

First Annual Conference on Advances in Cognitive Systems Poster Collection (2012) 19-34

© Cognitive Systems Foundation. All rights reserved.

A Model of Problem Formulation Strategies in Engineering Design

Mahmoud Dinar MDINAR@ASU.EDU
Jami J. Shah JAMI.SHAH@ASU.EDU

Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287 USA

Abstract

Different designers use different strategies to formulate a design problem. We introduce the

Problem Map framework to study these differences, with formalized statements of formulation

strategies. To formalize the strategies we define as set of operators in the Problem Map framework

and represent formulation states. We have identified five tasks of problem formulation. For each

task, we give an example of how a strategy can be traced in changes among states or in the

sequence of the operators that were used to reach the resulting state. We also give examples of

traces of three different strategies in protocols collected from eight experienced designers.

1. Introduction

Designers are known to have individual styles of solving design and non-design problems

(Eisentraut 1999). One way of characterizing the differences between designers is to find the
strategies they adopt during designing. We are interested in modeling the differences among
designers’ strategies in problem formulation which is an understudied aspect of design thinking.

An inspiring field of work is model tracing in intelligent tutoring systems (Anderson et al.
1990). In intelligent tutoring systems, models for knowledge acquisition of an expert and a
student are compared to prompt students with the steps they should take in solving a problem.

Though the problems that are taught in such systems are usually well-defined problems (e.g.
math, physics, or diagnosing a failure in a machine), we can draw analogies in modeling and
tracing evidences of certain strategies in solving or formulating design problems. To trace design
strategies, we should employ a state-operator model that captures the intense cognitive processes
of design.

An important aspect that we consider in modeling design strategies is domain independence.

This is because we can state meta-level rules that govern design strategies in a general way with a
domain independent framework. We use the Problem Map framework (Dinar et al. 2012), to
represent design strategies, since it is domain-independent, and we can define a state-operator
model in it.

A motivating example of a design strategy is whether designers abstract or specify an aspect of
a problem definition. When exploring the design space, a designer can add more detail to an idea,

or generalize that idea. The ability of abstracting concepts is considered one of the divergent
thinking skills that designers may possess to different degrees (Shah et al. 2012). To see whether

mailto:mdinar@asu.edu

M. DINAR AND J. J. SHAH

 20

a designer has employed an abstraction or specification strategy in an interval, we can examine
the changes in two state models at the beginning and the end of that interval, and see if the
designer added more specific details to a stated thought, or if he generalized those parts to more

abstract concepts.

2. A Framework for Representing Design Strategies

We have developed a framework for studying the relation between problem formulation and

creative outcome. The fine level of detail of the framework enables us to capture more of the
intense cognitive processes that underlie early conceptual design. We have used Problem Maps to
represent the differences among different designers in formulating a problem (Danielescu et al.
2012). In order to explain how we can use Problem Maps to state problem formulation strategies,
we briefly introduce the elements of the Problem Map framework and its representations.

2.1 The Framework

The Problem Map framework has five groups of entities. Each group has a base entity, and a few
groups have supporting entities. The entities have optional attributes. Each group has a common
hierarchical structure and groups are interrelated. Disjunctive decompositions and relations are
allowed within and between groups respectively. The framework is represented in Figure 1.

Figure 1. The Problem Map Framework: entities and intergroup relations.

A Problem Map is a set of states which contain instances of the aforementioned entities with

the different possible relations they may have with each other. We can consider the initial state as

Requirement:

Requirement, Goal
(Requirement_source

Requirement_importance

Goal_target)

Function:

Function

(Function_parameter)

Behavior:
Behavior, Equation,

Parameter
(Behavior_abstraction_level,

Behavior_equation,

equation_parameter)

Artifact:
Solution Principle,

Physical Embodiment

(embodiment_parameter)

Relates

Relates Relates

Relates

Satisfies

F
u

lf
ill

s

Parameterizes

C
o

n
tr

o
ls

 Issue:
Issue

(Issue_importance)

 Manages Realiz
es

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 21

the one with all the given requirements. Since designers do not follow a prescribed or a specific
method of design or problem formulation, many possibilities may ensue for the next state.

