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Abstract 
A longstanding challenge is to make intelligent agents reason more abstractly and farther ahead;  
in other words, to think strategically.  The difficulty is that traditional approaches to planning 
focus on the effects of discrete, ground actions.  High-level abstract goals may not be amenable to 
projecting concrete future states, yet they provide important long-term guidance in selecting 
actions, allocating resources, and focusing attention. We are exploring the representation and 
exploitation of strategy as a qualitative modeling problem.  Our key hypothesis is that the same 
reasoning mechanisms can be applied to quantities at all levels of abstraction and that strategies 
can be expressed with respect to a domain-neutral vocabulary of processes, states, and goal 
tradeoffs in a fashion that is learnable, expressible, and explainable.  We illustrate these ideas in 
the domain of Freeciv, an open-source strategy game. 

1.  Introduction 

In adversarial situations with incomplete information, it is generally not possible to plan in detail 
very far into the future.  Yet people are perfectly capable of making long-term strategic plans with 
partial commitments and vague intentions, and they adapt to, and compensate for, a dynamically 
changing world.  Moreover, their goals often interact and trade off in complex ways. 

In order to support such abstract and long-term reasoning, we are exploring explicit 
representations of strategies as qualitative models rather than as plans per se.  Intuitively, the idea 
is that, while plans must bottom out in primitive actions, qualitative models are represented as 
relations between quantities which may be arbitrarily abstract.  In other words, abstract models 
are represented with the same vocabulary as concrete models.  This uniformity lets us use many 
of the same reasoning mechanisms to reason about intent as we do to reason about the mechanics 
of the domain. 

For the purposes of this paper, let us define a strategy as a policy for making decisions about 
relative goal priorities, decompositions, and scheduling, typically at an abstract level.  A strategy, 
therefore, need not refer to a complete plan, but may be as simple as a preference over partial 
decisions.  We draw examples and illustrations from the domain of strategy games, although we 
believe the approach is applicable more generally.  The particular game we are working with is 
Freeciv,1 an open source implementation of Sid Meier’s Civilization II. 

There are three reasons to represent strategies explicitly: First, naming things makes them more 
communicable, and therefore more readily teachable.  We aim to build systems that can learn 

                                                 
1 http://freeciv.wikia.com 
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from high-level advice as well as from direct experience, and a named or reified concept can be 
better acquired through language.  Second, strategies can help explain a system’s behavior and 
make it more understandable.  It is easier to explain reasoning by following a discrete audit trail 
of explicit decisions than by, for example, analyzing a matrix of coefficients.  Third, if the 
strategies are sufficiently general, they should be applicable across domains.  To the extent that 
strategies can be represented in terms of relationships between quantities and goals, rather than 
with respect to domain-specific low-level actions, they should be broadly applicable.  Although it 
may be premature to make claims about generality, the compositional nature of qualitative 
models makes it possible to localize and isolate the connections between strategies and any 
lower-level domain-specific tactical behaviors.  Consequently, learning how a strategy applies in 
a situation is likely to be easier than learning the strategy itself. 

In the next section, we present some background on Freeciv, Qualitative Process Theory, and 
the Companion cognitive architecture.  Section 3 describes the roles of a qualitative model and 
goal tradeoffs in domain reasoning, especially game playing.  Section 4 introduces our 
representations for goals, goal tradeoffs, and the goal network, while Section 5 describes the 
application of this representational machinery to goals themselves in order to encode strategic 
knowledge.  Section 6 presents some experimental evidence that such strategies can positively 
impact performance.  Section 7 presents related research and Section 8 concludes with a 
discussion of limitations and future work. 

2.  Background 

A quick introduction to Freeciv, Qualitative Process Theory, and Companions will provide some 
necessary background.  Freeciv is a computer-based strategy game in which players build 
civilizations in a simulated world in order to ultimately either conquer opposing players’ 
civilizations or to be the first civilization to launch a starship.   In practice, the game is often 
played against three to four simulated players, which is the configuration we use.  The world is 
defined on a randomly generated map partitioned into (by default) 4,000 tiles.  Players start with 
an initial endowment of five units, which are agents within the game that can move and take 
actions.  There are many types of units that can perform different kinds of actions or move on 
different terrain (e.g., land units and sea units). Each player starts the game with five initial units: 
two workers, two settlers, and one explorer.  Settlers are uniquely able to build cities, in which 
terrain can be worked to produce wealth and new units and infrastructure can be built.  Many 
different kinds of decisions are made in the course of developing a civilization, such as decisions 
about technologies to research, diplomatic relations with other civilizations, and investment 
decisions regarding infrastructure, military preparedness, seafaring and exploration.  The fact that 
new entities, such as units and cities, are created dynamically and that opposing units and actions 
are often not visible to the player make Freeciv challenging for traditional models of planning.  
The wide variety of decision types and long-term nature of the game make it an excellent 
platform for exploring issues in abstract strategic reasoning. 

