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Abstract 

Recent years have seen rapid advances in intelligent technology to support online learning, but these 

have primarily targeted formal educational contexts such as classrooms and e-courses. In contrast, 

the predominant form of adult learning in the workplace is informal and self-directed. Learners self-

assess competency, set goals, find relevant learning resources, and initiate learning activities 

covering many topics at different depths at different points in time. Our approach to supporting self-

regulated learning is embodied in PERLS, a mobile personal assistant application that serves as a 

virtual mentor for informal learning. A key component of PERLS is its recommendation system, 

designed to adaptively co-construct a path towards desired learning outcomes with the learner. 

Recommendations are made largely on the basis of value propositions, each a persuasive explanation 

for taking a particular learning action to advance along a particular learning path. In this paper, we 

present a process model of self-regulated learning used in PERLS and our approach to generating 

explained recommendations and using them to co-construct learning paths. 

1.  Introduction 

Rapid innovation in mobile computing and intelligent personal assistant technology presents an 

opportunity to better support self-directed learning, an activity that is widely seen as critical to 

individual job success and overall workforce adaptability. Self-learning is the predominant form of 

learning in the workplace (Marsick & Watkins, 1990; Livingstone, 1999). Adults routinely learn 

job-related knowledge for which little or no formal instruction is available, doing so through a self-

assembled mixture of resources at times, places, and pace of their own choosing. Informal learning 

presents challenges such as discovering needs, identifying resources to address those needs, self-

assessing progress, and coping with conditions that strain a learner’s determination and meta-

cognitive faculties. Fortunate individuals find mentors to help meet these challenges.  For those not 

so fortunate, technology able to provide mentor-like support can improve learning outcomes. 

We have implemented and field tested PERLS, a personal assistant aimed at reducing several 

practical and motivational difficulties of learning outside formal training contexts. One such 

difficulty is finding content for activities such as pre-study exploration and post-study sustainment 

which are important for self-learning but often absent from formal instruction. PERLS infers 

whether the learner is currently in a pre-study, study, or post-study phase, and recommends phase-
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appropriate content.  A second difficulty is accommodating adult patterns of learning which, in 

contrast to school age children, typically involve short, intermittent bursts of activity at convenient 

times.  PERLS mainly recommends short form “microcontent,” intelligently mixing content meant 

to advance learning goals with content meant to promote engagement, and prioritizing 

recommendations to minimize time spent finding desirable content, making brief windows of 

available time useful for learning.  A third difficulty is persuading users that recommendations are 

worth their time.  In keeping with accepted best practices for in-person training, PERLS explains 

the rationale for each recommendation, letting the user to decide if the rationale is compelling.    

 This paper presents our approach to virtual mentorship in PERLS, with a particular focus on 

describing how PERLS generates explainable recommendations appropriate for self-directed 

learning in informal learning settings. We first describe the PERLS application, and the process 

model of self-regulated learning (SRL) it uses to represent and track individual learning trajectories. 

We then describe how recommendation candidates are generated, ranked, and tagged with 

explanations. We conclude with a brief overview of field studies evaluating user response to 

PERLS recommendations. 

2.  PERLS Overview 

The PERLS mobile app uses a card-based user interface, where each card displays a 

recommendation and a swipe gesture advances to the next recommendation (Figure 1). In general, 

recommendations that come earlier in the sequence are predicted to be most appropriate for the 

learner, given the user’s inferred interests, stage of learning, and current attitude.  The app 

recommends content on a mixture of topics, including new ones meant to help the user discover 

new needs and interests.  And it mixes appealing content meant to promote engagement with 

challenging content that advances learning 

goals. The rationale behind a recommendation 

is surfaced through a “sell point,” a pithy 

statement that explains the recommendation in 

motivational terms (e.g., “Your peers find this 

to be important” and “This will help you retain 

what you learned last month”).   

 The card-based interface also lets PERLS 

serve up specialized content types such as 

event notifications, quiz cards (single, 

multiple-choice questions), and action cards 

that suggest or offer to carry out actions that 

improve learning outcomes.  For example, 

action cards can be used to encourage learners 

to set topic-specific objectives, make plans, 

and reflect on progress. Such actions, along 

with the deliberate combination of exploratory 

learning with goal-driven learning, and 

 

Figure 1. PERLS card-based UI. 
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engaging content with challenging content, help replicate strategies used by strong self-learners. 