Though we do not have a strict definition of what a formulation state is, consider the simple

case where any change, such as the addition of a new instance of an entity, specifying an attribute
of an existing entity, or relating two instances, alters the current state. Error! Not a valid

bookmark self-reference. depicts these operators. There are five high-level operators with which
we determine the low-level operators from their corresponding set. The operators act on instances
which are the arguments within the braces in the sets. An example of a high-level operator is
“Specify attribute”, while “Specify requirement source” attributing source “sc” to requirement

“rq” is a low-level operator. The “Intra-relate” operators are populated by the five groups of
entities. The parent and the child, or the before and the after instances are from the same entity
group. The hierarchy attribute denoted by “hy” is an identifier which can show alternative
decompositions. Different decompositions may have common entities and thus one parent-child
or before-after relation can be common in alternative decompositions; hence the “hy” identifier.
Alternative inter-group relations do not have common entities. The set of alternatives for the

“Propose” operator is written as a set of the two previous sets for a compact representation. It
does not mean that the operator is a combination of other operators. Similarly, the “Delete”
operator acts on data that is added with the other operators.

Table 1. The operators of the Problem Map

The number of low-level operators is about forty. From our past experience with analyzing

protocols with P-map models, at least five hundred of such operations occur in an hour-long
design session. This is equivalent of a branching factor of 40

500
. To find certain patterns (of

specific sequences) among different designers, an exhaustive search might not be the best way.

We can define design strategies and trace their occurrences in searching for specific changes in
the formulation states.

2.2 Formalizing a Strategy Within Problem Maps

We can trace strategies by comparing two states in an interval that we expect the strategy to be
employed. Consider the example of abstraction vs. specification strategies that we gave in the
introduction. To trace instances of these strategies, we look for the states which include parent-
child relations. Then we locate the two states that contain the parent, and the child. If the state
that has the parent occurs after the state that has the child, it indicates that the designer followed
an abstraction strategy.

Add entity{requirement(rq),function(fn),artifact(ar),behavior(bh),issue(iu)}

Specify attribute{requirement_source(rq,sc),…,equation_parameter(bh,qp)}

Intra-relate structure{parent-child(pt,ch,hy),before-after(bf,af,hy)}

Inter-relate relation{satisfies(fn,rq),realizes(ar,fn),…,relates(iu,any)}

Propose alternative{structure{}, relation{}}

Delete data{entity{},attribute{},structure{},relation{}}

M. DINAR AND J. J. SHAH

 22

To state the abstraction strategy formally, we can use the Problem Map operators that we
explained in the previous section. The strategy may be employed with any entity but suppose an
example with requirements. Three operators in a specific order define the strategy. Two are the

addition of the requirements and one is relating the parent to the child where the parent was added
before the child; see Error! Not a valid bookmark self-reference..

Table 2. A model of the abstraction strategy for requirements

3. Modeling problem formulation strategies

We have come up with a list of strategies that designers may exhibit during designing. Some of
these are based on the literature in design, and some are hypothesized introspectively. We have
grouped them into five tasks that we identified in problem formulation, see Table 3.

For each task, we give an example of one strategy. We state each strategy in a neutral sentence,
without specifying whether it is representative of good or bad design practice, simply because
there is no hard evidence for or against them. One of the main objectives of our research is to find
the unknown effect of problem formulation strategies. To do the study, we should trace evidences
of designers implementing the strategies, and to do so we should state these strategies formally.

3.1 Tasks of Problem Formulation

Suppose that the initial state is where the designer is briefed about the problem statement. This
can be shown by a set of given requirements depicted by R_g as in Figure 2. In the following
figures we show different states that explain each strategy by changes to the initial state. We
should emphasize that the examples that we give for each strategy are not the only possible states

that occur following the specified strategies. In addition, the states that we sometimes refer to as
final states, do not necessarily represent when problem formulation or design ends. Design
problems, unlike well-defined problems such as puzzles, do not have clear termination criteria, or
parsimonious processes.