The representations presented in this paper build on Qualitative Process Theory (QPT) (Forbus, 
1984).  Informally, QPT represents qualitative states as sets of ordinal relationships between 
quantities and propositional relations between entities.  Consider, for example, a phase diagram of 
water as a function of temperature and pressure.  The different regions, corresponding to solid, 
liquid, and gas, are qualitative states.  In QPT, all quantity changes can be attributed to active 
processes that cause increases or decreases via direct influences between quantities, notated as i+ 
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or i-. Direct influences on a quantity combine linearly to form a derivative, the rate of change of 
the influenced quantity.  Indirect influences are qualitative proportionalities between quantities.  
The weaker form of indirect influences are qprop and qprop-, which indicate monotonic 
contributions of individual influences in the specified direction.  A stronger form of indirect 
influence is represented by c+ and c-, which are both linear and additive.  In other words, those 
types of influences sum together directly to determine the exact value.  In QPT, influences exist 
within the scope of quantity-conditioned processes and model fragments (Falkenhainer & Forbus, 
1991).  Processes are a type of model fragment that can contain direct influences, whereas basic 
model fragments can only contain indirect influences.  An important distinction between a 
qualitative process model and a constraint network is that the process model explicitly indicates 
the direction of causality.  This directionality is essential for reasoning about actions that may 
transitively affect desired quantities downstream. 

The current research brings together qualitative modeling with Freeciv game playing in the 
context of the Companion cognitive architecture (Forbus, Klenk, & Hinrichs, 2009). A 
Companion system consists of functionally-specific distributed agents, such as ones for language 
interaction, analogical retrieval, sketch interaction, and meta-level reasoning.  Each agent is 
endowed with a knowledge base containing the Research Cyc ontology2 augmented with our own 
representations for qualitative reasoning, planning, domain knowledge, and learned knowledge.  
All agents support reasoning through deductive backchaining, hierarchical task network planning 
(Ghallab, Nau & Traverso, 2004), execution of plan primitives, and the ability to connect 
reasoning predicates to external code (called outsourcing). We specialized an agent to play 
Freeciv by emulating the Freeciv client, exposing the game state through outsourced predicates, 
and implementing actions as planning primitives that send packets to the local game server.  
Thus, a simple turn-based planning and execution loop can support basic game play, provided 
significant amounts of domain knowledge is encoded in plans and declarative knowledge.   

In prior work, we focused on the problem of acquiring much of this domain knowledge through 
learning by demonstration (Hinrichs & Forbus, 2012a).  The central idea there was that given a 
set of quantity types and a human-mediated demonstration of the game, the principles of QPT 
provide an inductive bias to identify qualitative influences and the effects of primitive actions on 
quantities.  The inputs to the model learner are precise numeric samples of quantity values and 
changes in value after an action.  The learning process is roughly similar to that in Bacon 
(Langley et al., 1987) except that, instead of producing equations, it creates outputs in the form of 
type-level influence statements between quantity types.  Type-level here refers to a second order-
relation that implicitly captures a universal quantifier (Hinrichs & Forbus, 2012b).  The models 
that are learned in this way are somewhat oversimplified because the influences are not in the 
scope of model fragments or processes, and therefore are not conditional on any qualitative state.  
Nevertheless, after manually vetting and elaborating them, these learned influences form the core 
of the qualitative model used to play the game.  The current model of Freeciv contains 104 
influence statements, of which 64 were learned by demonstration. 

Even with this knowledge, the level of play is severely limited because Freeciv is an 
incomplete information game with stochastic actions, an overwhelmingly large number of 
possible ground facts to consider, and many alternative dimensions along which to evaluate and 
compare possible plans.  The spur for the current research is to learn more of the domain 
knowledge and plans, to focus the agent’s attention on relevant abstractions that mitigate the 
problems of projecting uncertain information into the future, and to enable more reactive, short-
                                                 
2 http://www.cyc.com/platform/researchcyc 
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term actions to be guided by long-term goals.  The qualitative model of game dynamics plays a 
key role in letting the planner quickly find and compare actions that drive quantities in desired 
directions without projecting exact and complete future states.  We describe this process more 
concretely in the next section. 

3.  Reasoning More Abstractly and Farther Ahead 

The basic idea behind using a qualitative model in game playing is to propose actions that drive 
quantities in desired directions.  For example, given a goal to increase the population of a 
civilization, the planner will search through the known influences on the population quantity to 
determine that increasing the number of cities and increasing their rates of growth will both 
increase population.  Searching further reveals that the primitive action of founding a city 
increases the number of cities (which is a quantity representing the cardinality of a set), while the 
growth rate of cities is qualitatively influenced by their food surplus and the presence of a 
granary.  By traversing the transitive closure of influences, it is possible to collect the alternative 
primitive actions that can address the goal.  Of course, these actions may not be currently legal, in 
which case a simple form of regression planning searches for known plans that can achieve the 
preconditions.  Finally, because multiple actions may be feasible, heuristics order them roughly 
by cost – the number of actions to be performed and distances to be traveled.  It is primarily this 
choice that we wish to make more intelligently through abstract strategic reasoning. 

We refer to the strategic inference as abstract because the input to reasoning is not limited to 
domain-level events and states, but may instead be relationships between goals, specifically types 
of goal tradeoffs.  Furthermore, the consequences of these inferences are not so much domain-
level actions as relative priorities of goals and domain-neutral action types that, for example, 
decompose goals along some specified dimension.  This contrasts strongly with other models in 
which a strategy is defined as the conditions under which a particular domain-level action is 
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Figure 1: The role of strategies in generating behavior. 
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advisable (cf., Zhang & Thielscher, 2015).  Part of our claim is that in order for strategies to 
transcend particular domains, they must be cast in terms of more general concepts, such as 
qualitative states and relations, goal decompositions, prioritization, and ordering.  We do not 
expect an agent to invent new strategies from whole cloth (because this is a rare accomplishment 
in human experience) but, rather, to operationalize existing strategies with respect to a model or 
acquire them through interaction with an expert. 