PERLS prioritizes recommendations in a three-stage process. First, it generates a candidate set 

of recommendations based on inferred topic interests. Next it ranks candidates based on contextual 

factors, including estimates of the user’s current phase in the SRL trajectory for each topic, the 

appropriateness of candidate content for that phase, and the relevance of different motivations at 

that phase. Finally, PERLS adjusts the actual sequencing of recommendations to more closely align 

with the user’s immediate situation. This corresponds to steps a good human mentor might take to 

help a learner advance in their learning trajectories – i.e. to gain an understanding of the user’s level 

of interest and learning goals, determine relevant situational factors, make content 

recommendations that fit both long term learning goals and short term interests, attitudes, and 

situational context.   The learner retains control, select among content and action options presented 

by the system.  This is crucial, as both PERLS and the learner have different, equally valuable 

information for deciding the most effective next step in the overall learning path.  Whereas PERLS 

has access to indices of learning resources and models of effective pedagogy, learners have 

privileged knowledge of their own preferences and other internal states.  

3.  PERLS Self-Regulated Learning Model 

The foundation for PERLS’s recommendations is a 

process model of Self-Regulated Learning (SRL). The 

model describes self-learning as a set of activities 

grouped into three main phases⎯Explore, Study, and 

Sharpen. Most current technology to support learning 

focuses on Study, in which the learner makes a 

concentrated effort to achieve a learning goal, usually in 

a formal, structured context such as a classroom or e-

course. Self-learning, which occurs primarily in 

informal learning contexts, encompasses earlier 

activities that sets the stage for successful Study, and 

later activities that maintain and enhance outcomes.  

The PERLS SRL model divides each of the three 

phases into a set of key activities or subphases (Figure 

2). These define intermediate self-regulated learning 

transitions and objectives. For example, establishing 

motivation, orientation, and confidence while Dabbling 

improves knowledge intake during Familiarization. 

Content appropriateness varies systematically by sub-

phase.  For example, dabble content should ideally be 

brief, engaging, and not very difficult because learners 

in the Dabble phase will not typically have committed to 

studying the topic.  The model captures the range of 

possible paths, with individuals varying in where they 

 

Figure 2. The PERLS Self-Regulated 

Learning (SRL) Model. 
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enter and exit, and whether they skip or repeat a given phase. 

 The Explore phase starts with Discovery, where the learner first becomes aware of a topic. In 

some cases, discovery results from intentional exploration⎯for example, a learner discovering 

potentially interesting topics while browsing news content. In others, discovery happens 

incidentally while doing other things or in response to colleagues drawing attention to the topic. 

Learners who are naturally curious, perceptive, and social will tend to become aware of important 

topics in a timely way; others benefit from technology that supports discovery. 

 After learners have discovered a topic, they may begin Dabbling⎯engaging in light 

interaction with topic materials, consistent with a low level of commitment to long-term learning. 

Dabbling establishes motivation, confidence, and conceptual orientation to a topic in preparation 

for higher-commitment learning. Dabbling content will be relatively lightweight and 

engaging⎯e.g., brief narratively structured readings, engagingly edited video, and brief games or 

game-like experiences. 

Bridging is the process of preparing for more intensive, high-commitment learning. Learners 

self-assess their level of competence in the topic and begin to formulate their learning plan, setting 

expectations, and gauging the time and effort it will take to achieve their learning goals. During 

bridging, learners check their current understanding and confidence, connect with more advanced 

learners and mentors, and preview learning materials. 

 Learners who make the transition to the Study phase have made the commitment to gain some 

level of competence, to complete a course, or to achieve some other goal. Formal instruction is a 

special case of Study since learners may achieve goals through either formal or informal methods. 

Study begins with Familiarization, where the learner goes through introductory study materials to 

build a foundation for learning (e.g.  knowledge of terms, concepts, procedures, and principles). 

During Practice, learners build fluency in retrieving and applying acquired knowledge, 

including development of procedural skills.  Practice typically involves building expertise by 

focusing on specific gaps and elements in one’s knowledge and skills. 

Throughout the Study phase, learners will also typically be in Assessment⎯ feedback, either 

from others or self-generated, both formal and informal, on their proficiency level in the topic and 

progress toward learning objectives. Early formative assessment provides the learner with feedback 

on performance, allowing course corrections and adoption of new strategies to improve results. 

Later, summative assessment evaluate performance against criteria-based standards or group 

norms, and determine when the learner is ready for more advanced learning. 

