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Abstract 
The team crisis intervention problem concerns how to monitor and intervene in a team’s goal 
achievement process. In this paper, we give a formal representation of this problem and describe 
how it can be solved via breakdown into three subproblems: state estimation, crisis recognition, and 
intervention generation. With respect to intervention generation, we describe goal assignment 
structure refinement, a new mechanism that hierarchically decomposes goals without creating a full 
plan. This results in a novel representation called goal assignment structures. These improve on 
plans for representing teamwork by simplifying recommendations and limiting unnecessary inter-
ventions. We then report empirical evidence that goal assignment structure refinement improves 
team responsiveness to crises, increases team effectiveness, and scales better than full hierarchical 
planning for team crisis intervention. 

1.  Introduction 

Team goal achievement involves the cooperation of team members toward individual and shared 
goals necessary for success. This involves creating and executing plans that achieve the team’s 
goals and, as such, team goal achievement includes both planning and acting. Although this topic 
is much studied in the multi-agent systems and planning literatures (Dix, Muñoz-Avila, Nau, & 
Zhang, 2003; Cohen & Levesque, 1991; Weiss, 2013; Sims, Corkill, & Lesser, 2013), we examine 
team goal achievement from an external perspective. That is, we consider how a system (or agent) 
can reason about the team goal achievement process, recognize when the team is in a crisis, and 
intervene in the process to assure group success. We view team goal achievement as a specialized 
form of goal reasoning (Aha, 2018; Aha, Cox, & Muñoz-Avila, 2013; Cox, 2017; Hawes, 2011; 
Klenk, Molineaux, & Aha, 2013) that constitutes selection of a dynamic set of goals that can shift 
in response to changing circumstances. When teams do not respond effectively, team performance 
degrades. We refer to changing circumstances that may degrade team performance as complications 
and to the team’s failure to respond to such complications as a team crisis. In this paper, we present 
a novel model of strategic, team goal achievement, and we use this model to describe an approach 
for recognizing crises and intervening by changing the team’s goals.  

High profile examples of team crises include the failure of a flight crew to address simultaneous 
problems, resulting in the plane crash of UA Flight 173 in 1978 (Whipple, 2015) and the failure of 
a black-ops team to retake initiative after a helicopter crash, as depicted in the film Black Hawk 
Down (Bowden, 1999). In general, team crises occur when a team fails to adapt shared plans and 
goals to a changing situation, resulting in failure. We expect that the team crisis intervention method 
introduced here could help such teams.  
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To promote reusability, this paper describes a system in such a way that the structure and 
components of the solution can be replicated and reused independently. To do so, we provide 
formal definitions for both a large, high-level problem (i.e., team crisis intervention), and three 
subproblems that can be solved by simpler mechanisms. To connect them, we use the novel concept 
of a “cognitive skeleton”, which is related to a cognitive architecture in that it supports a 
combination of multiple capabilities and replaceable knowledge. A skeleton differs in that it is 
lightweight and problem specific. The formal problem definitions and implementation of the 
cognitive skeleton are important contributions of this work. 

Other contributions include (1) a novel data structure for describing team collaborations, called 
a goal assignment structure; (2) a formal definition of goal assignability, which describes what 
goals a team should delegate to subteams and how to do so; and (3) a novel procedure for refining 
goal assignment structures. We report results from crisis response experiments that use estimates 
of probable human reactions; these experiments provide evidence for the efficacy of these novel 
formulations and processes. 

2.  Team Goal Achievement Notation and Theory 

Our research draws on definitions from automated planning, particularly hierarchical goal net-
works. In this section, we review foundational terminology from those fields and use them to 
advance a definition of goal assignment structures and assignability for use in team crisis inter-
ventions. These support the body of our theory, which describes: 

• Goal assignment structures, which use shared mental models of team/subteam responsibilities; 
• Assignability, which is a characteristic of goals that can be delegated to a subteam. 

According to our theory, goal assignment structures are sufficient to describe a team’s mental 
model of a problem solution, and they can be created by a simple planning process. 

2.1  Terminology 

We base our definitions for team goal achievement on standard definitions from the literature on 
automated planning and acting (Ghallab, Nau, & Traverso, 2016). As such, an environment 𝛴 is 
defined as a tuple (𝑆, 𝐴, 𝛾), where 𝑆 is the space of environment states, 𝐴 the space of actions, and 
𝛾 the transition function 𝑆 × 𝐴 → 2+. We also define a goal space 𝐺 ⊂ 2+, and a set of individual 
performers 𝐼. A team 𝑡	𝜖	𝑇 is then a tuple (𝑀, 𝑆𝑡), where 𝑀	 ⊂ 	𝐼 is a set of team members, and 𝑆𝑡 
is a possibly empty set of subteams of 𝑡 whose members are a subset of 𝑀. 

An action model 𝛼 is defined as a four-tuple (ℎ𝑒𝑎𝑑(𝛼), 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟(𝛼), 𝑝𝑟𝑒(𝛼), 𝑒𝑓𝑓(𝛼)). Here, 
ℎ𝑒𝑎𝑑(𝛼), 𝑝𝑟𝑒(𝛼), and 𝑒𝑓𝑓(𝛼) are defined as usual: respectively, they are the head (name and 
variable parameters), preconditions (a set of literal statements about state variables and relations) 
and effects (a set of assignments to state variables) of the action model. The item 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟(𝛼) 
is a term of type individual that denotes who is responsible for executing the named action. 
Typically, this will be a variable that is constrained by the preconditions to be an individual capable 
of performing the action. In a ground action 𝑎, the value of performer 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟(𝑎) must be an 
individual in 𝐼. A plan π is a finite sequence of actions ⟨𝑎?, 𝑎@, . . . 𝑎B⟩.  
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2.2  Goal Decomposition Rules 