Figure 1 illustrates how strategies contribute to generating behavior in our behavioral model.  
The current situation in a game is summarized in terms of qualitative states defined by active 
model fragments and processes.  The activation conditions in turn depend on ordinal relationships 
between quantities and Boolean relations between participant entities.  For example, a civilization 
is in the expansion phase when it has fewer than ten cities.  In general, a qualitative game state 
may involve multiple model fragments, expressed via type-level statements for conciseness.  
These states may in turn enable or activate strategies for resolving tradeoffs between goals.  
Strategies for resolving tradeoffs are themselves a kind of model fragment whose consequences 
either influence the relative priorities of the conflicting goals or further decompose a goal to 
subgoals that can be assigned different priorities.  The goal priorities (or activation levels) inform 
decisions about the relative desirability of different actions, plans and assignments, thereby 
affecting the state of the game for the next round of decisions.  For example, a high-level goal to 
grow a civilization will have competing subgoals to either increase the number of cities or their 
individual sizes.  The appropriate choice shifts over time and this is reflected in the numeric 
activations of the two goals.  While it may seem counter-intuitive to suddenly translate from 
qualitative states and relations to precise numeric activations, this is a necessary step whenever a 
model is used to drive behavior.  Although analysis can be qualitative, behavior must ultimately 
resolve to concrete actions. 

4.  Goals, Goal Tradeoffs, and the Goal Network 

In order to understand qualitative models of strategy, it is necessary to first explain the nature of 
type-level goals, how they trade off, how they are organized into a network, and the static 
analysis process that constructs these representations. 

4.1  Types of Goals 

Goals are partitioned into two mutually exclusive categories – propositional goals that describe 
states that can be achieved or avoided and quantitative goals that indicate the preferred direction 
to drive a quantity as shown in Table 1. Whereas a propositional goal can be directly planned for 
and satisfied, a quantitative goal is open ended and is therefore intrinsically a satisficing problem.  

Table 1. Vocabulary of goal types. 

(MaximizeFn (<quantity-type> <entity-type>)) 
(MinimizeFn (<quantity-type> <entity-type>)) 
(BalanceFn (<quantity-type> <entity-type>)) 
(AchieveFn <proposition>) 
(PreventFn <proposition>) 
(MaintainFn <proposition>) 

Quantitative goal types 

Propositional goal types 
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Propositional goals index plans and primitives for their pursuit or impose constraints on planned 
states, while quantitative goals enable the problem solver to retrieve processes and actions in the 
model that influence the goal quantity.  In addition to these goal categories, we also classify goals 
by their valence.  The valence of a goal is the direction in which a quantity is being driven or a 
proposition is pursued.  So maximize and achieve goals have a positive valence, minimize and 
prevent are negative, and balance and maintain are neutral.   

Like qualitative influences, goals themselves are represented at the type level.  This means that 
they are implicitly quantified over descriptions of entities, rather than necessarily being specified 
for each individual entity.  This is important both for reasons of scale (i.e., to avoid reifying 
distinct goals for each terrain tile, of which there are thousands in a typical game) and because the 
domain is dynamic – entities are created on the fly, and it is essential to be able to express goals 
involving them before they exist and have names.  Table 2 characterizes the representation of a 
typical goal, in this case for maximizing the food surplus in the current player’s cities.  The 
statement associates a concise name (GoalFn 17) with an expression denoting a desire to 
maximize the values of instances of a quantity type (the food surplus produced by cities owned by 
the current player).  The first argument to the MaximizeFn functor is the quantity type 
(MeasurableQuantityFn cityFoodSurplus), the functor of which designates this as a type of 
quantity that can be sampled via the second argument, the outsourced predicate cityFoodSurplus.  
The second argument to the MaximizeFn is the entity specification, which characterizes the 
objects possessing the quantity.  In this case, GenericInstanceFn denotes a universal quant-
ification over the elements of its argument, which is the subset of all cities owned by the current 
player.  Rather than handcraft these somewhat verbose representations, the goals are constructed 
from seed goals and the qualitative model in a process of static analysis described in Section 4.4. 

4.2  Types of Goal Tradeoffs 

Much of the skill in playing a game like Freeciv is knowing how to balance the conflicting 
demands of investing in future growth versus protecting a civilization from threats, keeping 
citizens happy, and researching new technologies.  We classify these goal tradeoffs based on the 
kinds of resolution strategies they permit.  Table 3 shows the types of tradeoffs we recognize, 
organized along two dimensions: Total/Partial determines whether or not all instances of the goal 
must be adjusted in lockstep, and Abrupt/Progressive determines whether the relative goal 
activation or prioritization happens instantaneously or progressively over time. 
 

Table 2. Example goal representation for “Maximize food surplus in your cities.” 

