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Abstract 

One challenge for building software organisms is to support more autonomous, self-directed 

learning, rather than induction from annotated data or from blindly explored state spaces.  We 

present a mechanism for learning a simple game given a qualitative model that provides partial 

information about how actions and quantities influence each other and about tradeoffs among goals.  

This information lets the learner progressively rule out unproductive actions based on qualitative 

descriptions of the current situation and to experimentally adjust the relative importance of 

competing goals.  We show that this amounts to operationalizing a qualitative model into a quanti-

tative prescriptive model, which can lead to rapid improvement in performance on a game.  In 

experiments with a simple Human Resources Management game, this approach learned to win after 

one trial and continued to improve its score and reduce the number of actions needed to win 

throughout the next nine trials. 

1.  Introduction 

Any human-like model of learning should account for the role of prior knowledge. When we learn 
a new task, we do not start from a blank slate, but, rather, expectations and beliefs guide actions 
and explanations to permit learning from far fewer trials than is the norm for today's statistical 

induction methods.  We refer to this as data efficiency.  One way that knowledge can guide learning 
is through self-directed experimentation in which the learner poses questions to itself and takes 
actions to winnow down uncertainty and triangulate on ever more accurate models. Knowledge 
about the domain can help pose questions that refine these models as well as guide the credit 
assignment process.  

Another way to achieve data efficiency is to support a more general notion of state.  A learned 

action policy need not map from concrete primitive states to ground primitive actions, but may 
comprise abstract states and constraints on them that map to generalized actions. In this way, 
learning involves a progressive refinement of states and actions that can stop as soon as 
performance plateaus, rather than exhaustively searching through primitive states.  We bring 
together these ideas with experimentation and reinforcement learning, using prior domain 
knowledge stated as a qualitative model (Forbus, 2019). We show how such a qualitative model 

can support self-directed experiments at a high level by exploring quantitative tradeoffs among 
competing goals. We also show how the same model can guide credit assignment to rule out 
ineffective action policies. In our approach, qualitative state representations further serve as antece-
dent conditions on learned action policy rules. 
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Previous work in active learning and experimentation has focused on supervised learning for 
classification tasks (e.g., Angluin, 1988) or domain theory acquisition and refinement (e.g., Gil, 
1994).  These approaches both result in efficient learners, but our alternative differs in the nature 

of the prior knowledge available to the learner, the necessity for and means of credit assignment, 
and encoding learned knowledge as an action policy. Research on reinforcement learning has 
emphasized bottom-up statistical methods that assume no prior knowledge, at the cost of many 
trials (Sutton & Barto, 2018). Although our mechanism is also unsupervised, it leverages a qual-
itative domain model to support more efficient learning. We believe this will support a continuum 
of approaches from highly interactive apprentice-like knowledge acquisition to fully autonomous 

experimentation. 

In this paper, we describe a system that learns to play a simple game given a qualitative model 
of its mechanics.  In the next section, we introduce the domain, the Human Resources Manager 
game, and its design rationale. In Section 3, we explain how it plays the game using a qualitative 
model and goal network. Section 4 presents the system’s learning mechanism, including modules 
for credit assignment, experimentation, experimental controls, and learning goals. Section 5 pre-
sents the results from experimental studies of these abilities, Section 6 compares our approach to 
related research efforts on learning for sequential activity, and Section 7 presents our conclusions 

and plans for future work. 

2.  The Problem Domain 

Human Resources Manager (HRM) is a single-player game in which the objective is to manage a 

small printing company for 20 months without driving it into bankruptcy or ending with a negative 
cash flow. The player starts with $50,000 and a roster of three employees, then makes human 
resource decisions about hiring, firing, training, promoting, and giving raises to those workers.  
Unhappy employees quit and former employees sue the company if they were fired improperly.  
Each of these events has implications for the company’s cash reserves.  

HRM was adapted from a 27-year old corporate training simulator (Feifer & Hinrichs, 1992).  
It is implemented via backchaining rules in a form similar to the Game Description Language 
(Genesereth & Thielscher, 2014). We chose HRM because it was simple to implement and it has a 

complex underlying mathematical model, yet it factors out both adversarial and stochastic complex-
ities. Thus, it provides a simple testbed to explore ideas about autonomous experimentation by 
enabling the system to control quantities and actions. We make no claims for its entertainment or 
pedagogical value. 