We also define search knowledge in the form of goal decomposition rules (Langley & Choi, 2006; 
Shivashankar, Alford, & Aha, 2017), which provide advice to a reasoner on how to decompose a 
goal. Semantically, a goal decomposition rule breaks a parent goal into subgoals that are more 
easily accomplished. However, accomplishing the subgoals is not always sufficient to ensure the 
parent goal is accomplished. We extend prior definitions of goal decomposition rules with (1) a 
notion of active constraints that must hold while accomplishing the parent goal and (2) (team-
subgoal) assignment pairs. The active constraints let a rule prevent selection of certain subgoals. 
For example, a decomposition rule for clearing a building could state the subgoals of clearing each 
room and include a constraint that the entryway must not be left unguarded. Without such 
constraints, search can be guided toward useful solutions but not away from poor ones. 

A goal decomposition rule gdr is represented by the following six-tuple: 

D𝑛𝑎𝑚𝑒(𝑔𝑑𝑟), 𝑔𝑜𝑎𝑙(𝑔𝑑𝑟), 𝑝𝑟𝑒(𝑔𝑑𝑟), 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑆𝑢𝑏𝑔𝑜𝑎𝑙𝑠(𝑔𝑑𝑟), 𝑝𝑟𝑒𝑐𝑒𝑑(𝑔𝑑𝑟), 𝑐𝑜𝑛𝑠𝑡𝑟(𝑔𝑑𝑟)M	. 

Here we diverge significantly from the original definition. The name 𝑛𝑎𝑚𝑒(𝑔𝑑𝑟) of a goal decom-
position rule is merely a unique identifier. The decomposed goal 𝑔𝑜𝑎𝑙(𝑔𝑑𝑟) is a literal describing 
the goal about which the rule gives advice. The preconditions 𝑝𝑟𝑒(𝑔𝑑𝑟) are defined as for an action 
model. The assigned subgoals 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑆𝑢𝑏𝑔𝑜𝑎𝑙𝑠(𝑔𝑑𝑟) is a list of tuples (𝑔, 𝑡), where 𝑔 is a literal 
describing a subgoal to be accomplished before 𝑔𝑜𝑎𝑙(𝑔𝑑𝑟) and 𝑡 is a term identifying a team or the 
value ⊥, which indicates that 𝑔 is not assigned. A precedence relation 𝑝𝑟𝑒𝑐𝑒𝑑(𝑔𝑑𝑟) gives a list of 
tuples (𝑔𝑒, 𝑔𝑙) that indicate the order in which subgoals are to be accomplished. Finally, the 
constraints 𝑐𝑜𝑛𝑠𝑡𝑟(𝑔𝑑𝑟) describes a set of states that are not to be entered before achieving the goal 
𝑔𝑜𝑎𝑙(𝑔𝑑𝑟).  
 A goal decomposition rule is well formed if and only if the variables in the subgoals, precedences, 
and constraints are a subset of the variables in the goal and in the preconditions. Given a function 
variables that returns all variables within a structured statement, the following expression holds: 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑆𝑢𝑏𝑔𝑜𝑎𝑙𝑠(𝑔𝑑𝑟)) 	∪ 	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑝𝑟𝑒𝑐𝑒𝑑(𝑔𝑑𝑟)) 	∪ 	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑐𝑜𝑛𝑠𝑡𝑟(𝑔𝑑𝑟)) 	
⊂ 	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑔𝑜𝑎𝑙(𝑔𝑑𝑟)) 	∪ 	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑝𝑟𝑒(𝑔𝑑𝑟)) 

The example goal decomposition rule in Table 1 named find-assault-team-for describes knowledge 
for clearing a building of enemies in an urban combat scenario. In the Lisp syntax shown, variables 
are indicated by a leading question mark. The preconditions require that the closest entrance to the 
best available team is not threatened. If the preconditions are met, then the original goal (cleared 
?target-building) is decomposed into two subgoals, which we discuss further in Section 2.4. 

2.3  Goal Assignment Structures 

The solution to a team problem is described by a goal assignment structure. This structure recur-
sively decomposes a shared team goal into subgoals until reaching ones for which subteams can 
plan autonomously. This structure ensures that subteam actions support the group goals without 
requiring that the entire team knows and agrees on a complete plan. As a concept, goal assignment 
structures are an extension of the concept of goal networks defined by Shivashankar (2015). Goal 
networks incorporate goal nodes and relationships; goal assignment structures add team assign-
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ments and justifications in the form of a goal-subgoal graph. Formally, a goal assignment structure 
gas is stated as a tuple (𝐺𝑛, 𝑃, 𝐶, 𝐴𝑠, 𝑡	 = 	 (𝑀, 𝑆𝑡)), where 𝐺𝑛 denotes a set of goal nodes 𝑔𝑛	 =
	(𝑖𝑑(𝑔𝑛), 𝑔𝑜𝑎𝑙(𝑔𝑛)), each containing a unique identifier and a goal literal. Here 𝑃 is a set of 
temporal precedences over 𝐺𝑛, given as a list of tuples (𝑔𝑒, 𝑔𝑙) that contain an earlier and later 
goal, and 𝐶 is a set of goal-subgoal relationships over 𝐺𝑛, given as a list of tuples (𝑔𝑝, 𝑔𝑐) that 
contain parent and child goals. The team 𝑡 is responsible for accomplishing the goals in the goal 
structure described earlier as the tuple (𝑀, 𝑆𝑡). 𝐴𝑠 is an assignment function 𝐺𝑛	 → 	𝑇	 ∪ {⊥}	that 
assigns every goal node in 𝐺𝑛 to a subteam in 𝑆𝑡 or to no subteam (i.e., ⊥). 