 

(goalName (GoalFn 17) 
 (MaximizeFn 
  ((MeasurableQuantityFn cityFoodSurplus) 
   (GenericInstanceFn 
    (CollectionSubsetFn FreeCiv-City 
      (TheSetOf ?var1 
        (and (isa ?var1 FreeCiv-City) 
             (ownsCity (IndexicalFn currentPlayer)?var1)))))))) 
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For example, goals to maximize the percentage of revenue going to taxes, science, and luxuries 
trade off in a total abrupt fashion because the percentages must always sum up to 100 percent, 
and these rates are set at the level of a civilization, not independently for each city.  Any change 
to one abruptly affects the others across the entire civilization.  On the other hand, goals to 
achieve different improvements in cities only conflict locally within each city.  So that indicates a 
partial abrupt tradeoff that could be resolved with a compromise, in which some cities might 
build granaries while others build libraries.  A civilization-wide goal to prevent bankruptcy might 
become progressively more important as the treasury is depleted until it eventually overshadows 
other goals contending for money.  The treasury is a global, divisible (but exhaustible) resource, 
which suggests a total progressive tradeoff.  Finally, a goal to maximize the number of cities in a 
civilization trades off with goals to maximize the sizes, science outputs, or other properties of the 
individual cities, due to resource contention.  Because the former goal is global, its priority could 
be progressively decreased.  Because the latter goals are local to cities, they could be resolved 
independently, signifying a partial-progressive tradeoff.  As with goal representation, the det-
ection and labeling of pairwise goal tradeoffs is performed during static analysis, as described 
below. 

4.3  The Goal Network 

The type-level domain goals are organized into a directed acyclic graph of subgoal relationships, 
as shown in Figure 2.  The goal network takes this form rather than a tree because any given 
quantity or achievable proposition may serve multiple goals.  In addition to subgoal relations, the 
goal network contains explicit representations of pairwise tradeoffs between goals and provisional 
role assignments of equivalence classes of actor types (in Freeciv, players, cities or types of units) 
to goal types based on functional capabilities (see section 4.4 for details). The visualization of the 
graph shows quantity goals in green and propositional goals in blue, and it indicates goals that 
participate in tradeoffs with an oval shape.  The figure is also annotated with topic clusters, which 
are illustrative but not an explicit part of the representation.  Also, the network depicted here 
corresponds to a particular learned qualitative model.  As additional technologies, infrastructure 
improvements and unit types are learned, they are reflected in new subgoal types. 

 

Total Abrupt 
 

Switch relative goal priority from one 
goal type to another across all entity 
instances simultaneously  

Partial Abrupt 
 

Change goal priorities for some goals 
or entities but not others  

Total Progressive 
 

Gradually change balance of goal prio-
rities across all entity instances  

Partial Progressive 
 

Gradually adjust relative goal priorities 
across entities independently  

Table 3: Type-level goal tradeoffs determined by resolution methods. 
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Preventing loops in the subgoal relations requires reasoning about possible feedback loops in 
the qualitative model.  In Freeciv, for example, artifacts can be built more quickly if a city has 
more surplus production capacity.  Building a factory can result in greater surplus production 
capacity.  Such a loop makes sense, but cannot be allowed to paralyze the reasoner.  For this 
reason the routine that produces the goal graph detects feedback loops and labels the 
corresponding subgoal relations as diachronic subgoals.  This is easy to detect because QPT 
requires that there be no pure indirect influence loops.  Only a direct influence (i+ or i-) can close 
a loop, so these are turned into diachronic subgoals.  Retaining these diachronic subgoals is 
important because it lets one of detect loops that serve no other purpose than to enhance the 
efficiency of attaining other goals.  Activating such a loop constitutes a general efficiency strategy 
that can be recognized in expert behavior or applied to enhance future performance on other 
goals. 

4.4  Static Analysis 

The goal network is produced from the qualitative model and initial seed goals through a process 
of static analysis.  At the start of a game, if there is no goal network for the domain, static 
analysis is automatically invoked to construct one.  This process does three things: (1) it 
constructs the network of subgoals from seed goals and the qualitative model, (2) it identifies 
tradeoffs between goal types and labels them, and (3) it computes equivalence classes of actor 
types based on the capability constraints in preconditions of primitive actions, essentially creating 
a reverse index that maps from actor type to actions they can perform. 

Figure 2: A Freeciv goal network, based in part on learned knowledge of the game. 
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4.4.1  Generating the Goal Network 

We have seen how the game player traverses the qualitative model to identify influencing 
quantities and possible actions.  By definition, these influencing quantities and actions are 
causally upstream – i.e., they are independent variables with respect to the goal quantity and we 
can consider them to be subgoals.   However, computing subgoals this way can be an expensive 
operation because the influences are specified at the type level where each influence specifies the 
relationship between instances of the two quantity types.  For example, the influence of food 
production of a tile on the food production in a city is constrained by the requirement that the tile 
be inside the city boundaries.  Consequently, computing subgoals directly from the influences 
requires reasoning at the instance level repeatedly for each entity instance at each edge in the 
graph.  Static analysis avoids this problem by producing the context-free goal representation 
shown in Table 2.  It does this by traversing the qualitative model once and accumulating the 
entity description from the relations in the individual influences. 

The traversal must start somewhere, both to supply an initial goal valence and to specify an 
initial entity to which the influences are ultimately related.  The latter is straightforward – we 
define an indexical referent to the current player.  Traversing from the top-level goal is more 
problematic, because the goal of achieving ‘winning the game’ does not directly connect to the 
causal model.  Freeciv has two main ways to win the game (conquest or escape to Alpha 
Centauri), so these become subgoals of the root goal.  Conquest is represented as achieving the 
state where the cardinality of opposing players is zero, which entails the subgoal of minimizing 
the cardinality of opposing players.  Players only exist when they have cities and/or units, a 
property known as quantity-conditioned existence.  Consequently, the goal of minimizing 
opposing players expands to subgoals to minimize the cardinality of opposing units and cities.  
These subgoals do connect to the qualitative model by virtue of the fact that the attack primitive 
can reduce the cardinality of units and cities. 