 Once learners have achieved the desired level of competence in a topic, they enter the Sharpen 

phase for sustaining acquired knowledge. In Use, learners build fluency by applying their newly 

acquired knowledge to real-life problems or situations and understand of the range of situations 

where the knowledge is most commonly applicable.  

In the Refresh subphase, learners seek to check or strengthen knowledge or skill. This may be 

driven by some external circumstance where their knowledge or skill will be on display (for 

example, a meeting or a presentation) or by an innate drive for increased proficiency. 

A learner in the Extend subphase is seeking to enrich basic knowledge or to deepen a basic skill 

beyond the requirements for basic proficiency. Learners extending their knowledge build on 

existing competence foundation⎯for example, by learning about unusual/corner cases or by 

transitioning into subtopics.  
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4.  Content Recommendation for Self-Regulated Learning 

Technology-enhanced learning presents challenges not typically addressed in the recommender 

systems community (Manouselis et al., 2011). For example, conventional recommenders, including 

those designed to be sensitive to context (Verbert et al., 2012), typically focus on optimizing user 

response to a single metric such as ad click-throughs or monetary value of supplementary purchases 

(Adomavicius & Tuzhilin, 2005). In contrast, learning-oriented recommenders should use different 

metrics for different phases of learning.  For example, when in a discovery phase on a particular 

topic, the recommender should optimize for obtaining positive or negative evidence of learner 

interest in the topic.  In other cases, it might need to optimize for having the user meet an externally 

imposed Study completion deadline or acting to reinforce prior learning during the critical period 

for retention.   

 Technology focused on adult learning must deal with additional challenges. Whereas most 

recommendation methods rely on statistical machine learning approaches requiring a great deal of 

training data, workplace-oriented learning content is often interesting to a small number of people 

and of no interest to most others. As a result, SRL recommendation needs to rely heavily on 

techniques used for recommendation bootstrapping such as rules and decision-theoretic methods. 

And, in accordance with established principles for adult learning, self-learning recommendations 

need to be explained in convincing detail (Knowles, 1984). Thus, the mentor must have some 

mechanism for representing and reasoning about learner motivation. As described below, the 

recommendation approach incorporated into PERLS meets these adult learning requirements by 

estimation topic interest, generating a set of recommendation candidates consisting mainly of 

learning objects on high interest topics, identifying potential reasons to accept each candidate, 

predicting the strength of user motivation for each such reason, and then ordering the presentation 

of recommendations to prioritize the strongest.    

4.1  Topic Interest  

All PERLS recommendations will be on topics of interest to the learner, although the learner’s level 

of interest, learning stage, and particular learning goals may vary from topic to topic. PERLS thus 

tracks user interest in topics1, monitoring for direct evidence of user interest and propagating this 

to nearby topics in the corpus structure. Direct evidence comes in various forms, such as the user 

starring or subscribing to a topic, setting a learning goal, or starting some learning content. In 

determining the base interest in a topic from direct evidence, we use the following heuristic: explicit 

intention > explicit interest > demonstrated interest. Thus, setting a goal to complete a course 

(explicit intention) is stronger evidence of interest than starring a topic (explicit interest), which is 

stronger than completing a learning object (LO) under a topic (demonstrated interest). 

Multiple instances of the same type of evidence within a short time period are indicative of 

greater interest while evidence that occurs further in the past indicates lower interest. Thus, we 

increase the base interest value for intensity (number of instances of the same evidence type within 

                                                 
1 The PERLS corpus is organized through four kinds of content groups: topics (sets of learning objects (LOs) 

or groups corresponding to semantically meaningful topics), collections (arbitrary sets of LOs), courses 
(ordered sets of LOs), and feeds (short-lived LOs that arrive over time). Since these distinctions are 
irrelevant for the purposes of this paper, we simply use topics to refer to all the groups. 
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a given time period) and discount it for recency (time since the most recent event in the cluster). 