Figure 1 depicts a goal assignment structure from the urban combat domain that represents a 
solution to a hostage rescue problem. The team assigned to solve this problem (not shown) has 
three subteams (i.e., Subteam1, Subteam2, and Subteam3) that must handle different facets of the 
task in a coordinated manner. 

2.4  Assignability 

Because goal assignment structures assign some goals and not others to subteams, it is important 
to reason about what goals can be assigned. We refer to a goal as assignable if responsibility can 
be safely delegated to a subteam without further considering subgoals. For example, the goal 
cleared(K3) in Figure 1 can be assigned to Subteam2 without having to also assign them lower 
level goals, such as clearing individual rooms in K3. While the team is capable of reasoning about 
the actions involved in achieving the goal, doing so would slow them down, so they treat the goal 
as an operation at the level of goal assignment structure that need not be subdivided. We consider 
three conditions for determining whether a subgoal is assignable:  

1. Subteam 𝑠𝑡 of 𝑡 can accomplish subgoal 𝑔 without assistance; 
2. Subteam 𝑠𝑡 of 𝑡 recognizes when previous goals are accomplished; and 
3. Subteam 𝑠𝑡 of 𝑡 recognizes when subgoal 𝑔 is accomplished. 

More formally, a subgoal 𝑔 with precedence relations 𝑃 is assignable to subteam 𝑠𝑡	 = 	 (𝑀, 𝑆𝑡), 
i.e., 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(𝑔, 𝑃, 𝑠𝑡), iff three conditions hold: 

1. ∃𝜋 =< 𝑎? …𝑎B >, 𝑠[, 𝑠?, … , 𝑠B: ∀𝑖, 0 ≤ 𝑖 ≤ 𝑛:  
    𝑠` ∈ 𝛾(𝑠`b?, 𝑎`) ∧ (𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟(𝑎`) = 𝑠𝑡 ∨ (𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑟(𝑎`) = (𝑀′, 𝑆𝑡′) ∧ 𝑀′ ⊂ 𝑀)) 

2. ∀𝑠, 𝑔′:	(𝑔′, 𝑔) ∈ 𝑃 → 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑠𝑡, 𝑔′, 𝑠) ≡ 𝑠 ⊨ 𝑔′ 
3. ∀𝑠: 𝑏𝑒𝑙𝑖𝑒𝑣𝑒𝑠(𝑠𝑡, 𝑔, 𝑠) ≡ 𝑠 ⊨ 𝑔 

Table 1. Example goal decomposition rule for the goal (cleared ?target-building). 

(:gdr (find-assault-team-for ?subteam ?target-building) 
    ;goal 
    (cleared ?target-building) 
    ;preconditions 
    ((best-available-team ?subteam ?target-building assault) 
      (closest-entrance ?target-building ?entrance ?subteam) 
      (not (threatened-at ?team ?entrance ?threat-building))) 
    ;subgoals 
    (((assigned ?subteam (cleared ?target-building))) 
     ((delegate (cleared ?target-building) ?subteam)))) 
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Implementations in this work assume that assignability knowledge is compiled into goal decompo-
sition rules and accompanying derived concepts; that is to say, a rule gdr only assigns a subgoal 𝑔 
to a subteam 𝑠𝑡 if it first guarantees that it is assignable. Formally, all goal decomposition rules gdr 
must satisfy the expression 
(𝑔, 𝑡) ∈ 	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑆𝑢𝑏𝑔𝑜𝑎𝑙𝑠(𝑔𝑑𝑟) ∧ 	𝑔	 ≠	⊥ → 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒(𝑔, 𝑝𝑟𝑒𝑐𝑒𝑑(𝑔𝑑𝑟), 𝑡)	. 

The find-assault-team-for rule in Table 1 assigns and then delegates the subgoal (cleared ?target-
building). Its preconditions ensure that the first assignability condition is satisfied by requiring that 
the selected subteam is the best available for assault, a role that incorporates the notion of ability 
to accomplish cleared goals. The condition that the entrance is not threatened ensures that there are 
no previous goals that must be accomplished first, ensuring condition 2. Finally, condition 3 is met 
through a definition of the cleared concept that relies on the fully observable base concepts (see 
Table 2) cleared-room and room-building. As these conditions are met, find-assault-team-for 
delegates the cleared goal to the team bound by the preconditions and the planner will treat it as 
satisfied. The assigned subgoal is accomplished by a single action and serves as a “mental note” 
of which team was responsible. 

3.  Team Crisis Intervention 

We can now describe our approach to team crisis intervention. In this section, we briefly specify 
the main intervention problem and its subproblem decomposition. We then provide a skeleton that 
combines the solutions to individual subproblems and specify formal definitions for each one. The 
implementations reported in this paper address these subproblems. We realize that this approach is 
unusual, but our hope is that these choices will make our work reusable by others. 

3.1  Main Problem Definition 

The objective of team crisis intervention is to assist a team when it starts to falter so that its goals 
are achieved and failure avoided. From a teaming agent’s perspective, the problem can be stated: 

Figure 1. Example goal assignment structure. Nodes depict goal literals, unbroken black lines indicate goal-
subgoal relationships, dashed orange lines depict temporal precedences, and labels in blue refer to the entities 
assigned to achieve the goal immediately above them. 
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Given: (1) an environment 𝛴; (2) an initial state 𝑠[ ∈ 𝑆; (3) a top-level goal 𝑔∗ 	∈ 	𝐺; (4) a team 𝑡; 
(5) an environment interface 𝐸𝐼; and (6) a team interface 𝑇𝐼; 

Find: A sequence of messages, delivered over time to 𝑇𝐼, that result in the team 𝑡 reaching a final 
state 𝑠k ⊨ 𝑔∗. 