Nevertheless, the goal of attacking every opposing unit or city is insufficient to play an even 
marginally effective game, if for no other reason than that no opponents are visible at the start of 
the game and the initial units are not capable of attacking anyway.  Consequently, we provide two 
or three initial seed goals, which can be thought of as waypoints. In our current experiments, 
these seed goals are to maximize the rate of gold production, maximize the rate of scientific 
research, and achieve the Republic style of government. Eventually, we intend to be able to 
specify such goal decompositions through advice in natural language, which would be a 
reasonable way to communicate strategy. 

4.4.2  Detecting Tradeoffs 

After the subgoal network is generated, static analysis proceeds to detect, classify, and label goal 
tradeoffs in the network.  The recognition criteria we use are shown in Table 4, where tradeoff 
categories are abbreviated: TA (Total Abrupt), PA (Partial Abrupt), TP (Total Progressive), and 
PP (Partial Progressive).  Type-level descriptions are notated with capital letters: G (goal), Q 
(quantity), P (proposition), E (entity), and |E| (cardinality of E).  Lower-case e is an entity 
instance, while p is a predicate. 

The simplest tradeoffs to recognize are opposite valences: goal pairs that both maximize and 
minimize the same quantity or achieve and prevent the same proposition.  Others are more 
indirect, such as implied resource tradeoffs, where a unique property of an entity type indicates a 
resource bottleneck (e.g., a city’s build queue is implied by the currentlyBuilding property 
which can only take on a single value at a time). Other tradeoff criteria are inferred by relation to 
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existing tradeoff pairs, such as implied cardinality tradeoffs, where the quantitative siblings of 
conflicting cardinality goals are labeled as trading off (justified by the way cardinality goals 
originate in the qualitative model).  We expect to extend these recognition criteria over time to 
support, for example, Total Progressive tradeoff detection. 

4.4.3  Assigning Functional Roles to Goals 

The third purpose of static analysis is to compute equivalence classes of actor types based on their 
functional capabilities.  This process iterates through the preconditions of domain planning 
primitives and identifies constraints on the actor types that can perform them, merging them into 
equivalence classes.  Then, when constructing the goal network, it identifies goal quantities 
influenced by actions and goal propositions achievable by actions and labels those goals with the 
functional capability role of actor types that can pursue them.  This makes it efficient to quickly 
assign actors to goals they can pursue, so that planning can be resource driven from the available 
actors, yet still informed by relative priorities of long-term goals.  

 Table 4: Recognition criteria for goal tradeoff types. 

TA(G1,G2) = (oppositeValence(G1,G2) ˄ propositional(G1) ˄ propositional(G2)) ˅ 
resourceTradeoff(G1,G2) 

PA(G1,G2) = (oppositeValence(G1,G2) ˄ quantitative(G1) ˄ quantitative(G2)) ˅ 
 (partitionsQuantity(G1,Q) ˄ partitionsQuantity(G2,Q)) ˅ 
 cardTradeoff(G1,G2) ˅ achmntTradeoff(G1,G2) 
PP(G1,G2)  = maximize(G1,|E1|) ˄ achieve(G2,P2) ˄ actionInfluences(A1,|E1|) ˄  
 resourceEnables(E2,A1) ˄ producesResource(A2,E3) ˄ (E2  E3) ˄  
 actionEffect(A2, P1) ˄ P1  P2  p(e) ˄ mutuallyExclusiveProperty(E4,p) ˄ 
 e  (E3 - E2) 
oppositeValence(G1,G2) = (positiveValence(G1) ˄ negativeValence(G2)) ˅ 
 (negativeValence(G1) ˄ positiveValence(G2) 
sameValence(G1,G2) = (positiveValence(G1) ˅ positiveValence(G2)) ˅ 
 (negativeValence(G1) ˅ negativeValence(G2) 
positiveValence(G) = maximize(G,_) ˅ achieve(G,_) 
negativeValence(G) = minimize(G,_) ˅ prevent(G,_) 
resourceTradeoff(G1,G2) = mutuallyExclusiveProperty(E,p) ˄ 
 entailedGoal(G1,E,p) ˄ 
 entailedGoal(G2,E,p) 
entailedGoal(G,E,p) = achieve(G,P) ˄ (e  E) ˄ (P  p(e)) 
cardTradeoff(G1,G2)  = cardinalityGoal(G3,E) ˄ cardinalityGoal(G4,E) ˄ 
 oppositeValence(G3,G4) ˄ 
 G1  siblingGoals(G3) ˄ G2  siblingGoals(G4) ˄ 
 G1 ≠ G2 ˄ quantitative(G1) ˄ quantitative(G2) ˄ 
 ¬cardinalityGoal(G1,_) ˄ ¬cardinalityGoal(G2,_) 
 sameValence(G1,G3) ˄ sameValence(G2,G4)  
achmntTradeoff(G1,G2)  = oppositeValence(G3,G4) ˄ propositional(G3) ˄ propositional(G4) 
 subgoal(G1,G3) ˄ subgoal(G2,G4) ˄ G1 ≠ G2 
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5.  Representing Strategy Qualitatively 