For the intensity adjustment, we want a function that gradually asymptotes to the maximum interest 

level. For example, for a base interest of b, a maximum interest level of 10, and n instances of the 

evidence type within a designated period of time, we can calculate the additional interest for user 

u in a topic t due to intensity as: 

∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑢, 𝑡)  = (10 − 𝑏) ∗ (1 −
1

𝑛
) 

For the recency adjustment, we want the inverse⎯a smooth discounting toward the minimum 

interest value (0). For example, if we allow a grace period of d days (i.e., within d days, an event is 

still considered ‘recent’), we can calculate the discount for an evidence type whose most recent 

event was m days ago as: 

𝛥𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑢, 𝑡) =  𝑚𝑎𝑥(𝑙𝑜𝑔2(𝑚 − 𝑑 + 1), 𝑏 + ∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑢, 𝑡)) 

 The direct interest of a user in a topic t is then 

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑑𝑖𝑟𝑒𝑐𝑡(𝑢, 𝑡) = 𝑏 + ∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑢, 𝑡) − ∆𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑢, 𝑡) 

After computing direct interest for all topics, we can calculate indirect interest⎯i.e., interest 

inferred from the direct interest in neighboring topics. Intuitively, interest in a subtopic translates 

to strong interest in a parent topic, so we distribute uniformly the direct interest in a topic to its 

parent topics. For example, if a child topic c with direct interest interestchild has np parents, then the 

indirect interest contributed by the child to a parent can be calculated as: 

∆𝑖𝑛𝑡𝑝(𝑢, 𝑐) = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑(𝑢, 𝑐) − 𝑙𝑜𝑔10 𝑛𝑝 

 In contrast, indirect interest from a parent topic decreases with the number of child LOs of that 

topic. A topic with many immediate child LOs is likely to be a relatively self-contained focus of 

interest and thus interest in that topic is unlikely to transfer to its subtopics. On the other hand, 

interest in a topic with no child LOs strongly implies interest in at least some of its subtopics. Thus, 

for computing indirect interest from a parent to its children, if a parent topic p has nclo child LOs 

and nctopic child subtopics, then we might calculate the indirect interest contributed by the parent to 

a child subtopic as: 

∆𝑖𝑛𝑡𝑐(𝑢, 𝑝)  = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡(𝑢, 𝑝) − 𝑙𝑜𝑔4

𝑛𝑐𝑙𝑜 + 1

𝑛𝑐𝑡𝑜𝑝𝑖𝑐
 

 The final interest level of a topic t is the sum of the direct interest in the topic and the maximum 

of the indirect interests from its parents and children, i.e., 

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑢, 𝑡) = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑑𝑖𝑟𝑒𝑐𝑡(𝑢, 𝑡) + 𝑚𝑎𝑥 ( 𝑚𝑎𝑥
𝑐 ∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑝)

∆𝑖𝑛𝑡𝑝(𝑢, 𝑐) , 𝑚𝑎𝑥
𝑝 ∈𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑐)

∆𝑖𝑛𝑡𝑐(𝑢, 𝑝)) 

The use of max to aggregate indirect interest greatly simplifies the calculation of topic interest but, 

more importantly, supports a straightforward explanation of why PERLS believes a learner is 

interested in a topic. We note that the specific functions used for calculating direct and indirect 

interest are less important than their characteristics (e.g., the effects of intensity gradually 
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diminishing with the number of events) and we anticipate refining these functions as we obtain 

additional PERLS usage data. Given a user’s interest levels in the different topics, PERLS considers 

as candidates for recommendation all the LOs under topics meeting a minimum interest threshold.  

4.2  Value Propositions 

PERLS uses diverse features of users, content, and situation factors as inputs. With enough training 

data, statistical machine learning approaches could be used to acquire accurate ranking functions 

for the recommender. However, the application of recommending work-related micro-content is a 

small data problem: unlike general education domains (e.g., algebra) where many learners may 

consume each bit of content and content rarely becomes obsolete, workplace content is typically 

fragmented, low-circulation, and perishable. Standard approaches are also not amenable to 

generating the explainable recommendations that are critical to adult learning.  

We thus adopt an approach with a significant domain modeling and knowledge engineering 

component. In particular, PERLS recommendations are based on the notion of a value proposition 

(VP), that represents a potentially compelling explanation or “reason” for a user to accept a 

recommendation. There is a large scientific literature on human motivation, although none are 

completely suited to self-directed learning. Some are too broad, covering all of human experience 

while providing little insight on learning in particular (e.g., Maslow, 1943; Reiss, 2004). Others 

apply specifically to learning but focus on particular learning behaviors and contexts (e.g., Lepper 

& Malone, 1987) or on goal setting (e.g., Locke, 1968). 

Perhaps the best known scientific idea regarding motivation is the distinction between intrinsic 

and extrinsic motivation⎯internal desires such as curiosity vs. external rewards or punishments. 