We reduce the team crisis intervention problem to three subproblems: state estimation (detailed in 
Section 3.3); crisis recognition (Section 3.4); and intervention generation (Section 3.5). A cognitive 
skeleton provides the framework to combine procedures that solve these problems into a unified 
solution. Figure 2 depicts the relationships between these subproblems within the cognitive 
skeleton. Our team crisis intervention system is composed of this skeleton and components that 
address each subproblem. Experiments in Section 4 compare this system with alternative solutions 
that use the same skeleton and different components. 

3.2  Cognitive Skeleton 

The team crisis intervention skeleton is responsible for intervening in the event of a crisis to 
improve team performance. The theory behind it is simple: when a crisis occurs, the skeleton 
suggests an alternative problem solution for the team to consider in the form of a goal assignment 
structure. The skeleton continually monitors the environment, creating a new estimate of the current 
state every time an observation is received. Crisis recognition is then rerun and, if a crisis is 
signaled, the goal reasoner is called to provide a new goal assignment structure. The skeleton then 
intervenes by suggesting the new goal assignment structure to the team (see Table 3). Observation 
of the environment and suggestions to the agents is implemented via message passing, which also 
synchronizes the skeleton with both environment and agents.  

The cognitive skeleton defines a family of solutions to the team crisis intervention problem. In 
our urban combat scenario, the skeleton is responsible for recognizing signs of an ambush (using 
state estimation), recognizing that the team will fail to anticipate the ambush (using crisis 
recognition), and suggesting an alternative problem solution in the form of a goal assignment 
structure that avoids the ambush (using intervention generation). Alternate solutions to the problem 
may adopt the skeleton and solve the subproblems in different ways or use a different cognitive 
skeleton altogether (or none). The skeleton is intended to facilitate reusability and comparability.  
 

Table 2. Definition of the cleared-building concept. A building is cleared if all its rooms are clear. 

(:- (cleared-building ?building) 
    (and 
        ;;building has at least 1 room 
        (eq (room-building ?some-room) ?building) 
        ;; all rooms in building are determined cleared 
        (forall (?r – room) 
            ;such that 
            (eq (room-building ?r) ?building) 
            ;ensure 
            (cleared-room ?r) ) )) 
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3.3  State Estimation 

Because environments are only partially observed, an agent needs to estimate the true state of the 
world. This is an inference problem, which we can state as: 

Given: (1) an environment 𝛴; (2) a history of observations 𝑂ℎ; (3) a history of actions 𝐴ℎ; and 
(4) a prior estimate of the state 𝑒𝑠mb?; 

Find: An estimate of the state 𝑒𝑠m at the time of the most recent observation in 𝑂ℎ.  

Here we consider two approaches to state estimation, neither of which is novel to this work: the 
DiscoverHistory algorithm (Molineaux, 2017) and a trivial approach that assumes the current state 
is the same as the most recent observation. DiscoverHistory maintains a hypothesis about the initial 
state and the set of actions that have taken place. After each observation, it revises this hypothesis 
to be consistent with all observations and all known actions. DiscoverHistory then estimates the 
state by projecting the transition function from the hypothesized initial state over the set of 
hypothesized actions.  

In the urban combat example, the state-estimation process infers unobservable information, such 
as an enemy ambush plan, in an attempt to identify developing crises before they cause disaster. 
DiscoverHistory does this by inferring the causes of an observable state, such as blocked entrances. 
Other suitable approaches might include Bayesian inference or plan recognition. 

3.4  Crisis Recognition 

As a team executes actions to accomplish their goals, crises may arise. The task of crisis recognition 
is to determine when a crisis has begun. We can state this problem as: 

Given: (1) an environment 𝛴; (2) a (possibly estimated) state 𝑠; (3) a top-level goal to accomplish 
𝑔∗; and (4) a team 𝑡; 

Determine: The presence or absence of a team crisis. 

We investigated two methods for crisis recognition. The “goal change” method creates a new goal 
assignment structure each time it attempts to recognize a crisis. This method signals a crisis if and 

Figure 2. The cognitive skeleton for the team crisis intervention problem integrates the three subproblems of 
state estimation, crisis recognition, and intervention generation.  
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only if the structure has changed, which makes sense if we expect the team to choose the best 
solution available and continue to pursue that solution even after it is no longer the best, thus 
causing a crisis. Alternatively, the “plan feasibility” method creates an initial plan for the team’s 
goal that incorporates all the team members. It monitors that plan, removing actions from its head 
as they are accomplished and signals a crisis when the remaining plan is infeasible. This matches 
the intuition that the team will choose the best plan available and will want assistance as soon as 
that plan is invalidated. 

Both methods constitute uninformed estimators of the times when crises occur, incorporating no 
observations of the team itself. Larue et al. (2019) discuss the problems involved in recognizing 
crises in observations of a team. In the urban combat example, crisis recognition is responsible for 
recognizing that the team’s problem solution is insufficient to respond to the ambush and that the 
team will not change that solution without help. If crisis recognition recommends an altered 
solution when the team was ready, it is a false alarm that can waste time and decrease the team’s 
confidence. Failure to anticipate that the team will fail to respond to an ambush may result in loss 
of life. General classification methods are applicable and should incorporate features informative 
about the team’s shared mental model of the problem. 