Strategies may be active or inactive based on states of the game or on quantitative relations 
between goal priorities.  Thus the state of the agents’ intent can be as relevant as the state of the 
game.  In turn, the effect of a strategy is primarily to influence the priorities of goals.  The 
representation of a strategy consists of a set of participants, relational constraints among them, a 
set of quantitative conditions for it to be active, and a set of consequences that influence or 
manipulate the participants.  Table 5 shows a type-level representation of the Build Grow 
strategy, which is useful in the early expansion phase of the game.  It defines participant roles, 
which are like pseudo-variables that can be bound to instances from the current game scenario.  
These roles, such as doneBy or initialGoal, are substituted with participant instances when 
querying for the activation status of the strategy and applying its consequences.  An actual 
instance of a strategy or other model fragment can be specified using a positional notation, where 
the roles are assigned a unique ordering (shown here in the associatedRoleList statement).  
We see an example of positional reference in the second participant constraint, which says that 
the strategy is only applicable when the player’s civilization is in the expansion phase. This is a 
bit of Freeciv knowledge in an otherwise domain-neutral strategy.  Because this is an independent 
fact in a compositional representation, one could think of that as an applicability condition for the 
strategy in this domain. 

The Build Grow strategy resolves partial-progressive tradeoffs between goals to maximize the 
number of instances of some entity type and goals to maximize properties of those instances.  It 
emphasizes building entities before focusing on their properties.  In the Freeciv domain, this is 
applied to building cities before expending resources to grow their population. While the strategy 
is active, its consequences influence the relative priority of the initial goal of the tradeoff to be 
100 percent, and the deferred goal(s) to be 0 percent via the c+ (additive) influence type.  When 
the strategy is deactivated, its influence is removed.  When deactivating any strategy on a partial-
progressive tradeoff, the initial goal is further suppressed with a new SuppressGoal strategy 
applied to it. 

(isa BuildGrow StrategyType) 
;; roles and types of participants: 
(participantType BuildGrow doneBy Player) 
(participantType BuildGrow initialGoal Goal) 
(participantType BuildGrow deferredGoal Goal) 
(associatedRoleList BuildGrow (TheList doneBy initialGoal)) 
;; relations between participants: 
(participantConstraint BuildGrow  
  (goalTradeoff initialGoal deferredGoal PartialProgressiveTradeoff)) 
(participantConstraint BuildGrow  
  (activeMF (MFInstanceFn ExpansionPhase (TheList doneBy)))) 
;; influences on goal activation: 
(consequenceOf-TypeType BuildGrow 
  (c+ ((MeasurableQuantityFn goalActivation) initialGoal)  
      (Percent 100))) 
(consequenceOf-TypeType BuildGrow 
  (c+ ((MeasurableQuantityFn goalActivation) deferredGoal)  
      (Percent 0))) 

Table 5. The Build Grow strategy encoded as a qualitative model. 
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Build Grow illustrates the similarity between strategies and QP representations.  It is easy to 
see how the additive influences could be replaced with direct influences that would progressively 
drive goal priorities up or down over time.  Other types of strategies, however, have 
consequences that are discrete actions rather than influences.  The two action types that we 
foresee are goal decompositions, which are currently implemented, and the imposition of 
scheduling constraints, which are not. For example, a consequence consisting of (decompose 
<participant> <dimension>) creates a scenario-specific decomposition of a goal type along the 
specified dimension.  This is used in the SpecializeByPerformance strategy to decompose a goal 
type into a subgoal containing just the entities that perform exceptionally well on that goal (see 
Table 6).  The goal priority is emphasized for that subset of high-performing entities.  For 
example, in Freeciv, the food, industrial production, and trade outputs of a city all trade off.  
Applying a SpecializeByPerformance strategy on the production goal will cause some cities to 
specialize in production rather than trade, and they will be more likely to build factories than 
granaries or markets. 

As mentioned earlier, in order to drive behavior, it is necessary to resolve qualitative states into 
concrete numbers at some point.  In the case of goal priorities, this is accomplished by 
representing them as percentages initialized to 100%, and then proportionally subdividing those 
percentages based on the different types of tradeoffs.  Thus, if a goal does not trade off with 
anything, then it should be pursued no matter what.  If a goal or its parent goals trade off with 
other goals, its relative priority must reflect that.  The goal network is traversed breadth first and, 
as goal tradeoffs are encountered, the priorities are divided proportionally and multiplied by the 
maximum parent goal priority.   

This provides a static picture of relative priorities, but because each game evolves differently, 
actual goals activations must change over time, based on the current situation and strategic intent.  
For example, if your civilization is attacked, then suddenly the importance of defense increases.  
Strategies account for this in two ways: by maintaining a separate record of the current dynamic 
goal activation in parallel with the static priorities and by elaborating the goal network structure 
with situation-specific decompositions of goal types.  The dynamic goal activation differs from 
the static relative priority because it is sensitive to the existence or nonexistence of entities 
corresponding to goal types.  For example, if there are no cities yet in the current game, then 
goals pertaining to cities should not impede unit or civilization-wide goals that can be pursued 
currently.  The implications of distinguishing desired future states from future desires in this way 
are currently an area of active investigation.  The other way goal activations evolve is through 
structural goal decompositions driven by strategies that are, in turn, activated by the current 
qualitative game state. Strategies for partial tradeoffs may decompose type-level goals first in 
terms of subsets of their entities and then allocate activation among their subgoals non-

(isa SpecializeByPerformance StrategyType) 
(participantType SpecializeByPerformance performanceGoal Goal) 
(consequenceOf-TypeType SpecializeByPerformance 
  (decompose performanceGoal DecomposeByPerformance)) 

Table 6. SpecializeByPerformance decomposes a quantity goal by performance outliers. 
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Figure 3. Population growth with and without strategies for resolving tradeoffs, averaged over 
50 runs for each condition. 
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proportionally (i.e., by allocating activation to one subgoal type exclusively for that 
decomposition).  Examples would include specializing some cities to production or trade and 
grandfathering existing Settler units to continue founding new cities, even after the parent goal 
deactivates the production of new Settlers.  