Negotiating tradeoffs is key in this setting, as in most strategy games.  Finding an effective 
compromise between competing demands is an abstract task that is a major part of acquiring and 
refining game strategies. One of our research goals is to discover how to acquire such strategic 
knowledge with the same basic mechanism as learning action-level policies. There are three main 

tradeoffs in HRM. First, the goal to reduce labor costs with a low headcount competes with the goal 
to maximize income.  Second, the goal to keep employees happy with high salaries competes with 
keeping salaries low to reduce labor costs.  Third, the goal to invest in employee training competes 
with keeping payroll costs down. Discovering quantitative compromises for these goals can be 
viewed as turning a qualitative model into a semi-quantitative model which constrains, rather than 
optimizes, behavior.  
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3.  The Game Player 

Before describing our approach to learning, it is helpful to first understand the performance 
mechanism. In our implementation, the game player is a functional part of a Companion agent 
(Forbus, Klenk & Hinrichs, 2009) that interprets game definition rules and takes random, legal 
actions. The learning mechanism acquires action policies that constrain those choices. Both are 
built on top of the planning and reasoning facilities provided by the architecture. 

To play a game, the player first initializes the game state, which for HRM consists of 
quantitative properties and relations of the simulated company. On each turn, it queries for legal 
actions, selects one, and applies it.  Most actions take place at the domain level and apply to indiv-
idual employees, such as giving a raise or evaluating them. These have immediate effects, so we 
refer to them as synchronic. There is a special diachronic operator, doNextTurn, that advances the 
simulated time by one month. The player can take any number of actions within a turn and then 

explicitly advance the time.  This happens automatically when there are no more viable actions in 
a turn. The game is over when the query for a terminal state succeeds, at which point it computes  
the final score. 

The system must learn to select good actions.  Instead of starting with a blank slate, like most 
reinforcement learning agents, it has a qualitative model of the quantities in the game, the graph of 
their influences, and the qualitative effects of actions on quantities. For example, giving an 

employee a raise increases their salary, which in turn positively influences the employee’s attitude 
and the company’s labor costs. The learning problem is to figure out how to balance these compet-
ing factors and identify conditions for taking actions. 

The qualitative model for HRM was manually constructed by abstracting the quantitative 
equations in the game’s rules.  Prior work has shown the feasibility of learning a qualitative model 
from demonstration (Hinrichs & Forbus, 2012), but this was not the current research focus. The 

HRM model has 37 reified quantity types and 53 influences linking quantities, actions, and events.  
A quantity type may be instantiated for each employee or for the company itself. 

Because the qualitative model ultimately connects intermediate quantities like salary to the top-
level game goal, it is possible to automatically translate the quantity influences into subgoals. A 
static analysis routine walks the qualitative influences starting from the root goal quantities and 
reifies goals, as described in Hinrichs and Forbus (2016).  Here, the goal types that are produced 

are all of the form ‘maximize (or minimize) some quantity type’.  As a side effect of building this 
goal network, static analysis detects tradeoffs by identifying quantity types that both positively and 
negatively influence the same quantity.  Figure 1 shows the goal network for HRM, where the oval 
nodes indicate goals with direct tradeoffs.  

We refer to a goal in this goal network as operational if there is a qualitative influence between 
some primitive action and the goal quantity. For instance, maximizing an employee’s salary is oper-

ational because there is a qualitative dependence of employee salary on the action doGiveRaise.  
Higher-level goals, such as maximizing employees’ attitudes, may be active but are not operational 
because there is no direct control over attitudes. 

The reified goal network serves an additional purpose of keeping track of the relative activations 
of goals throughout the game. These roughly correspond to each goal’s importance and thereby the 
proportional allocation of effort expended in pursuing it. Conceptually, if the top goal to win the 

game has 100 percent activation, then that activation is subdivided among its subgoals.  By default, 
activation is allocated evenly, so that it serves as an informal proxy for importance relative to the 
top-level goal. Activation will be set to zero, however, if a goal type has no entities to which it 
applies. For example, a goal to maximize employee salaries will be inactive if there are no em- 
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ployees. Also, goal activation can be explicitly set by a meta-level planning action. This is how 
experimentation sets a tradeoff balance when exploring tradeoffs. 