3.5  Intervention Generation 

Intervention for a team that is faltering in the execution of its plans consists of a set of changes to 
the goal structures associated with the team and the subteams of which it is composed. Here we 
define the intervention generation subproblem as: 

Given: (1) an environment 𝛴; (2) a state of that environment 𝑠; (3) a top-level goal to accomplish  
𝑔∗; and (4) a team 𝑡; 

Find: An intervention that improves the likelihood that team 𝑡 will accomplish 𝑔∗.  
To investigate the utility of providing goal assignment structures as interventions, we created the 
Goal Assignment Structure Refinement (GASR) procedure, a modification of Shivashankar’s (2015) 

Table 3. Team crisis intervention cognitive skeleton. 𝜮 represents the environment, 𝒆𝒔𝟎 is the estimated initial 
state, 𝒈∗ the top level goal, 𝒕 is the team, 𝑬𝑰 the environment interface, and 𝑻𝑰 the team interface. 
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Goal Decomposition Planner (GDP). Whereas GDP (Section 3.5.2) searches a space of goal 
network-plan tuples (𝑔𝑛, 𝜋) for terminal nodes in which 𝑔𝑛 is empty, GASR searches a space of 
goal assignment structures gas for terminal nodes in which all leaves of gas are assigned. 
 The base case for GASR in Table 4 occurs when the goal node stack is empty (line 3), which 
means that the goal assignment structure is complete and returned successfully. Otherwise, GASR 
takes the top node of the goal node stack (line 4) and attempts to handle it. If the goal node is 
assigned (line 5), there is no need to decompose. The projected state is then updated to reflect that 
the goal has been completed (line 6) and GASR recurses (line 7). Otherwise, GASR checks that the 
current goal 𝑔𝑜𝑎𝑙(𝑔𝑛) is not already in the set of pending goals 𝐺𝑝 (line 8) and fails if it is; this 
would mean that the structure gas has a pathological cycle in its subgoal relationships 𝐶. All 
constraints (line 9) are then checked; if the projected state satisfies one, the current branch fails 
(line 10); otherwise, constraints linked to the current goal node are removed (line 11). If the current 
goal 𝑔𝑜𝑎𝑙(𝑔𝑛) is already met, GASR recurses, removing it from the pending goal set 𝐺𝑝, which is 
also removed from the goal assignment structure entirely if it has no subgoals (lines 12–16). 
 On lines 17–20, GASR finds the set 𝑈 of all groundings of all goal decomposition rules that 
address the current goal and that have satisfied preconditions. For each element of U, GASR creates 
a search branch (line 22), pushes the current goal node back onto the goal stack (line 23), updates 
the goal assignment structure with subgoals (lines 24–31), and recurses (line 32).  

GASR keeps track of the goal nodes that still need to be decomposed by adding them to a stack; 
at each iteration, it removes the top goal node from the stack. GASR addresses that goal by either 
assigning it (lines 5–7), removing it if already met (lines 12–15), decomposing it (lines 17–31), or 
backtracking due to search failure (lines 8, 10, 21). If the goal must be decomposed, it is put back 
on the stack (line 23). If the goal is met but has no children, it is removed from the structure (lines 
13–15). Therefore, at the time the goal stack is empty, all goal assignment structure nodes will 
either be assigned or have subgoals. 

As a conceptually simpler alternative, an intervention can simply be a plan to achieve the top-
level goal. This is essentially the same as the turn-by-turn directions provided by a typical global 
positioning system that provides a complete new set of directions each time a user becomes “lost”. 
Specifically, we consider an intervention generation method that calls GDP to generate plans. This 
is useful because it is fast and can use the same knowledge as GASR. In the urban combat scenario, 
team crisis intervention should propose a solution that includes drone reconnaissance of likely 
ambush sites and counterattacks on ambush sites prior to addressing the main objective. Alternative 
solutions should demonstrate that feedback improves a team performance and averts team crises.  

4.  Experimental Methodology 

We designed a set of experiments in two distinct domains to provide evidence for three claims: 

1. Goal change-based crisis recognition improves team responsiveness to complications: We 
consider time-critical situations in which the time taken to respond to a complication is 
expected to affect performance, as often occurs in the real world. We measure responsiveness 
as the difference between the time when a complication occurs and the resolution, which is 
necessarily domain dependent, as described below.  

2. Goal change-based crisis recognition improves team effectiveness: We measure team effect-
tiveness as a combination of the accomplishment of team goals and the resources expended by 
the teams. 
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Table 4. The intervention generation component and GASR. The parameter 𝛴 represents the environment, 𝑠 
the state, 𝐺𝑛𝑠 the goal node stack, 𝑔𝑎𝑠 the goal assignment structure, 𝐺𝑝 the pending goal set, 𝑐𝑜𝑛𝑠 the state 
constraints, and GDR the set of goal decomposition rules. 
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3. GASR is more scalable than hierarchical planning for team crisis intervention: A significant 
concern for knowledge-rich methods is their ability to scale in complicated domains. 
Hierarchical task networks perform well in this regard and GASR attempts to decrease 
hierarchical planning effort by delegating lower-level planning activities to humans. Thus, we 
expect GASR will require fewer computational resources than would creation of a complete 
hierarchical plan. We measure computational effort in terms of nodes expanded during search.  

We have sought to gather evidence relevant to these claims by conducting simulated exercises with 
estimated human reactions. This is a preliminary step prior to costly user studies. 
 We used two types of environments to interrogate these claims, which we will refer to as the 
perimeter security and urban combat. In each domain, multiple agents with estimated human 
behaviors control subteams that interact with an environment to achieve high-level goals. Three 
steps characterize the main loop within these environments: 

1. Form and send an observation to the next agent to act; 
2. Receive an action from that agent; 
3. Transition to the next state according to the received action and model 𝛴. 