6.  Experiments and Analysis 

As a step towards eventually learning strategies through advice, we wanted to establish that 
relatively domain-neutral strategies can in improve performance and are worth learning.  To that 
end, we ran an experiment to compare performance in Freeciv with and without three hand-coded 
strategies.  For the purpose of these experiments, we seeded the goal network with two high-level 
subgoals of the root goal to win the game: maximize the science output and maximize gold 
production.  We had a Companion play 100 turns in 50 different scenarios (initial maps and unit 
placements).  The baseline condition ran with the full complement of goals but no strategies for 
resolving tradeoffs among them, and the test condition ran with three strategies, directly 
associated with the goal tradeoffs they addressed.  The strategies were BuildGrow, which 
addressed the tradeoff between founding new cities and improving them, ConditionOnState, 
which suppressed maximizing gold production unless the civilization was in the low-funds state, 
and the SpecializeByPerformance strategy, which decomposed goals to maximize production so 
that cities that were performance outliers with respect to that goal would prioritize it. 

The results are shown in Figures 3 to 5.  For each of these metrics, the performance difference 
on turn 100 is statistically significant (p < 0.005, p < 0.001, and p < 0.001, respectively).  We can 
see that, on average, population and science output grows more quickly with the BuildGrow 
strategy in place, while gold production lags.  This is to be expected: the treasury grows slower 
because more libraries are produced that require upkeep, effectively converting money to 
research. In the meantime, the ConditionOnState strategy suppressed the goal to maximize gold 
production unless the civilization was in the LowFunds state, defined as the treasury dropping 
below ten GoldPoints.  In lieu of producing coinage, the Strategic tradeoff player built libraries to 
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Figure 4. Science output rate with and without strategies for resolving tradeoffs, averaged over 
50 runs for each condition. 
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boost science production.  This is a desirable strategy in Freeciv – invest early in order to 
establish a technological lead.   

Could these results have been achieved through more conventional means, such as pure 
hierarchical task network planning?  Undoubtedly so, but not without doing severe violence to 
their underlying abstractions and at the cost of a target representation that would, for all practical 
purposes, be unlearnable.  Consider that HTN planning is computationally equivalent to applying 
a set of situation-action rules that bottom-out in sequences of primitive actions.  Almost anything 
could be implemented that way, yet it would be a poor choice for encoding domain-independent, 
abstract strategies.  The problem is that HTN planners achieve abstraction at the cost of increased 
domain dependence in the form of high-level, domain-specific tasks and method expansions.  
Classical planners, on the other hand, achieve more domain independence by regressing over 
primitive actions.  There the challenge is that actions must transform states in well-defined ways. 

This tradeoff results from conflating two distinct notions: goal decomposition and 
operationalization.  The traditional assumption has been that subgoaling reduces a goal from a 
possibly abstract desire to subgoals that are more operational or actionable, until the subproblems 
become trivial.  This is not wrong, per se, but goal decomposition need not entail operation-
alization.  In strategic decomposition, we split goals into subgoals not because the parent goals 
have no methods or actions, but because the subgoals allow for independent resolution of goal 
tradeoffs among entities at different points in time and space.  This lets the agent explicitly reason 
about future goals, rather than automatically pursue desired future states.  Thus future goals can 
be contingent on situations that might never arise and should not be pursued until they do. 

Another way we distinguish decomposition from operationalization is by regressing through 
causal influences of a qualitative model.  Different quantities may or may not be directly affected 
by primitive actions, but the subgoals that are pursued are not necessarily those that are most 
readily or directly manipulated.  Instead, subgoal priority is determined by prior commitments to 
strategies that resolve goal tradeoffs according to more global, long-term, and abstract criteria. 
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Figure 5. Gold production rate with and without strategies for resolving tradeoffs, averaged 
over 50 runs for each condition. 
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7.  Related Work 

Qualitative Process Theory (Forbus, 1984) provides the foundation of our modeling approach, 
including the basic vocabulary and constraints on representation.  We have previously extended 
these ideas to cover modeling of adversarial tactics (Hinrichs et al., 2011) and to type-level 
influence and process representations (Hinrichs & Forbus, 2012b). 

Strategic reasoning about goal relationships has a long history in AI.  Notable early work 
included Wilensky’s (1983) classifications of goal conflicts and meta-goals for resolving them, 
such as achieve-as-many-goals-as-possible.  Our work extends those ideas to address tradeoffs 
between quantitative type-level goals and qualitative modeling of strategies. 

Gruber’s (1989) ASK program addressed the acquisition of strategic knowledge through user 
dialogs.  Strategy in his model was more focused on search control rules than in generating 
behavior, but the acquisition process guides our approach to strategy learning.  Similarly, Myers’ 
(1996) Advice Representation Language enables the interactive communication of strategic 
advice to a hierarchical planner.  The nature of advice in her language centers on constraining 
task expansion, but the way advice is mapped to problem solving method is relevant to 
operationalizing advice for resolving goal tradeoffs. 

