uses vector rather than proba-
bilistic gradient descent learning. 
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6.4  Coverage of AI Approaches 

In total, the previous two subsections show how Sigma supports at least one approach from six out 
of the eight cells in the map, missing at present only the two subsymbolic symmetric ones.  Here 
we explore the second additional hypothesis by assessing Sigma with respect to the specific ap-
proaches listed in the table.  Most of Sigma’s extant capabilities are covered in Rosenbloom, 
Demski and Ustun (2016a).  Only the more recent ones not included there will be accompanied by 
additional citations in what follows. 

The eight cells in the table will be covered systematically by exploring them in a breadth-first 
fashion – starting from the combinatory, symbolic, symmetric cell at the top left – in order to high-
light the incremental changes that occur with movement to adjacent cells.  To make this easier to 
follow, the outer loop of the search will remain on the combinatory plane, with each noncombina-
tory cell covered immediately after its combinatory partner. 

At the origin sit both first-order logic and statistical relational systems.  Covering the latter is 
a direct consequence of Sigma’s grounding in factor graphs with lifted dyadic tensors.  Table 4(b) 
showed a simple example of this at the cognitive level.  Although first-order logic has not yet been 
demonstrated in Sigma, following the Alchemy approach of reducing (probabilistic) first-order 
logic to (probabilistic) graphical models (Domingos & Lowd, 2009) seems a promising approach 
here.  Moving down to the corresponding noncombinatory cell, coverage of probabilistic graphical 
models is directly implied as a special case of statistical relational systems.  Constraint propagation 
has been demonstrated via variants of the conditional in Table 4(b), with a Boolean function iden-
tifying whether or not combinations of variable values are valid.  Although this is a lifted form, it 
is straightforward to ground it instead in a set of propositional conditionals. 

To the right are relational Boltzmann machines, the subsymbolic equivalents of statistical re-
lational systems that deal with relational rather than only vector representations; and, moving down 
to the noncombinatory plane yields the more familiar approaches of Hopfield networks and Boltz-
mann machines. None of these approaches have been demonstrated to date in Sigma but given the 
close ties between Boltzmann machines and Markov networks, this may be straightforward. 

Starting again from the origin and moving down to its asymmetric neighbor yields rules – as 
exemplified in Table 4(a) – and analogical mapping.  Both have much in common with first-order 
logic – in particular their symbolic, combinatory natures – but there have long been arguments 
concerning the appropriateness of (production) rules versus (formal) logic. In Sigma, rules and 
working memory from the cognitive level map onto separate fragments of the total graph at the 
level below, with an approach much like the Rete algorithm (Forgy, 1982) implemented via asym-
metric graph structures for both condition match and action instantiation.  Early experiments on a 
symbolic, combinatory form of analogy, based on the Structure-Mapping Engine (Falkenhainer, 
Forbus & Gentner, 1986), have been done in Sigma (Parker, Personal Communication, 2013).  Alt-
hough not extremely relevant here, a subsymbolic form of analogy (Mikolov et al., 2013) based on 
tensors has also been demonstrated. 

Moving down to the corresponding noncombinatory cell, Sigma has been shown to be capable 
of embodying sum-product networks (Joshi, Rosenbloom, & Ustun, 2018), which are effectively 
asymmetric variants of probabilistic graphical models.  Although, when restricted to be complete 
and consistent, they can only solve a subset of the problems solvable via probabilistic graphical 
models, they are of particular interest because of their ability to yield polynomial solutions for 
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important problems like probabilistic parsing that are inherently exponential in probabilistic graph-
ical models.  The conditionals for sum-product networks turn out to be very much a hybrid among 
the conditionals used for rules (Table 4(a)), probabilistic graphical models (Table 4(b)) and feed-
forward neural networks (Table 4(c)) in the three neighboring cells.  In particular, they fuse aspects 
specific to each: rules – symbolic with conditions and actions; probabilistic graphical models – a 
probabilistic function; feedforward neural networks – use of a function with conditions and actions.  
As such, they provide one of the more compelling examples of the close relationships that can exist 
among neighboring cells in the table and thus of the potential benefits of a non-modular strategy 
for supporting such a space of approaches.  We have not yet attempted arithmetic circuits in Sigma 
but with their close relationship to sum-product networks this should not be difficult. 