However, ongoing research in Self-Determination Theory shows that motivations are inherently 

neither one nor the other (Ryan & Deci, 2000). We thus take a simpler approach of categorizing 

VPs by whether they involve endogenous or exogenous motives. Endogenous motives involve an 

innate connection between learning activity and outcome (e.g., learning to play a guitar for fun or 

because you want to make music), while exogenous motives focus on rewards and punishments 

(e.g., learning to play a guitar to impress people or make money). 

We are developing a ontology of VPs based on these and other high level distinctions grounded 

in relevant psychological literature. VPs based on specific motivational types tend to be more 

persuasive but apply in a narrowed range of conditions.  So our goal is an extensible library 

containing numerous and diverse VPs.  The ontology is important for guiding the expansion of this 

library and assessing its coverage.  

4.3  Recommendation Strength 

Intuitively, PERLS looks for the most compelling reason to recommend a particular LO to a learner. 

In general, multiple VPs will apply to any one LO and there may be significant, unknown semantic 

overlap between them. Thus, PERLS calculates as the recommendation value or strength of a LO 

for a user to be the maximum strength of any VP for that LO. Let u be a user, o be a candidate LO, 

and V be the set of all VPs. Then the recommendation strength of o for u is: 

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑜, 𝑢) =  𝑚𝑎𝑥
𝑣 ∈ 𝑉

 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑢, 𝑣, 𝑜) 
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where strength(u,v,o) is the product of the VP’s importance and fitness to u according to o: 

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑢, 𝑣, 𝑜) =  𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣, 𝑜) ∗ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑢, 𝑣, 𝑜) 

4.3.1  Importance 

Importance is a sum of three values: topic importance, urgency importance, and VP importance. 

Topic importance can be interpreted as the value of a LO due solely to it being on a topic of interest 

while urgency importance is its value due solely to the existence of a pressing need to consume the 

content sooner rather than later. While one could ostensibly create VPs that capture motivations 

along these lines (and we do), PERLS factors them separately because they capture fairly universal 

motivations. That is, all learners will naturally be more interested in topics of interest and they will 

be more inclined to attend to urgent content.  

Topic importance is a function of the learner’s interest in the topic⎯at its simplest, topic 

interest itself, i.e., 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝑝𝑖𝑐(𝑢, 𝑡) = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑢, 𝑡)) 

For urgency, PERLS tracks a number of urgency factors, each representing some immediate need 

to consume the LO⎯for example, because of an approaching deadline (whether self-imposed or 

set by an external authority), or because the content is associated with some location the learner is 

currently near. Urgency importance is the maximum value of any of these factors⎯i.e., the most 

urgent need. Let U be the set of urgency factors and urgency(u,o) be the value of the factor u for a 

LO in the user’s current context. Then the urgency importance of a LO for a user is: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑢, 𝑜) = 𝑚𝑎𝑥
𝑢 ∈𝑈

𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑢, 𝑜) 

The primary component of importance is VP importance, which captures the rationale behind 

a recommendation⎯i.e., how motivating a particular VP will be to a learner, given the learner’s 

current state of mind and stage of learning on a given topic. There are two main components to VP 

importance: attitude and phase. Attitude represents the learner’s current disposition toward 

learning. For example, a learner with an achievement attitude in the Familiarize subphase of Study 

is looking to make significant learning progress and is thus likely to be receptive to more 

challenging content. In contrast, a learner in the same subphase with a discovery attitude is still 

looking to get the lay of the land and will probably be more amenable to lighter content. Given a 

set of possible attitudes, we attach to each VP a baseline VP importance for each subphase for that 

attitude that captures how important that VP is generally to a learner with that attitude. For example, 

VPs with high baseline values for the discovery attitude in the Explore subphases might include 

“This is trending” or “You might be interested in this because of your interest in X.” Meanwhile, 

VPs with high baseline values for the achievement attitude in the Study subphases might include 

“This will raise your competency in X” or “This will complete the course.”  

The second component of VP importance is phase, which represents the user’s current stage 

within the SRL model described earlier. More specifically, within any subphase, the user may be 

in one of four states: Not Ready, Ready, Progressing, and Done. For a VP to apply to a LO given 

the user’s learning status for a topic, the user must be either Ready or Progressing in the subphase, 

the content must be appropriate for that subphase, and the VP must have a nonzero baseline value 
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for the subphase. PERLS currently constructs a discrete probability distribution over these states 

for each subphase to provide an estimate of the user being in a particular state within a subphase. 