Figure 2. The initial state of a problem map with given requirements

R

R_g1 R_g2 R_g3

Add requirement(rq1)

Add requirement(rq2)

Intra-relate parent-child(rq2,rq1,hy1)

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 23

Table 3. A list of design strategies for the five tasks of problem formulation

Task Strategies

Information gathering Good designers are goal driven; they ignore irrelevant data

Novices are data driven; they try to make something of every piece of

information in the design brief

Perception and assumption Good designers treat problems as ill-defined; they continuously add/delete

requirements

Poor designers introduce fictitious constraints and incorrect requirements

Good designers identify the most critical requirements and focus on those

first, ignoring routine requirements

Expert designers rely on abstract analogies while novices analogize surface-

level cues

Problem decomposition Good designers create multiple formulations

Scoping is an important part of problem formulation – reducing design space

Some designers are problem-driven; they develop requirements and

functions before working on artifacts and behaviors

Some designers decompose the problem to sub-problems first, and elaborate

on artifacts and behaviors for each sub-problem

Augmentation and support Good designers create and use multiple representations to discover gaps,

inconsistencies and conflicts

Good designers ask a lot of questions

Designers use metaphors that abstract and map some aspect of the design to

other domains to gain an understanding

Designers analogize by different aspects of the source device: the function,

the product architecture, the behavior, and the issues

Analysis and verification Experienced designers use more generative reasoning, in contrast to the

deductive reasoning used by inexperienced designers

Good designers can identify conflicting requirements and functions

Designers reflect on their process, what they did, did not do; they set

priorities, and determine an efficient greedy task sequence

Some designers propose artifacts and examine their behaviors to see if they

meet the requirements

3.1.1 Information Gathering

For information gathering, we model the following strategy:

Some designers are goal-driven; they ignore irrelevant data.

Designers gather information from different sources such as catalogs during designing, but in
the early stages, i.e. problem formulation, we can assume that the main source is the problem
statement, either as a written brief, or from an interview with the customer. In P-maps, this

information is in the given requirements. The strategy of ignoring irrelevant information can be
stated in P-maps as, not all given requirements are followed. In other words, there will remain a

M. DINAR AND J. J. SHAH

 24

few given requirements that are not decomposed further, or related to other entities. Figure 3
shows a state where the designer defined functions for one given requirement and one derived
requirement, and followed up the formulation by proposing an artifact and specifying its behavior

for one of the functions.

Figure 3. An example of the state after following the information gathering strategy

Modeling this strategy implies actions or operators that do not occur. However, we can still
model this strategy without using negation by stating only the operators that are used. We trace
the strategy in the absence of the operators that would otherwise prove that it was not employed.
We can also determine the degree to which working on a requirement constitutes lack of attention

to another requirement. This can be going from one requirement to a function, artifact, and a
behavior, in addition to decomposing one or more of these related entities further for at least one
requirement as in Figure 3. The operators for this definition are stated in Table 4. Notice that for
simplicity, we only show the relevant operators. The absence of “Inter-relate” or “Intra-relate”
operators for two of the given requirements is evidence that the defined strategy was followed.

Table 4. The operators for the given example of information gathering strategy

R

R_g1 R_g2 R_g3

F

F1 F2

A

A1 A2

A1.1 A1.2 A1.3

B

B1

B1.1 B1.2

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation

R_d4

Add requirement(R_g1) … Add requirement(R_d4)

Specify requirement_source(R_g1,given)

Specify requirement_source(R_d4,derived)

Inter-relate satisfies(F1,R_g1)

Inter-relate realizes(A1,F1)

Inter-relate parameterizes(B1,A1)

Intra-relate parent-child(A1,A1.1,hy_A1)

Intra-relate parent-child(B1,B1.1,hy_B1)

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 25

R

R_g2 R_d6

F

F3 F4R_d4 R_d5

R_d4.1 R_d4.2

R_d7

R_d6.1 R_d6.2

3.1.2 Perception and Assumption

The next strategy is about how designers perceive a problem after they gather information about
it. We model the following strategy:

Some designers deliberately treat problems as ill-defined and question given
requirements.