The last combinatory cell includes tensors plus relational and graph neural networks, combina-
tory opposites of first-order logic and statistical relational systems but sharing important features 
with both of their combinatory neighbors (i.e., the other two combinatory cells).  Basic tensor pro-
cessing in Sigma is a direct consequence of the subsymbolic use of lifted dyadic tensors and the 
operations performed on them by the sum-product algorithm.  Relational and graph neural networks 
have not yet been explored in Sigma and remain tasks for future work.  Moving down now to the 
corresponding noncombinatory variants, feedforward neural networks have been demonstrated 
(Figure 4) in Rosenbloom, Demski and Ustun (2016b).  This has also recently been extended to 
recurrent neural networks. 

Thus, Sigma provides an exemplar of how to integrate across approximately one half of the 
approaches in Table 3, with plausible stories readily available for the rest.  It furthermore does so 
not by including separate modules for each of these approaches, but instead by attempting to capture 
their underlying commonalities and differences. 

7.  Summary and Conclusion 
Motivated initially by the goal of understanding better the traditional, coarse-grain dichotomy of 
symbolic versus subsymbolic that is typically used to distinguish symbolic approaches from neu-
rally-inspired ones, this dichotomy has been deconstructed into three more basic ones: (sub)sym-
bolic, (a)symmetric, and (non)combinatory.  A central integrating concept has been proposed for 
each – dyads of symbolic data and quantitative metadata, direction of dyad flow, and lifted dyadic 
tensors – as a means of understanding them more deeply and of suggesting ways to ultimately 
integrate across them.  As proved useful during the analyses, additional sub-dichotomies have also 
been called out for each of these dichotomies. 

The cross product of the dichotomies yields a 3D (2×2×2) map that is at the heart of four new 
hypotheses, two core ones that provide the major results of this article and two additional ones that 
are more speculative.  Each of these hypotheses has been articulated, explored, and evaluated in 
this article, but to varying extents.  The two core hypotheses are: 

1. Symbolic/statistical and neural/ML approaches appear at opposite corners of the 3D space that 
is defined by the cross product of the dichotomies, with the former characterized by the bare 
terms in each dichotomy and the latter by the prefixed terms. 
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2. The 3D space frames a novel form of map over a range of mostly standard AI approaches that 
can help understand both the overall topology of AI and the core commonalities and differences 
among the approaches that populate the map. 

The two additional hypotheses are: 

i. Every complete cognitive system must support some approach in each of the map’s eight cells. 
ii. Every complete cognitive system must support not just some approach in each of the eight 

cells, but an approach in each cell that captures the essence of what makes it uniquely powerful 
and has thus justified work focusing on it in isolation. 

The two core hypotheses have been explored and evaluated in terms of the structure of AI in gen-
eral, yielding the beginnings of a 3D map of AI approaches that spans from symbolic/statistical to 
neural/ML while structuring the relationships among a wider range of AI approaches from different 
paradigms that, at least according to the map, can be considered as intermediaries between them.  
The two additional hypotheses have not yet received any form of general evaluation, but a step in 
this direction has been taken by leveraging them in analyzing the Sigma cognitive system – includ-
ing the architecture and a number of supra-architectural capabilities – which touches in some man-
ner on many of the cells. 

Future work should include investigating additional dichotomies and approaches in order to 
yield a more complete and informative map of AI approaches, with learning in particular a central 
component.  It should also include understanding how any additional approaches either fit within 
individual cells, imply aggregates across multiple cells, or do not fit at all. Also important is ex-
ploring the extent to which the additional hypotheses, or variations on them, ultimately prove valid. 

A critical question that is not relevant to the first two hypotheses, but that is central to the last 
two, is whether both sides of each dichotomy are truly needed for full intelligence.  For example, 
is there a distinct essence in each cell that must be present separately, or do some parts completely 
subsume others – such as combinatory subsuming (non)combinatory – in a manner that makes those 
that are subsumed unnecessary in any explicit form?  Even without subsumption, is it possible to 
construct one approach from another – such as in constructing symmetric autoencoders from asym-
metric feedforward networks – so that only one is actually needed in the architecture?  Whatever 
ends up being true, these are interesting and relevant questions to ask, with the discussion here 
having provided a particular start. 
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