The probabilities are inferred through a Markov Logic Network (MLN) (Richardson & Domingos, 

2006), which we chose because it provides a principled way to integrate probabilities with logical 

rules. Phase estimation is a task for which we have significant knowledge about different pieces of 

evidence that a user is in a particular phase/subphase/state but where there is some uncertainty in 

that knowledge and in the evidence itself. For example, if a user starts a few Dabble LOs in a topic, 

the user is likely to be in the Ready or Progressing states for Dabble. After completing several such 

LOs, the learner is likely to be Done with Dabble. If learners are Ready, Progressing, or Done in a 

subphase, they are likely to be Done with any precursor subphase. By encoding such rules within 

a MLN, PERLS can use the learner’s activities to infer the probabilities over the different states. In 

addition, when learner data becomes available, MLNs naturally lend themselves to automatic 

adjustment of rule weights through machine learning techniques.  

Given the phase estimates, PERLS can determine the learner’s current state within a subphase 

to know whether a VP applies. A straightforward approach would be to set the highest-probability 

state in a subphase as the learner’s current state in that subphase. However, this would lead PERLS 

to always recommend content that matches its best guess as to the user’s current learning stage. 

While reasonable, this approach relies heavily on accurate estimates and prevents fortuitous 

exposure to topics of potential but unverified interest. To address this exploration/exploitation 

tradeoff, PERLS employs an ϵ-greedy exploration strategy: with probability 1 – ϵ, PERLS chooses 

a high-probability state and with probability ϵ, a low-probability one. We set the high/low threshold 

at 0.25 (uniform probability over four states). So, for example, if the states {Not Ready, Ready, 

Progressing, Done} have probabilities {0.2, 0.4, 0.3, 0.1} respectively, then exploit will pick Ready 

with probability 
0.4

0.7
 and Progressing with probability 

0.3

0.7
, whereas explore will pick Not Ready with 

probability  
0.2

0.3
 and Done with probability  

0.1

0.3
. 

The final factor for determining VP importance is fitness-to-phase⎯i.e., how well the LO suits 

a phase/subphase/state. There are different possible interpretations of suitability⎯for example, that 

an educator has determined the content to be appropriate or that the learner will agree that the 

content is desirable in their current context. 

Given that the user may be Ready or Progressing in multiple subphases, that the VPs have 

different baseline importance values for different subphase-states, and that the LOs are suitable for 

different phases, we want to choose the combination of VP and subphase-state that leads to the 

highest VP importance value.  

Let S(u,t) be the subset of subphase-states selected for the user u for a topic t according to the 

exploration/exploitation strategy described above. Further let importancebase(v,p,s,a) be the baseline 

importance of the VP v for the subphase-state (p,s) when the user has attitude a, and 

fittophase(o,p,s) be the LO fitness to the subphase-state. Currently, PERLS relies on learner attitude 

being given (e.g., by the user indicating their own attitude) but eventually, we anticipate estimating 

the learner’s attitude based on observed behavior (e.g., the rate at which the user is flipping through 

content). Similarly, fittophase(o,p,s) is currently provided by corpus contributors but could 

potentially be learned from learner data in the future. The value of a VP v for a LO o in the subphase-

state (p,s) when the learner has attitude a is: 
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𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑉𝑃(𝑢, 𝑣, 𝑎, 𝑡, 𝑜) = 𝑚𝑎𝑥
(𝑝,𝑠)∈𝑆(𝑢,𝑡)

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑏𝑎𝑠𝑒(𝑣, 𝑝, 𝑠, 𝑎) ∗ 𝑓𝑖𝑡𝑡𝑜𝑝ℎ𝑎𝑠𝑒(𝑜, 𝑝, 𝑠) 

Finally, importance is a weighted sum of topic importance, urgency importance, and VP 

importance. As with the formulas presented for calculating interest, the calculation of importance 

values and fitness values are meant to provide prescriptive criteria, and we expect that some 

parameter adjustment or formula modification will be needed to better match actual experience. 

4.3.2  Fitness 

The second factor in strength(u,v,o) is fitness⎯i.e., the likelihood that the LO will deliver the value 

defined by the VP. A LO provides strong support for a VP if the VP is true of that LO with high 

certainty, the content is suited to a selected subphase-state for its topic, and it is high quality (e.g., 

it is appealing, effective, up-to-date). We have already discussed LO suitability for a phase state so 

we focus on VP truth value and content quality here. 