This loop continues until either the top-level goal is accomplished or the top-level goal is rendered 
unreachable. Table 5 provides a formal description of the environment loop as the procedure 
EnvironmentSimulation. Message passing supports communication and synchronizes the simu-
lation of all individuals, including opposing forces. 
 Agents that operate in these simulations execute a six-step loop to interact with the environment: 

1. Prior to activity in the environment, the team performs an initial goal assignment step; this is 
simulated via the GASR system. The problem solution is represented as a shared goal 
assignment structure gas that the team tries to accomplish.  

Table 5. The environment loop. The parameter s0 represents the initial state, 𝑔∗ the top-level goal, CI the 
controller interface, and T the universe of teams. 
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2. Each subteam 𝑠𝑡 that has goals assigned to it then performs an initial planning activity, 
simulated using the GDP procedure. This creates a new plan 𝜋 that accomplishes the goals 
assigned to that subteam by the agreed upon goal assignment structure gas. 

3. Once a plan is created, each subteam executes its plans by sending the next action from its plan 
to the environment in response to each observation. 

4. During execution, whenever a subteam’s existing plans become infeasible (recognized by 
projection of the remaining plan steps from the current estimated state), that subteam replans 
to achieve its assigned goals. This is simulated using the GDP procedure. The return value 
from GDP replaces 𝜋 for that subteam agent and execution continues. 

5. During execution, whenever an intervention system suggests a new goal assignment structure 
gas’, the team updates its existing shared structure to gas’. This is again simulated using GDP 
and replaces the existing set of subteam-plan tuples, after which execution continues. 

6. During execution, when an intervention system suggests a new plan 𝜋′, the receiving subteam 
agent replaces its existing plan 𝜋. This is again simulated using GDP and execution continues.  

Table 6 formally describes the agent reasoning cycle that controls one subteam. Actions and obser-
vations are communicated with the environment via message passing, as are interventions. Note 
that the initial goal assignment step (line 4) is shared among subteams of the same team; also, 
agents on different teams receive different top-level goals 𝑔∗. 

Perimeter Security Domain. The perimeter security domain incorporates a base, a blue force team 
responsible for defending the base, and a red force team. The blue team consists of a patrol subteam 
and a defense subteam. The blue team’s goal is to maintain the base’s protected status; the red force 
team aims to either (a) bomb the base; (b) if aggressive and challenged, fight to the death against 
blue forces; or (c) if nonaggressive and challenged, escape alive. The simulation incorporates 
simple models of transiting via a grid, fighting a nearby enemy, and challenging a nearby subteam. 
The number of possible states in the perimeter security domain is approximately 4.4 × 108.  
 Urban Combat Domain. The urban combat domain incorporates a set of buildings with entrances, 
rooms, and windows; equipment, including grenades, guns, and ammunition, and units with 
variable posture and speed. Buildings are located on a two-dimensional grid; building walls block 
movement between some pairs of adjacent grid sectors, and each window and entrance faces onto 
a particular sector. Three blue fire teams each consist of four units. One of these units has control 
of a UAV that can be used for reconnaissance. One of the fire teams has an assault role and the 
other two have support roles. A red team consists of six to 15 units located in various rooms and 
buildings. One prisoner is on his own team. The goal of the blue team is to rescue the prisoner, 
whereas the goal of red team members is to either (a) kill blue team members without being 
detected, (b) if aggressive and detected, fight blue team members to the death, (b) if aggressive and 
detected, fight blue team members to the death, and (c) if nonaggressive and detected, to hide from 
blue team members. The urban combat domain is estimated to have around 10891 possible states.  

5.  Experimental Results 

We conducted an experiment in perimeter security that compared an intervention system using the 
goal change crisis recognizer and GASR intervention generator to another that uses plan 
infeasibility and the GDP-based intervention generator. We then compared GASR intervention 
results in this domain along with those from the urban combat domain to determine amount of 
effort and scalability compared to a typical replanning approach.  
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5.1  Perimeter Security Experiment 

For purposes of determining responsiveness and effectiveness under different interventions in the 
perimeter security experiment, we estimated that human reaction time to consult the intervention 
system after a crisis is recognized would take 40 seconds. This includes an estimated 10 seconds to 
consult the intervention system and 30 seconds to communicate among the team members. For 
comparison, movement to an adjacent grid cell in perimeter security takes 60 seconds, planting a 
bomb takes 60 seconds, and a firefight typically lasts at least 5 minutes. 

In this experiment, we randomly varied the arrival time and position of the enemy force at four 
different strength levels. We ran 20 random trials at each enemy strength level. We expected that 
teams using the goal assignment structures would be more responsive as the structures change less 

Table 6. Team implementation. The parameter 𝛴 represents the environment model, 𝑒𝑠[ the estimated initial 
state, 𝑔∗ the top-level goal, 𝐸𝐼 the environment interface, 𝐶𝐼 the controller interface, and 𝑡 the team. 
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frequently than plans. We also hypothesized that this would indirectly improve team performance, 
as faster responses are likely to be more effective in the domain.  
Claim: Goal change-based crisis recognition improves team responsiveness to complications.  
In each trial of the perimeter security experiment, the blue forces (eventually) respond to an initial 
sighting of a red force team by challenging them and the red force team would either leave or fight. 
We considered each of these events (red force sighting and red force response to challenge) as a 
complication and measured responsiveness from the start to resolution of the crisis. The first 
complication, appearance of an enemy, is resolved when the enemy is challenged. The second 
complication, enemy aggression against blue forces, is resolved when the enemy dies. In some 
cases, one system variant or the other failed to address a complication by failing to catch up to the 
red force, dying to red force attacks, or letting the red force escape after bombing the base. Figure 
3 shows the distribution of team responsiveness under the goal change intervention condition and 
the plan feasibility intervention condition for each complication; only trials for which both 
conditions successfully addressed each complication are included. These are typical box plots, with 
lines indicating quartiles, minima, and maxima, and a box drawn between the first and third 
quartile, with the mean value indicated by an “X”. These distributions include ten samples of 
performance at each of the four strength levels. 