We described the information gathering strategy in terms of which sources of information
would be used. The perception and assumption strategy is about judging the credibility and the
importance of the designer’s assumption about the problem. We can state this in P-maps as less
number of requirements are given, that they are added throughout the design session, and that

some given requirements may be dropped. An example of this strategy is shown in Figure 4. It
implies dropping or altering some requirements after they were elaborated. The operators
corresponding to this example are given in Error! Not a valid bookmark self-reference.. For
simplification, we assume referential integrity where the deletion of an entity means the deletion
of all data regarding that entity.

R

R_g1 R_g2 R_g3

F

F1 F2 F3R_d4 R_d5

R_d1.1 R_d1.2

I1

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation

M. DINAR AND J. J. SHAH

 26

Figure 4. An example of the states that represent the perception and assumption strategy

Table 5. The operators for the given example of perception and assumption strategy

3.1.3 Problem Decomposition

For the next task, problem decomposition, we model this strategy:

Some designers are problem-driven rather than solution-driven; they focus on
understanding the problem before attempting to solve it.

In P-maps we can see evidence of adopting this strategy when designers add artifacts and
behaviors, or add more details to them towards the end of the session. Similarly to the previous
strategy, the example is best understood in the transition from the initial state to the point where
we search for the strategy through an intermediary state; see Figure 5. Requirements are
elaborated in both states, but the elaboration of artifacts and behaviors appear at the final state.
Additionally, hierarchies, especially in requirements and functions are expanded in breadth first at

each level. The operators of this example are shown in Error! Not a valid bookmark self-

reference.. The operators that add new entities at lower levels appear after all entities were added
at the level above.

Add requirement(R_g1)

Specify requirement_source(R_g1,given)

Add requirement(R_d1.1)

Specify requirement_source(R_d1.1,derived)

Intra-relate parent-child(R_g1,R_d1.1,hy_R1)

Inter-relate satisfies(F1,R_g1)

Delete requirement(R_g1)

Add requirement(R_d6)… Add requirement(R_d6.2)

Specify requirement_source(R_d6.2,derived)

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 27

Figure 5. An example of the states following the problem decomposition strategy

R

R_g2

F

F1 F2R_d4 R_d5

R_d4.1 R_d4.2

F3 F4R_g1 R_g3 R_d6 R_d7

R_d6.1 R_d6.2

F5

A

A1 A2 A3 A4

B

B1 B2

I1

A1.1 A1.2 A3.1 A3.2

R

R_g2

F

F1 F2R_d4 R_d5

R_d4.1 R_d4.2

F3 F4R_g1 R_g3

A

A1 A2

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation

M. DINAR AND J. J. SHAH

 28

Table 6. The operators for the given example of problem decomposition strategy

3.1.4 Augmentation and Support

We have chosen the following example of an augmentation and support strategy to model:

Some designers generate multiple and more abstract representations to discover
inconsistencies and build insight.

In P-maps this strategy can be seen as a combination of different actions. One is manifested in

generating more disjunctive decompositions. Another will be that, requirements and functions are
decomposed more frequently than artifacts or behaviors are. The other is that more solution
principles are used rather than physical embodiments, and artifacts in general are added
frequently without being further decomposed or related to many entities. An example of the
resulting state and the operators corresponding to it are given in Error! Not a valid bookmark

self-reference. and Table 7.