 The effect of goal activation is to control the likelihood of picking actions that serve one goal 
over another. For goals that are pertinent to a single entity, such as the company, this results in 

stochastically picking an action or not, by simply using the goal activation percentage as the 
selection threshold. If the activation is 80%, then it will take that action roughly 80% of the time 
and take a competing action the other 20%.  For goals that apply to many entities, activation serves 
to divide actions by entity. For example, if the goal of maximizing salaries is 20%, then only one 
fifth of employees should receive raises. We refer to this as an action budget for a type-level goal. 
The action budget ensures that no single action type monopolizes the available resources.   

The next stage of action selection is to further constrain candidate actions by consulting any 
learned action policies or experimental conditions. Initially, there are no policies, so behavior 
appears goal-directed but still somewhat random. An action policy provides bounds on when an 
action should or should not be performed. This is encoded in declarative statements of the form 
(<cc-type> <learning goal> <condition-name> <action-spec>) 
where 

<cc-type> = controlCondition | controlConditionLowerBound | controlConditionUpperBound 
<action-spec> = (<directive> <generalized-action>) 
<directive> = ruleIn | ruleOut . 

 

Figure 1.  Goal network for HRM computed from the qualitative model. 
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Here, a learning goal names the explicit reified goal to learn when to apply the action.  Learning 
goals are posted by the learning mechanism in response to performance failures and other expec-

tation failures. A condition name is a functional term that specifies an inequality between quantity 
fluents. A generalized action is a primitive action, some of whose arguments may have been lifted 
to typed variables. For example, (doHRMPromote gameEmployee)is the generalized action 
of promoting someone, as opposed to a particular employee. 

When action policies exist for the candidate actions, the game player queries the inequality in 
the named condition to determine if the condition is active and, based on whether it is a lower bound 

or upper bound, it adopts the directive (or its opposite, respectively), to accept or reject the action.  
A simple control condition that is neither an upper nor lower bound is an experimental control that 
is used to force the selection or rejection of a particular action in order to explore the state space or 
to suppress confounding behaviors. Note that the named condition inequality defines a qualitative 
state, but that state definition may contain constant numeric thresholds. Thus, as it acquires and 
refines action policies, its knowledge can become increasingly quantitative. 

The pseudocode in Table 1 summarizes the action selection process.  When the game player 
chooses an action to take, it steps through active, operational domain goals in decreasing order of 
activation.  The system identifies action predicates that influence the goal quantity and queries for 
ground legal actions.  If there are action policies or experimental conditions on the action predicate, 
it filters the actions and selects the action whose entity argument is underperforming the most with 
respect to the goal.  For example, only the most underpaid employees should receive raises.  Finally, 

it takes the action in the game and records the quantity changes as it computes the next state. 

4.  Learning Mechanism 

Our primary objective is to devise a learning mechanism that acquires abstract lessons autonomous-

ly from as few trials as possible. To this end, experimentation helps to curate experience by 
strategically guiding exploration, while credit assignment extracts powerful lessons from each trial.  
Supporting both of these is a qualitative model that guides both activities. What is learned are action 
policy rules that allow or prohibit an action based on a qualitative description of the game state. 
These rules are refined progressively with experience, both immediately after taking an action and 

 

 

 

Table 1. Procedure for action selection with a qualitative model and an action policy. 

foreach domain goal in decreasing order of activation do 

 while meets_action_budget(goal) 

  legal ← legal_actions(goal) 

  acceptable ← filter_by_action_policy(legal) 

  action ← instantiate_with_most_underperforming_entity(acceptable) 
   Take action 

  Record before/after quantity changes 

  Refine action policy 

 end 

end 
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retrospectively after an event signifying a failure (typically game loss). In both cases, the qualitative 
model guides the identification of salient quantities whose values create or refine the initial quali-
tative state description. Thus, the inputs to the learning mechanism are sampled quantity values 

identified by credit assignment in response to significant events, such as losing the game, and the 
outputs are action policies that constrain behavior. 

4.1  Credit Assignment 

Part of data-efficient learning is drawing powerful or general conclusions from each trial.  Credit 

assignment seeks to explain the underlying cause of a failure by reasoning about the chain of 
qualitative influences from an action to a manifestation of failure. When the player loses a game, it 
carries out a post-mortem analysis.  It looks back in time to the most recent action that led to the 
loss. In general, this is an arbitrarily hard problem, but the qualitative model provides strong guid-
ance in reconstructing the causal trail back to poor decisions. 