Static analysis has been explored previously, most notably in Etzioni’s (1993) STATIC program, 
which applied explanation-based learning during static analysis to acquire search control 
knowledge.  Like STATIC, our mechanism analyzes goal interactions, but the nature of the 
interactions and the purpose of the analysis are quite different.  Rather than controlling 
combinatorial search, our analysis focuses on prioritizing goals for open-ended satisficing 
problems. 

Goal-driven autonomy is an approach to generating and reasoning about goals in complex and 
dynamic environments (Klenk, Molineaux & Aha, 2013).  One of the objectives is to relax the 
requirement that all goals be previously enumerated before execution.  Our use of type-level goals 
addresses this problem by allowing entities to be created and destroyed and goals to be 
decomposed dynamically.  Similarly, our planning system manipulates and reasons about goal 
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activation and prioritization.  We differ in our focus on reasoning about goal tradeoffs and 
representing strategies as qualitative models.  

GAIA is a system for the interactive model-based adaptation of software (Goel & Rugaber, 
2015) that modified the Freeciv AI player code in response to changes in the game rules.  To do 
this, it employed a declarative representation of strategy encoded in the Task-Method-Knowledge 
Language, reasoned about implications of the change to adapt the model, and generated new C 
code to implement the revision.  Like GAIA, our system uses models to reason about high-level 
behavior, although it interprets them at runtime, rather than compiling new code.  But while its 
models integrate teleology with structure and behavior, our approach maintains a purely causal 
qualitative model from which the goal network can be constructed.  This has benefits and 
drawbacks.  On the positive side, the separation of concerns makes it easier to learn the model 
from observation.  On the negative side, plans we learn at the tactical level are pure hierarchical 
task networks (HTNs), which are difficult to modify and adapt because there is no model of their 
inputs, outputs, or purpose.  Our application of Build Grow directly corresponds to two sequential 
steps in their “Largepox” strategy: Initial_M and Growth_M.  Our purpose here is to try to tease 
out these constituents of strategy and represent them in the most general possible way. 

A very different approach to learning in Freeciv was described by Branavan, Silver, and 
Barzilay (2012).  That project aimed to learn the game through a combination of reading the 
manual and employing Monte-Carlo simulation.  The most significant difference from the current 
work is that it progressively refined a heuristic evaluation function, rather than building or using 
any kind of model.  Their system performed well, albeit on a scaled down game  with a smaller 
map, that ended at 75 turns.  A limitation of their approach is that it takes many trials to learn the 
game, requires running the game engine to do lookahead search, and, once learned, cannot 
explain its own behavior. 

The GODEL system combines hierarchical and classical planning by using goal decomposition 
and planning landmarks to reduce the need for complete coverage of HTN methods in a domain 
(Shivashankar et al., 2013). Like GODEL, our approach combines HTN planning with classical 
regression planning by, among other things, decomposing goals and using waypoint goals in a 
manner similar to landmarks. Our approach differs in the nature of goals, goal tradeoffs, and 
explicit strategies. We use goal decomposition to achieve better tradeoffs, rather than to 
operationalize goals. Also like GODEL, we employ a partially ordered goal network, but the 
ordering (based on activation levels) is dynamically modified by strategies represented as 
qualitative models.  These differences derive from different problems being addressed.  Rather 
than planning extended sequences of actions, our game-playing system applies high-level 
strategic advice to constrain or influence lower-level behavior. 

8.  Conclusions 

This paper has explored some potential benefits of representing strategies using qualitative 
models.  Preliminary experiments show that this can positively impact performance in generating 
behavior.  We have suggested that types of goal tradeoffs can constrain relevant strategies for 
resolving them, and that tradeoffs are often inferable directly from the structure of the qualitative 
model. Whenever goals involve satisficing relations on quantities, it is reasonable to expect that 
strategies will involve influences on quantities.  The novel step here is treating the activation level 
or relative priority of goals themselves as quantities.  This allows feedback from the external 
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world and the agent’s own intentions to influence its goals, rather than solely constraining its 
means. 

Of course, much work remains.  For one thing, not all tradeoffs can be detected on the basis of 
a causal model alone.  For example, the concept of opportunity cost is more a function of 
available plans and methods than causal relations, yet it can be central to goal tradeoffs. A clearer 
characterization of which tradeoffs can be detected directly from a model, and which require 
other information, is needed. 

To cover a broader range of strategies, the representation of decompositions needs to itself be 
composable.  It should be easy to express, for example, goals pertaining to military units in 
frontier cities in the late stage of the game.  Reasoning about decompositions as first-class entities 
is critical to thinking abstractly and making partial decisions about plans.  Strategies involving 
scheduling and synchronization are also underdeveloped.  Although vocabularies for partially 
scheduling tasks are mature, it is less clear how to talk about future goals and tradeoffs between 
long-term investments and short-term gains.  The solution will probably involve conditioning 
goals on future, envisioned states, and expressing temporal constraints between those states. 

An important question is how many general strategies exist.  The answer to that depends 
entirely on how abstract they are and how one counts.  In fact, when treated as a representational 
design problem, the goal of having fewer primitive strategy types trades off with the goal of 
making them easier to express through advice.  Parameterization and compositionality can result 
in fewer types at the cost of more complex participant bindings and referring expressions.  The 
question that really matters is whether there is a sweet spot that facilitates the acquisition of 
strategic knowledge.  Although the current research demonstrates the possibility of representing 
strategy qualitatively, finding the right combination of expressiveness and abstraction to 
compactly cover the space of general strategies remains an open problem. 
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