Add requirement(R_g1) … Add requirement(R_d5)

Add requirement(R_d4.1), Add requirement(R_d4.2)

Intra-relate parent-child(R_d4,R_d4.2,hy_R1)

Add function(F1), Inter-relate satisfies(F1,R_g1)

Add function(F4), Inter-relate satisfies(F1,R_d5)

Add artifact(A1), Inter-relate realizes(A1,F1)

Add requirement(R_d6) … Add requirement(R_d7)

Add requirement(R_d6.1), Add requirement(R_d6.2)

Intra-relate parent-child(R_d6,R_d6.2,hy_R1)

Add function(F5), Inter-relate satisfies(F5,R_d7)

Add function(F4), Inter-relate satisfies(F1,R_d5)

Inter-relate relates(I1,R_g3), Inter-relate relates(I1,F3)

Add artifact(A4)

Add artifact(A1.1), Add artifact(A3.2)

Intra-relate parent-child(A3,A3.2,hy_A1)

Add behavior(B1), Add behavior(B2)

Inter-relate parameterizes(B1,A1)

Inter-relate parameterizes(B2,A3)

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 29

Figure 6. An example of the resulting state of the augmentation and support strategy

Table 7. The operators for the given example of the augmentation and support strategy

R

R_g2

F

F1 F2R_d4 R_d5 F3 F4
R_g1 R_g3

A

A_s1 A_s2 A_p3 A_s4

F1.1 F1.2 F1.3 F1.4

R_g: given requirement

R_d: derived requirement

A_s: solution principle

A_p: physical embodiment

thin lines: intra-group relation

thick lines: inter-group relation

line types: disjunctive compositions

Add requirement(R_g1) … Add requirement(R_d4)

Intra-relate parent-child(R,R_g1,hy_R1)…

Intra-relate parent-child(R,R_d4,hy_R1)

Add requirement(R_d5)

Propose parent-child(R,R_g1,hy_R2)

Propose parent-child(R,R_d5,hy_R2)

Intra-relate before-after(F2,F3,hy_F1)

Intra-relate parent-child(F1,F1.1,hy_F1)

Intra-relate parent-child(F1,F1.2,hy_F1)

Intra-relate before-after(F1.1,F1.2,hy_F2)

Intra-relate before-after(F2,F4,hy_F2)

Intra-relate parent-child(F1,F1.3,hy_F2)

Intra-relate parent-child(F1,F1.4,hy_F2)

Add artifact(A_s1), Inter-relate realizes(A_s1,F1)

Add artifact(A_s2), Propose realizes(A_s2,F1)

Add artifact(A_p3), Add artifact(A_s4)

Intra-relate parent-child(A,A_s1,hy_A1)

Propose parent-child(A,A_p3,hy_A3)

Propose parent-child(A,A_s4,hy_A3)

M. DINAR AND J. J. SHAH

 30

3.1.5 Analysis and Verification

For the last task, we model this strategy:

Some designers identify key issues, especially in conflicting requirements, and set
priorities.

We can show this in P-maps with more issues that are added. These issues are sometimes in
relation with two or more requirements, reflecting conflicts that the designer detects. Another
indication of following the strategy is in further decomposition of the issues. Figure 7 and Table 8
show the graphical representation of the resulting state and the operators that reveal when this
strategy was implemented.

Figure 7. An example of the state showing the analysis and verification strategy

Table 8. The operators for the given example of the analysis and verification strategy

Add requirement(R_g1) … Add requirement(R_d4)

Add issue(I1)

Inter-relate relates(I1,R_g1)

Inter-relate relates(I1,R_g2)

Add function(F2)

Add issue(I1)

Inter-relate relates(I2,R_d4)

Inter-relate relates(I2,F2)

Intra-relate parent-child(I1,I1.1,hy_I1)

Intra-relate parent-child(I1,I1.2,hy_I1)

R

R_g1 R_g2 R_g3

F

F1 F2 F3R_d4

I

I1 I2

I1.1 I1.2

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 31

3.2 An Operational Example

We do not have a fully functioning system that detects when the strategies that we exemplified
are employed yet. However, we have a working example of how it can be operationalized.
Previously, we had collected protocols from eight experienced designers working on designing a
water sampler. We encoded the protocols as P-maps (Danielescu et al. 2012). We then defined
three strategies and searched for their traces in the encoded protocols.

We presented the first strategy as an introductory motivation. We called it upward abstraction.