Post-mortem analysis examines the current situation to identify the quantities contributing to 
the loss. For HRM, this is the company’s capital (cash reserves) reaching zero. It then traces 
backward in time, looking for a change in the profit rate until it reaches the turn in which some 

action must have influenced the company’s capital. It searches the indirect (i.e., synchronic) 
influences on capital until it finds an action that negatively impacted the profit rate, such as giving 
a raise or firing somebody. The post mortem uses the results of credit assignment to post learning 
goals to determine the conditions under which the action primitive should or should not be applied, 
creates or refines the action policy for that action, augments the set of quantities to be recorded for 
future credit assignment, and schedules follow-up experiments to further refine the policy. 

Another kind of credit assignment happens during the game, when the result of an action does 
not have the expected effect on downstream, high-level quantities. This does not mean that the 

action was incorrectly described but, rather, that in the particular quantitative state under which the 
action occurred, it affected multiple quantities that combined to reduce the overall performance.  
For example, firing a good employee might reduce labor costs, but it might decrease income even 
more.  This immediate credit assignment need not walk back through time, since it already knows 
which action was invoked. The routine identifies salient quantities as those whose value changed 
when the action was taken and caused the undesirable quantity change downstream. With this 

information, it refines the action policy for the action using the same mechanism as post-mortem 
credit assignment. 

4.2  Generalization 

To prevent the same mistake from being made in similar circumstances, the agent constructs a 
policy for that action which may initially be extremely specific to the particular action and situation, 
but is progressively refined and generalized as new examples are encountered. Whereas an action 
policy in most reinforcement learners maps directly from states to utilities, our learner instead 
acquires and generalizes constraints on actions.  In particular, an action policy rule conditions an 
action specification with a qualitative state.  The action specification either requires or prohibits an 

action, which may itself be lifted or generalized. For example, a policy might prohibit promoting 
AmbitiousAlice when her performance is less than 20 and her attitude is less than 50. Such a rule 
would look like  
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  (controlConditionLowerBound  

    (LearnCondForActionFn doHRMPromote) 

    (MostSpecificConditionFn doHRMPromote) 

    (ruleOut (doHRMPromote AmbitiousAlice))) 

where first argument is the learning goal, the second argument is a functional term denoting the 
name of a model fragment that defines a qualitative state, and the third term is the action speci-
fication. The model fragment, in turn, relates the quantity conditions 

  (and (< (performance AmbitiousAlice) 20) 

       (< (attitude AmbitiousAlice) 50)).1 

As new failure or success instances are encountered, the ranges on quantities are extended and the 
arguments to the action specifications are lifted as necessary. We adapted this representation to 
support experimental controls and it has the additional benefit of being relatively concise and 
explainable to humans.  

4.3  Autonomous Experimentation 

Autonomous or self-directed experimentation is the process by which the learner proposes and 
executes experiments to reduce its uncertainty about the domain. There are two reasons for such 
experimentation: to strategically curate experience and to simplify credit assignment. Our system 
addresses the former by systematically varying experimental parameters and the latter by control-
ling other exogenous parameters to restrict possible causes of change. In addition, it organizes 

experiments around explicit declarative learning goals as a way to be strategic about the exploration 
process. These learning goals are posted by the credit assignment mechanism and specify two 
different kinds of manipulation: action experiments and tradeoff experiments.   

An action experiment is created when a postmortem traces a failure to an action that either 
directly caused a game loss or caused a trend that ultimately led to the loss. The agent posts a learn-
ing goal to refine the conditions under which the action is advisable. It then schedules experiments 

to refine the conditions by exploring the region between the most specific state to rule out and the 
most general.  In other words, it reduces the uncertainty by driving the qualitative state conditions 
in a manner similar to candidate elimination in the version-space framework (Mitchell, Utgoff, & 
Banerjii, 1980). 