Rather than attempting to define VP truth value as an absolute measure, we take a more 

practical approach of defining it by whether a user is likely to agree that the VP is true of the LO. 

The criteria for determining the probability that a VP is true differ for each VP, so each VP is 

associated with a unique estimation function within some normalized range (e.g., [0,1]). VP truth 

value estimation can vary widely. Any information represented in PERLS is potentially relevant, 

including situational, learning, social, and interaction context; and user profile, population, and 

corpus data as well as trends or patterns computed over them. While some VP values may be easily 

determined⎯for example, by checking for specific annotations or metadata on a LO, other 

calculations may be more involved. For example, determining that “This is hot with your peers” 

requires identifying the peer group and calculating statistics on their learning; while determining 

that “This is the sort of thing you like first thing in the morning” could involve learning a classifier 

based on features of the content, time of LO interaction, user feedback, and so on. Regardless of 

the information required to for the VP truth value estimate, computing the value itself should be 

reasonably efficient as the computation will have to be made for all potential recommendations. 

Content quality addresses the desire to prefer recommending higher quality content over lower 

quality ones. In line with the objective of extensibility, PERLS does not subscribe to a well-defined 

set of quality criteria nor does it require information about their relative importance. Instead, 

PERLS allows quality criteria to be defined over a wide range of factors such as production value, 

instructional effectiveness, enjoyability, and author popularity. We cast content quality as a 

multiplicative discount factor ranging from [0,1] so that the discount in importance is inversely 

proportional to the quality of the content. 

Finally, we have 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑢, 𝑣, 𝑜) =  𝑡𝑟𝑢𝑡ℎ(𝑣, 𝑜) ∗  𝑓𝑖𝑡𝑡𝑜𝑝ℎ𝑎𝑠𝑒(𝑜, 𝑝, 𝑠) ∗  𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑜) 

where (p,s) is the subphase-state determined earlier to yield the highest importance value. 

5.  Summary 

Our approach to content recommendation has been implemented in the PERLS mobile app. In 

addition to providing a mobile-based app for recommendations to support self-directed learning, 
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PERLS also serves as an integration point for different content providers and content delivery 

methods (Figure 3). Selecting a card in PERLS initiates a learning activity, with some activities 

supported natively in the PERLS mobile phone app and others linking to external applications 

integrated with PERLS (Freed et al., 2017). This enhances PERLS ability to support lifelong (or at 

least employment-long) learning for members of large organizations where learning activities are 

typically supported by diverse systems.   

PERLS has been deployed in limited contexts within our organization for the purpose of 

conducting user studies to explore and validate design concepts (Freed et al., 2014), and has 

recently been tested in collaboration with several Department of Defense organizations. First, it 

served as the primary user interface to a variety of content providers and backend services 

embedded within the Total Learning Architecture (TLA) (Regan et al., 2013), a learning system 

integration standard under development by DoD’s Advanced Distributed Learning (ADL)  

Initiiative.  Second, it was used to support disaster response-related training in collaboration with 

USNORTHCOM and the Joint Knowledge Online (JKO) office, with a specific focus on learner 

response to anytime/anywhere microlearning (short, frequent bursts of learning) as a potential 

alternative or enhancement to traditional course-based learning.  Learner response was strongly 

positive (Freed et al, 2017b), and efforts are underway to carry out larger scale tests leading to 

eventual adoption.  Finally, in collaboration with National Security Office (DLNSEO), PERLS was 

tested as a means to support advanced Mandarin language learners, also with strong positive user 

response. 

Self-directed, informal learning is the predominant form of adult learning in the workplace and 

yet remains largely unaddressed by existing work in intelligent learning assistants. Much of this 

has to do with the ill-defined, partially structured, dynamic, and uncertain nature of informal 

learning, which makes traditional approaches designed for formal, classroom-based learning ill-

suited to the task. In our work on PERLS, we have developed a model of self-regulated learning 

that captures a wide variety of informal learning trajectories. The PERLS approach to content 

 

Figure 3. PERLS serves as an integration point for a variety of content providers. 
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recommendation is centered on the notion of value propositions, which provide the motivational 

rationale behind recommendations. By tracking user activity, PERLS can estimate users’ level of 

interest in different topics, their learning goals, and their progress through the SRL model, enabling 

PERLS to make recommendations that best suit the user’s current learning context.  
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