We only found abstractions for functions and artifacts. For example, one designer first proposed
using a sandbag for submerging the device and shortly afterwards thought more generally of
using a consumable. In another example, a designer thought of a function that could cancel the
sampling operation, and added it as a parent to the ascending function.

For the second strategy, we thought that some designers might follow a strict process, for
example in moving from requirements to functions rather than other entities. We called it forward

processing. We looked at each requirement to see if it was satisfied by a function before being
related to other entities. Only two designers had found relations between a requirement and a
function, and of the two, only one had defined this relation before relating the requirement to
entities other than function.

The third strategy was about whether designers add entities similarly to depth-first or breadth-
first search. We called this strategy breadth-first decomposition. We could not expect the

designers to strictly expand each branch before adding other branches to the hierarchy. Thus we
looked instead for the number of times the depth-first expansion was violated. For each parent-
child relation with the same parent, we looked for the number of times when the child became a
parent itself before all the relations for the first parent were subsumed. We found no examples of
this strategy among our eight subjects. The results of tracing these strategies are given in Table 9.

Table 9. Number of occurrences of three strategies for eight experienced designers

 Designer
Strategy

1 2 3 4 5 6 7 8

Upward abstraction 3 7 4 11 4 3 12 5
Forward processing 0 0 1 0 0 0 0 0
Breadth-first decomposition 0 0 0 0 0 0 0 0

4. Other Representations of Design Thinking Strategies

Looking at the literature, two topics are of interest. First is a descriptive model of design

processes. The models of activities and their representations may suggest how to formulate
strategies. The strategies can be formulated directly in terms of specific sequences of actions, or
indirectly by looking at the changes in the state of the mental models that represent design
thinking. Second, observations of good and bad designing practices may suggest what the
strategies should or should not promote. Knowing how the strategies should be stated, and what
they should be about is necessary for finding problem formulation strategies that lead to creative

designs.

M. DINAR AND J. J. SHAH

 32

A few past studies of design thinking have described models of the design process, parts of
which relate to design strategies and their representations. These models were inspired by Newell
& Simon's (1972) study of human problem solving with state-operator sets. Similarly, they

employed protocol analysis as the method for data collection and analysis. Two notable efforts
were carried out by Ullman, Dietterich, & Stauffer (1988), and Gero & Mc Neill (1998).

Ullman et al. (1998) pioneered modeling design cognition in the field of mechanical
engineering. In their Task Episode Accumulation model, the design state consisted primarily of
proposals and constraints. They defined ten operators such as select, calculate, and reject. They
called a meaningful sequence of the operators to address some primitive goals an episode. They

identified six types of episodes: assimilate, plan, specify, repair, verify, and document. They also
stated that within each episode, designers choose the operators based on a set of heuristic rules.
Finally, at the highest level, different episodes compose a design task. A task is a stage of the
design process, e.g. conceptual, or detail design.

The observations from Ullman et al. (1998) came from analyzing both the operators and the
states. They calculated the amount of time that the subjects spent on each operator, episode, and

task. For example, at the conceptual design stage, they observed that the subjects spent most of
the time on assimilating information and specifying proposals. Similarly, they calculated the
number of constraints and proposals, and found for example that derived constraints increase
significantly during post conceptual stages, while given constraints mostly appear at the
conceptual stage.

Another established framework is Function-Behavior-Structure (Gero 1990). Gero described

the activities in the design process in terms of transformations between pairs of function,
behavior, structure, and the documented design. Gero & Mc Neill (1998) identified a set of micro
and macro strategies based on the sequences and the iterations of how functions, behaviors, and
structures were encoded from protocols.

Other studies, especially those of the differences between expert and novice designers, give
some clues about the strategies that designers use. However, seldom are they defined in a general

way, independent of the task, or adopted deliberately, much less tested to see how they influence
creativity. Ho (2001) stated that expert designers approach directly the main goals and work
backward for required knowledge. He added that novice designers eliminate parts of the problem
when they fail to handle it. Ball & Christensen (2009) described mental simulation and
analogizing as strategies that designers use when faced with uncertainty. Edelman, Agarwal,
Paterson, Mark, & Leifer (2012) introduce the idea of scaffolds as vehicles to build insight, which

can be of metaphors that abstract and map some aspect of the design to other domains. They find
that radical breaks come from generating many alternatives, often with frequent redesigns.