Tradeoff experiments, on the other hand, attempt to explore higher-level decisions by control-
ling the relative activations of competing goals. For example, if the baseline allocations of activa-

tion for competing goals are evenly divided, then a tradeoff learning goal will spawn two exper-
imental trials, emphasizing first one goal and then the other by setting its activation to 75 percent 
vs. 25 percent. Subsequent experiments further extrapolate or interpolate the best performing allo-
cation so far. These tradeoff experiments go even further toward simplifying credit assignment by 
suppressing all actions that cannot influence either of the competing goals. Consequently, this 
tradeoff identification mechanism can be thought of as off-policy learning. Because tradeoff studies 

manipulate a single independent parameter (the ratio of two goal activations), no credit assignment 
is needed at all and it identifies the best quantitative tradeoff by hill climbing based on the game 
score. One caveat is that this assumes tradeoffs themselves are independent of each other.  

 
1 We have simplified the syntax here for the purposes of presentation. 
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5.  Empirical Evaluation 

To evaluate our approach to learning game expertise, we ran trials under the two conditions, action 
learning and tradeoff learning.  A trial here, also known as an “epoch” in the reinforcement learning 
literature, is one complete game. We first tested action learning by having the system play autono-
mously through pure trial and error while honoring the goals and qualitative model. Our hypothesis 
was that the goal network would suggest plausible actions to take and the accumulation of action 

policy constraints would further refine the conditions under which they were attempted, yielding 
incremental performance improvement beyond merely surviving twenty turns. We measured the 
operating capital of the simulated company at the end of the last turn. In these trials, the agent 
learned to rule out actions that failed to have an immediate benefit as predicted by the qualitative 
model.  It also learned from post-mortem analysis to rule out actions that had a long-term negative 
effect leading to a loss of the game. 

Initially, performance was spectacularly bad. Because every action in the game serves some 
goal, it micromanaged and tried to pursue every action as often as possible. In some cases, it tried 

firing everybody in the first few turns, leaving the fixed costs to drive the company into bankruptcy 
shortly afterward. Figure 2 shows the results of the first three trials and the tenth trial.  Each chart 
shows the progression of the company-wide capital, income, and production cost over time. While 
the first trial ended with bankruptcy in turn 5, by the second trial it had learned an action policy 
that ruled out firing employees in most conditions and had discovered that hiring more employees 
was the key to surviving past turn 20. In trials 3 through 10, the system continued to improve the 

final outcome by increasing the profitability of the company until it banked $240,000 by turn 20 in 
the tenth trial. This bore out our expectation that performance would continue to improve even after 
it learned to win the game. 

In addition to the performance curves, the charts also present the actual sequence of actions 
and events that occurred in the trial. We can see from this that the system quickly stopped firing 
employees and learned to hire earlier in the game. Moreover, as it refined the action policies, the 
agent learned to play with a lighter touch so that by trial 10, it achieved better performance with far 
fewer actions that consisted of hiring additional employees, giving a few raises and evaluations, 

one promotion, and one training course. Thus, although the qualitative goal network suggests that 
every action serves some goal, the gradual refinement of action policy adds quantitative constraints 
on when it is effective to take those actions. To be clear, this is a very simple, deterministic game 
and the objective is not especially difficult to achieve. In fact, under the baseline conditions of 
taking no actions at all, the company only fails after 19 turns. However, the point of these exper-
iments was to show how quickly the learner improves given fairly minimal background knowledge.  

The second study examined tradeoff learning. Our hypothesis was that qualitative goal trade-
offs can provide a small number of parameters that can be explored, resulting in global improve-

ments in behavior.  Our metric was the same as for the action learning trials.  Figures 3 and 4 show 
the results. Here, because tradeoffs can be enumerated ahead of time, the system scheduled an 
initial set of six trials to extrapolate tradeoff ratios in either direction from the baseline tradeoff 
allocation.  In the first two trials, the agent explored the salary tradeoff by first setting the activation 
of the goal to minimize salaries at 50 percent vs. 0 percent for maximizing salaries. Of course, since 
there is no action to reduce salaries, both activations imply never giving a raise. Moreover, since 

all other actions are suppressed, Trial 1 is equivalent to the baseline condition of taking no actions 
at all.  Note that because this policy uses no learned knowledge, it is an offline policy. 
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Figure 2. Action learning trials 1, 2, 3 and 10. The action abbreviation key is: Evaluate, Promote, Hire, 