Under the goal change-based intervention condition, the team averaged a 226 second response 
time for successful responses to the first crisis and 338 seconds for the second. The plan 
infeasibility-based intervention condition was measured at 386 seconds (first complication) and 
566 seconds (second complication). We compared each pair of distributions using a two-tailed 
paired sample t-test and found that greater responsiveness in the goal change condition was 
significant at the .01 level in both cases.  

With respect to unsuccessful responses, we analyzed the average rate at which each complication 
was successfully addressed. Under the goal change-based interventions, response to both com-
plications was successful 95 percent of the time. Plan feasibility-based interventions were suc-
cessful 85 percent and 35 percent of the time at responding to the first and second complication, 

 
                           Goal Change-Based Interventions              Plan Feasibility-Based Interventions 

Figure 3. Team responsiveness distributions to (left) first and (right) second complication (lower is better). 
 
 

Figure 3. Team responsiveness distributions (lower is better). 
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respectively. For the second complication, responses under the goal change-based condition were 
successful more frequently according to a two-tailed paired sample t-test at the .01 level. However, 
for the first complication the difference between success rates was not statistically significant. 
Claim: Goal change-based crisis recognition improves team effectiveness. 
States of both domains were stored in relational databases. We successfully demonstrated the goal-
change-based interventions and showed that they improved performance relative to plan infeasi-
bility-based interventions in both domains. 

For the perimeter security domain, we measured team effectiveness based on three elements, in 
order of their performance. First, was the base destroyed? Second, how many blue subteams were 
incapacitated? Third, how much damage was sustained by the blue forces? We employed a scoring 
metric that provided three rewards: 

• 500 points for keeping the base safe; 
• 100 points for each blue force subteam still standing; 
• 1 point for each unit of damage sustained by blue forces. 

Figure 4 shows the distribution of effectiveness values measured during the perimeter security 
experiment. The results were very different; goal-based interventions resulted in an average 
effectiveness score of 654.9 and plan feasibility-based interventions an average effectiveness of 
233.0. Again, horizontal lines indicate the minimum, maximum, and quartiles; a box shows the 
interquartile range. The mean of each distribution is shown with an “X”. In this plot, outliers are 
data points that fall outside the interquartile range by more than a factor of 150 percent and are 
shown as dots; we did not include these outliers when calculating minima and maxima. The 
difference between the effectiveness scores occurred because the team’s slower response time when 
using the baseline intervention system frequently allowed the base to be destroyed. The differences 
are statistically significant at the .01 level. Figure 5 breaks down the results by enemy strength. It 
is clear from the figure that goal change-based interventions performed well even versus higher 
levels of enemy strength, but plan feasibility interventions were negatively affected.  

 
                           Goal Change-Based Interventions              Plan Feasibility-Based Interventions 

 

Figure 4. Team effectiveness in perimeter security (higher is better). 
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5.2  Urban Combat Results 

In the urban combat domain, we have not carried out a controlled experiment, but we have 
demonstrated an intervention system using the team crisis intervention skeleton with goal change-
based crisis recognition, GASR intervention generation, and a trivial state estimator. We examined 
performance of this intervention system in a hostage situation, both with and without an ambush. 
We compared the effectiveness of the team with and without intervention. In this hostage situation 
(Figure 6 left), three fire teams (subunits of the main team) are sent out to rescue hostages. The 
simulated team decides to send two support fire teams into nearby buildings K1 and K3 to generate 
supporting fire against K2, where hostages are held. This lets the third team assault K2 at lower 
risk. When an ambush occurs (Figure 6 right), blocked doors on nearby buildings force the soldiers 
further north until they are in a firing line from an ambush point in building A5. 

Assisted by goal change-based interventions, our simulated team recognizes this crisis, performs 
reconnaissance, and succeeds in its mission with only one casualty (to an enemy in building L1). 
Without intervention, the team is ambushed and three soldiers die before the team manages to 
retreat, abandoning its mission. We view this performance improvement in the face of surprise as 
evidence that goal change-based interventions improve team effectiveness. 

Claim: GASR is more scalable than hierarchical planning for team crisis intervention. 

To assess this claim, we modelled teams using the GASR intervention generator and the GDP 
intervention generator to make decisions. Teams were modeled as faithfully and accurately updat-
ing their goals and plans based on generated interventions. We conducted a quantitative comparison 
of the number of search nodes used by the GASR and GDP systems across the length of a trial in 
each domain: perimeter security and urban combat. Figure 7 shows the results. 

In both domains, the effort to generate a goal structure varies only slightly based on the difference 
between initial state and goal state. The effort for GDP was proportional to the number of actions, 
whereas GASR’s effort was proportional only to the complexity of team interactions. This is 
because the latter relies on humans to perform heuristic planning and reactive policy execution; 

 
                           Goal Change-Based Interventions              Plan Feasibility-Based Interventions 

Figure 5. Team effectiveness vs. enemy strength in perimeter security (higher is better). 
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both of these are tasks that include long sequences of repetitive action and are inefficient to plan. 
With these demands removed, GASR is required to perform less repetitive high-level reasoning. 
 In summary, the evidence supports our claims, so the simple goal change-based crisis recognizer 
presented appears to be a reasonable baseline against which to compare future work on team crisis 
recognition. This also indicates that goal assignment structures offer a practical alternative to 
hierarchical plans for team goal achievement. However, we made various uncertain assumptions 
about human behavior, so additional work should evaluate these claims with humans in the loop. 