Most of these strategies are based on observations with the objective of understanding the
design process. There are no explicit hypotheses about these strategies to check when they occur
or under what condition. There is also a need to study the effect of these strategies on design
outcome.

5. Conclusions and Future Work

We introduced the Problem Map framework to represent problem formulation strategies in
design. We defined the operators in the framework, and explained how a certain combination of

different operators, often in specific sequences, account for a design strategy. We defined the five

A MODEL OF PROBLEM FORMULATION STRATEGIES IN ENGINEERING DESIGN

 33

tasks of problem formulation, and gave an example of a formalized strategy for each task, in
terms of possible changes from an initial state, and the set of operators that are involved in
forming that strategy. We also gave examples of tracing three different strategies in collected

protocols. It is likely that some of the strategies that we want to trace later occur infrequently or
even not at all.

We have built a computer tool based on the Problem Map framework that enables us to collect
massive data from many designer subjects. Armed with the knowledge of pertinent problem
formulation strategies, we can examine how effective it is to encourage designers to follow the
strategies that we can correlate with creative outcome. We can use established measures in the

field of engineering design to determine which outcomes are more creative. We will be able to
instill the correlations that we find, as a recommendations system that is embedded in our tool.
For each relevant design strategy, we can write the advisory rules that recommend that strategy,
and specify the situation where it applies. Then, we can see whether prompting designers with a
certain strategy will improve their creativity or not. The tool facilitates a convenient way of
looking for instances of the strategies automatically, for a large number of participants in the

learning phase, and later on in the testing phase of the research. A rigorous method of hypothesis
testing may ultimately turn design into the science of design.

Acknowledgements

This study is supported by the National Science Foundation, CMMI grant number 1002910. The
opinions expressed in this paper are those of the authors and are not endorsed by the National
Science Foundation. We should also thank Pat Langley and Christopher J. MacLellan for their
previous contributions to our project.

References

Anderson, J. R., et al. (1990). Cognitive modeling and intelligent tutoring. Artificial Intelligence,
42, 7-49.

Ball, L. J., & Christensen, B. (2009). Analogical reasoning and mental simulation in design: Two
strategies linked to uncertainty resolution. Design Studies, 30, 169-186.

Danielescu, A., et al. (2012). The structure of creative design: What problem maps can tell us
about problem formulation and creative designers. Proceedings of ASME DETC. Chicago, IL.

Dinar, M., et al. (2012). Beyond function-behavior-structure. Proceedings of the Fifth
International Conference on Design Computing and Cognition. Texas A&M University,
College Station, Texas: Springer.

Edelman, J., et al. (2012). Understanding radical breaks. In H. Plattner, C. Meinel, & L. Leifer,

(Eds.), Design Thinking Research: Studying Co-Creation in Practice. Berlin: Springer Berlin
Heidelberg.

Eisentraut, R. (1999). Styles of problem solving and their influence on the design process.
Design Studies, 20, 431-437.

Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI
Magazine, 11, 26-36.

M. DINAR AND J. J. SHAH

 34

Gero, J. S., & McNeill, T. (1998). An approach to the analysis of design protocols. Design
studies, 19, 21–61.

Ho, C. (2001). Some phenomena of problem decomposition strategy for design thinking:

Differences between novices and experts. Design Studies, 22, 27-45.

Newell, A., & Simon, H. (1972). Human problem solving. Upper Saddle River, NJ: Prentice-Hall.

Shah, J., et al. (2012). Applied tests of design skills - part 1: Divergent thinking. Journal of
Mechanical Design, 134, 1-10.

Ullman, D., Dietterich, T., & Stauffer, L. (1988). A model of the mechanical design process
based on empirical data. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 2, 33–52.