Fire, Raise, Train, Lawsuit, Overpaying, and Bankruptcy.  A dash signifies the next turn operation. 
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After this, the agent explored the tradeoff between reducing labor costs by omitting training 
(Trial 3) and increasing employee competence by training employees (Trial 4). As with the salary 
dimension, there is no ‘untrain’ action, so by not training anyone and suppressing all other actions, 
Trial 3 is equivalent to the baseline condition. Trial 4 did train an employee in the first turn, but the 
only evidence was a small spike in production cost, causing it to lose two turns earlier than in the 

baseline condition. In the final pair of trials, the agent explored the tradeoff between having fewer 
employees to reduce labor costs (Trial 5) and having more employees to increase production (Trial 
6). The effect of reducing head count by firing approximately half the staff was swift and severe: 
labor costs dropped, but fixed costs stayed the same causing profits to nosedive, leading to bank-
ruptcy in turn 6. Finally, in Trial 6, by hiring two additional employees at the beginning of the 
game, income (barely) exceeded production cost and the company remained profitable.  

Because the tradeoff experiments suppressed all actions that were unrelated to the goal tradeoff, 
they were essentially off-policy learning (i.e., they did not exploit prior learning). Consequently, 
the trials do not form a learning curve and the final results would have been the same if performed 
in any order. The purpose of imposing such experimental controls was to eliminate confounding 
factors that could hinder accurately determining the better tradeoff ratio. Ultimately, the tradeoff 
trials merely suggest one way for a learning agent to experiment at a more abstract level than 

primitive operators. As currently implemented, the relative goal activations of competing goals are 
a coarse mechanism for controlling behavior and further refinement of the tradeoff ratios would not 
appreciably improve performance in this domain. Despite this, the system learned to win the game 
in six trials, which is data efficient by most standards.  

 

Figure 3. In tradeoff learning trials 1 and 2, the system explored the tradeoff between minimizing salaries 

to reduce labor costs and maximizing salaries to increase attitude and productivity. 
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Figure 4.  In tradeoff learning trials 3 and 4, the system explored the effect of training on performance.  

In trials 5 and 6, it explored the tradeoff between minimizing the number of employees to reduce labor 

costs and maximizing the number of employees to increase productivity. 
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6.  Related Work 

The approach described in the previous section derives from ideas in several areas, most notably 
automated experimentation and active learning, reinforcement learning, and qualitative modeling. 
The main driver has been the desire for an agent that designs its own experiments and pursues its 
own learning goals in ways that make use of available domain knowledge. This builds on prior 
work in active learning and experimentation. The primary difference is that active learning as-

sumes a semi-supervised task in which an agent judiciously chooses queries to pose to an oracle to 
quickly learn to classify instances (Settles, 2012). Like active learning, our approach emphasizes 
data-efficient induction that uses prior knowledge to identify and prioritize gaps. Our mechanism 
for action policy learning has some precedent in hypothesis refinement as version space search 
(Mitchell, 1977). Unlike active learning, we focus on unsupervised acquisition of tactical or stra-
tegic behavior in game playing, rather than on classification. 

Experimentation is a more fully autonomous, unsupervised form of learning in which the agent 
designs and runs experiments to validate or refute its own hypotheses. Part of this involves impos-
ing experimental controls to minimize conflating factors and simplify credit assignment.  Important 
early work in experimentation addressed operator refinement and acquired domain knowledge 
about operator applicability (e.g., Gil, 1994). Experimentation identified and revised missing 
conditions and effects of planning operators that led to anomalous outcomes in execution. In a 

similar way, our system schedules and runs experiments to refine the conditions under which an 
operator should be applied. Unlike operator refinement, we are concerned less with repairing 
incomplete domain theories and are focused more on learning the advisability of different actions 
in different situations to improve behavior. We use a qualitative domain model to guide credit 
assignment and to encode experimental controls.  In addition, the model fragments used to specify 
operator applicability are easily decomposed into sets of inequalities that effectively turn exper-

imental design into a search through a parametric space.  In our approach, an experiment generalizes 
or specializes a quantity condition while holding other conditions fixed. 

More recent work tends to blur the distinction between active learning and experimentation, 
(e.g., Wang, Garrett, Kaelbling, & Lozano-Pérez, 2018; Konidaris, Kaelbling, & Lozano-Perez, 
2018). This focuses on model and representation learning rather than classification and involves 
active sampling of the environment rather than querying of an expert oracle.  The objective in these 

efforts is to learn a model or symbolic representation from perceptual data that supports planning.  
Because the learning agents are physical robots, data-efficient learning is critically important. At a 
high level, our approach is similar, except that our learner starts with a symbolic, qualitative model 
and learns to improve its performance on an abstract game. The point of our experiments is to better 
understand the benefits of this initial knowledge endowment for learning. 