6.  Related Research 

Our approach is most closely tied to research on goal reasoning, in that it uses goals to recognize 
team crises and to intervene. Our state estimation, crisis recognition, intervention generation loop 
is heavily inspired by the goal-driven autonomy loop (Molineaux et al., 2010) of detecting 
discrepancies, explaining them, formulating goals, and managing goals. However, we place first 
the state estimation step, which is analogous to explanation in goal-driven autonomy. This reflects 
our view that an agent’s explanation of the world must be updated even when no problem exists. 
Prior work on goal formulation focuses primarily on control of simulated actors and autonomous 
vehicles (Aha, 2018), rather than the goals of teams and team members, as we do here. In the goal 
reasoning literature, the GRIM system (Johnson, Roberts, Apker, & Aha, 2016) uses the goal life-
cycle (Roberts et al., 2014) to control a set of goal reasoning agents engaged in disaster relief. In 
this work, goal decomposition is a part of the goal reasoning process, but goal expansion results in 
plans rather than a hierarchical structure. GRIM also does not address goal assignment, precedence, 
or formal coordination of team members. 
 The distributed and multi-agent planning community also focuses on teams or organizations, but 
mostly consider the selection of plans rather than goals. For example, the DOMAPS system and 
formalism (Cardoso, 2018) is intended for team planning, but it assumes that organizational goals 
can be directly allocated to team members from the start of the planning process. Coordination 
protocols then allow for goal assignment, but these are less flexible and more monolithic than the 
goal assignment structure. In multi-agent planning, issues of goal selection are sometimes handled 
as part of organizational design. For example, the organization design system KB-ORG (Sims, 

Figure 6. A hostage rescue plan in urban combat (left) and an ambush complication (right). 
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Corkill, & Lesser, 2008) is related to GASR in that it uses hierarchical methods to construct a goal 
network and to assign goals and roles to individual agents. In contrast, GASR assumes that roles 
exist already and it selects and assigns goals dynamically in response to crises, rather than at team 
development time. Many other systems explicitly consider distributed decision making within a 
team, which is not a feature of this work. 
 In the multi-agent systems community, joint intentions (Cohen & Levesque, 1991) are often used 
to describe how teams coordinate. This involves agents having the same intention and the mutual 
belief that they share the intention. Agents generally arrive at such joint intentions through 
prespecified negotiation protocols or dialogues. In general, the relationship between joint intentions 
and a higher level is not addressed or is unclear. However, the SharedPlans formalization (Grosz 
& Kraus, 2006), much like goal assignment structures, describes partial activities to be performed 
as a group that are refined over time. It requires a representation of the mental states of team 
members that includes individual and group intentions, beliefs, mutual beliefs, and plans. The goal 
assignment structure representation is simpler because it assumes that all team goals are shared 
(although assignments and responsibility can be held individually), and our approach does not 
create complete plans. A SharedPlans representation might provide increased understanding of and 
fidelity to agents’ decisions, perhaps at a greater computational and knowledge engineering cost. 
 Previous work in the cognitive architectures community on representing teams include the 
TacAir-Soar effort (Jones et al., 1999), the related STEAM (Tambe, 1997) architecture, and Com-
panions (Forbus, Klenk, & Hinrichs, 2009). These systems may be suited to team crisis inter-
vention, due to their generality and demonstrated capabilities for both teamwork and response to 
developments in their environments. However, we cannot compare their capabilities directly due 
to differing representations and structures. TacAir-Soar and Companions do not provide purpose-
specific representations for teams, but their existing formalisms have been shown to be sufficient. 
The lack of such representations may increase the burden on a knowledge engineer to provide 
sufficient team information. In contrast, STEAM uses a team goal achievement representation 
based on joint intentions and SharedPlans. The system creates plans via an operator hierarchy, 
which is similar to a goal assignment structure in that operators are assigned to subteams or 
individuals; however, it differs in that operators correspond to tasks rather than goals, which limits 
failure recovery, and the operator hierarchy does not include precedences. As STEAM does not 
support failure detection and recovery, it is not appropriate for team crisis intervention. 

Figure 7. Effort required to intervene in the (left) perimeter security and (right) urban combat domain. 
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7.  Conclusion and Future Work 

In this paper, we addressed the task of monitoring and intervening in a team goal achievement 
process, which we referred to as the team crisis intervention problem. We defined this task formally, 
presented a skeleton solution, and compared several systems produced by integrating component 
solutions with that skeleton. As part of the crisis recognition and intervention generation compo-
nents, we introduced GASR, a novel method for goal assignment structure refinement. We provided 
evidence that interventions using GASR improve team responsiveness and team effectiveness. We 
also showed evidence that team crisis intervention using goal assignment structures is more scalable 
than that using plans. However, this evidence is still preliminary because our studies use estimates 
of human reactions that have not been verified empirically. Still, these evaluations point the way to 
further examination with additional domains. 

Future work should focus on more comprehensive methods for intervention generation to 
improve team effectiveness, crisis recognition research to generate higher rates of accuracy through 
team modelling, and incorporation of plan understanding in crisis recognition to better recognize 
team activities. Finally, it should explore dynamic run-time determinations of goal assignability, 
which should simplify knowledge requirements for the intervention process and increase the flex-
ibility of solutions it produces. 
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