Reinforcement learning is another paradigm from which we have borrowed liberally. This 

varies along several dimensions, including whether it is model free or model based, whether states 
are discrete or continuous, how and when exploration is carried out, what kind of reward or 
punishment is provided, how it accounts for delayed effects, and whether actions are hierarchical.  
The technique we have presented here is clearly a variant of model-based learning, which enables 
the application of planning by referencing content about the system’s dynamics (Botvinick & 
Weinstein, 2014). Typically, these are quantitative models defined in terms of differential equations 

or neural networks. Our approach is definitely model based, because it learns the quantitative 
effects of taking particular actions in particular states, but it differs in the nature of the model, which 
is a set of qualitative influences. 
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Historically, continuous-state reinforcement learning has been addressed through function 
approximation, which requires careful selection of a basis, such as a CMAC (Santamaría, Sutton, 
& Ram, 1997) or radial basis function (Santos, 1999). In our work, qualitative models are used to 

discretize the continuous space.  In fact, the entire point of qualitative models is to carve up a con-
tinuous space into semantically or causally meaningful phases. This has the benefit of being concise 
and communicable through language. 

Although it is generally considered to be a form of unsupervised learning, Sutton and Barto 
(2018) claim that reinforcement learning is orthogonal to the supervised-unsupervised distinction.  
Instead, they argue that it is the exploration-exploitation tradeoff that largely defines the paradigm.  

Work in this area has focused on finding near-optimal mechanisms for determining when to explore 
new states vs. exploit learned knowledge (e.g., Kearns & Singh, 2002; Brafman & Tenenholtz, 
2002).  We have focused instead on knowledge-directed experimentation that determines what to 
explore. In other words, most reinforcement learners treat exploration as random selection of 
actions or states that have not been previously encountered.  In our approach, exploration amounts 
to experimental design that strategically extrapolates or interpolates quantity conditions on when 

to use an action.  It pursues reified learning goals and varies experimental conditions to minimize 
random exploration. 

The nature of feedback in our system is more punitive than reinforcing. This is because the 
qualitative model implicitly provides initial rewards in the form of the goal hierarchy. There is no 
need to search blindly for actions that might positively influence the top-level goal. Instead, it learns 
to suppress actions when they are contraindicated by the particular quantitative state. Delayed 

effects in reinforcement learning are handled through a variety of methods, including eligibility 
traces (Singh & Sutton, 1996) and temporal differences (Sutton, 1988). Our approach to handling 
such effects is the model-based mechanism for credit assignment described in Section 4. This shares 
some aspects of model-free mechanisms, but benefits from prior knowledge of the game dynamics. 

Reinforcement learning typically requires hundreds to thousands of trials to learn even simple 
behaviors because it exhaustively explores the state space of the system. Hierarchical decom-

position is one technique for mitigating scaling problems due to high dimensionality by exploiting 
temporal abstraction (Barto & Mahadevan, 2003). It would be interesting to see if the game player’s 
goal network supports the sort of stratified control found in such hierarchical systems. Another way 
that reinforcement learning deals with the explosion of states, especially when actions or states take 
on continuous values, is through function approximation. Our use of qualitative states to encode 
action policies can be viewed as a knowledge-derived variant of this technique. This is a necessity 

for the HRM domain, which has 37 quantity fluent types, nine of them company wide and 29 being 
employee parameters. Given seven possible employees, this totals 212 concrete continuous quantity 
fluents, most of which can take on values from 0 to 100. Naïvely encoding states by partitioning 
the continuous quantities into buckets would be computationally prohibitive. 

AlphaGo and its successor AlphaGoZero are well known as successful reinforcement learners 
(Silver et al., 2016; Silver et al., 2017). They achieved superhuman performance in playing Go after 

millions of trials of self play, starting from what its developers claimed to be a blank slate.  
Although extremely impressive, this is almost the exact opposite of our objective. Our approach 
purposely exploits prior knowledge in order to achieve acceptable performance on a game with 
very few trials. We believe that prior knowledge is not something to exorcise from a learner, but 
rather that it plays an important role in efficient learning. Marcus (2018) goes farther in arguing for 
the importance of innate knowledge in his analysis of AlphaZero and the game knowledge that is 

inevitably built in to the learner. 

https://en.wiktionary.org/wiki/na%C3%AFvely#English
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More generally, the issue of data efficiency has been addressed in other forms of learning.  
Transfer seeks to accelerate learning in one task or domain by reusing learned knowledge (such as 
facts, biases, features, or subplans) acquired from another task or domain (Pan & Yang, 2009; 

Konidaris, Scheidwasser, & Barto, 2012). One-shot learning (e.g., Li, Fergus, & Perona, 2006) 
primarily focuses on object recognition and achieves data efficiency through expertise transferred 
from prior learning on other categories, reducing the incremental cost of learning to recognize a 
new category. Zero-shot learning seeks to master a task (typically recognition) with no prior 
training examples of the target (Xian, Schiele, & Akata, 2017) by leveraging prior learning on other 
objects and features extracted from word embeddings.  The mechanism we present does not involve 

classification learning and does not transfer from a different task, but rather builds on a symbolic 
representation of a qualitative model.  If the model were acquired by learning from demonstration 
or instruction, then it could be considered a type of transfer.  Model acquisition is beyond the scope 
of this paper, but Hinrichs and Forbus (2012) provide an example. 

 Behavioral cloning is a method for learning by imitation that is often applied to learning to 
control a dynamic system (Michie, 1993; Bratko & Suc, 2003; Torabi, Warnell, & Stone, 2018).   

Our approach of using a qualitative model to guide learning and carve up a continuous space is 
especially similar to Bratko and Suc’s (2003) approach, although the current system learns through 
experimentation rather than imitation. Our approach to the credit assignment problem bears some 
similarity to Langley’s (1985) strategy learning program SAGE. This refined the conditions for 
applying legal operators by comparing differences between their successful and unsuccessful 
applications. A key difference is that our use of a qualitative domain model guides credit assign-

ment by making causal relationships explicit, and it traces back in time to earlier states by following 
direct influences. 

7.  Conclusions 

A qualitative model is one kind of prior knowledge that can guide learning.  Such a model takes 
the form of a set of declarative structures that can aid induction and support performance. One role 
is to facilitate experimentation, which reduces ambiguity in credit assignment by imposing controls 
on what to vary and what to hold constant. We have presented two ways to achieve this aim: 
generalizing or specializing qualitative state conditions on action selection and manipulating the 
tradeoff ratios of activations for competing goals.  In both cases, the result is to operationalize the 

qualitative model by learning quantitative policies for pursuing actions or goals. 
A major property of the learning technique described here is data efficiency. The approach 

attains good performance in under ten trials by starting with a qualitative domain model and ruling 
out portions of the potential search space whenever an action fails to provide a performance benefit 
predicted by the model. The learner need not wait until the end of the game to receive an extrinsic 
reward, since the model and its derived goal network provide immediate feedback via an audit trail 

from any action through intermediate quantities to the top-level goal.  We believe that the resulting 
data efficiency is an important property of any learning system that purports to behave in a manner 
remotely like humans. 

We designed the HRM game to be a simple testbed for exploring experimentation.  The next 
step is to apply the capabilities described here in Freeciv (http://freeciv.wikia.com), a much more 
difficult strategy game. We predict that self-directed experimentation will let a Companion (Forbus, 

Klenk, & Hinrichs, 2009) learn continuously, over weeks and months, with minimal human inter-
vention. It remains to be seen whether such learning will scale, run afoul of the utility problem 
(Minton, 1988), or otherwise become unstable. We believe that prior knowledge, afforded by an 
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extensive repository of qualitative domain models, will mitigate these problems, as will natural 
language advice provided by a human mentor (McFate, Forbus, & Hinrichs, 2014).  

We are also developing an intermediate-level representation for tactics so that experimentation 

can explore how and when to apply larger units of behavior than primitive actions.  Another avenue 
for future work will be treating learning goals more like domain goals, with their own activations, 
measurable properties, explicit processes, and strategies. This may ultimately permit further im-
provement by revising the order of experiments and conditions for stopping. This would be a further 
step toward developing software organisms that not only behave independently but also learn 
independently. 
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