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Abstract 

Different designers use different strategies to formulate a design problem. We introduce the 

Problem Map framework to study these differences, with formalized statements of formulation 

strategies. To formalize the strategies we define as set of operators in the Problem Map framework 

and represent formulation states. We have identified five tasks of problem formulation. For each 

task, we give an example of how a strategy can be traced in changes among states or in the 

sequence of the operators that were used to reach the resulting state. We also give examples of 

traces of three different strategies in protocols collected from eight experienced designers. 

1.  Introduction 

Designers are known to have individual styles of solving design and non-design problems 

(Eisentraut 1999). One way of characterizing the differences between designers is to find the 
strategies they adopt during designing. We are interested in modeling the differences among 
designers’ strategies in problem formulation which is an understudied aspect of design thinking.  

An inspiring field of work is model tracing in intelligent tutoring systems (Anderson et al. 
1990). In intelligent tutoring systems, models for knowledge acquisition of an expert and a 
student are compared to prompt students with the steps they should take in solving a problem. 

Though the problems that are taught in such systems are usually well-defined problems (e.g. 
math, physics, or diagnosing a failure in a machine), we can draw analogies in modeling and 
tracing evidences of certain strategies in solving or formulating design problems. To trace design 
strategies, we should employ a state-operator model that captures the intense cognitive processes 
of design. 

An important aspect that we consider in modeling design strategies is domain independence. 

This is because we can state meta-level rules that govern design strategies in a general way with a 
domain independent framework. We use the Problem Map framework (Dinar et al. 2012), to 
represent design strategies, since it is domain-independent, and we can define a state-operator 
model in it. 

A motivating example of a design strategy is whether designers abstract or specify an aspect of 
a problem definition. When exploring the design space, a designer can add more detail to an idea, 

or generalize that idea. The ability of abstracting concepts is considered one of the divergent 
thinking skills that designers may possess to different degrees (Shah et al. 2012). To see whether 
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a designer has employed an abstraction or specification strategy in an interval, we can examine 
the changes in two state models at the beginning and the end of that interval, and see if the 
designer added more specific details to a stated thought, or if he generalized those parts to more 

abstract concepts.  

2.  A Framework for Representing Design Strategies 

We have developed a framework for studying the relation between problem formulation and 

creative outcome. The fine level of detail of the framework enables us to capture more of the 
intense cognitive processes that underlie early conceptual design. We have used Problem Maps to 
represent the differences among different designers in formulating a problem (Danielescu et al. 
2012). In order to explain how we can use Problem Maps to state problem formulation strategies, 
we briefly introduce the elements of the Problem Map framework and its representations. 

2.1  The Framework 

The Problem Map framework has five groups of entities. Each group has a base entity, and a few 
groups have supporting entities. The entities have optional attributes. Each group has a common 
hierarchical structure and groups are interrelated. Disjunctive decompositions and relations are 
allowed within and between groups respectively. The framework is represented in Figure 1. 

Figure 1. The Problem Map Framework: entities and intergroup relations. 

A Problem Map is a set of states which contain instances of the aforementioned entities with 

the different possible relations they may have with each other. We can consider the initial state as 
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the one with all the given requirements. Since designers do not follow a prescribed or a specific 
method of design or problem formulation, many possibilities may ensue for the next state.  

Though we do not have a strict definition of what a formulation state is, consider the simple 

case where any change, such as the addition of a new instance of an entity, specifying an attribute 
of an existing entity, or relating two instances, alters the current state. Error! Not a valid 

bookmark self-reference. depicts these operators. There are five high-level operators with which 
we determine the low-level operators from their corresponding set. The operators act on instances 
which are the arguments within the braces in the sets. An example of a high-level operator is 
“Specify attribute”, while “Specify requirement source” attributing source “sc” to requirement 

“rq” is a low-level operator. The “Intra-relate” operators are populated by the five groups of 
entities. The parent and the child, or the before and the after instances are from the same entity 
group. The hierarchy attribute denoted by “hy” is an identifier which can show alternative 
decompositions. Different decompositions may have common entities and thus one parent-child 
or before-after relation can be common in alternative decompositions; hence the “hy” identifier. 
Alternative inter-group relations do not have common entities. The set of alternatives for the 

“Propose” operator is written as a set of the two previous sets for a compact representation. It 
does not mean that the operator is a combination of other operators. Similarly, the “Delete” 
operator acts on data that is added with the other operators. 

Table 1. The operators of the Problem Map 

 
The number of low-level operators is about forty. From our past experience with analyzing 

protocols with P-map models, at least five hundred of such operations occur in an hour-long 
design session. This is equivalent of a branching factor of 40

500
. To find certain patterns (of 

specific sequences) among different designers, an exhaustive search might not be the best way. 

We can define design strategies and trace their occurrences in searching for specific changes in 
the formulation states. 

2.2  Formalizing a Strategy Within Problem Maps 

We can trace strategies by comparing two states in an interval that we expect the strategy to be 
employed. Consider the example of abstraction vs. specification strategies that we gave in the 
introduction. To trace instances of these strategies, we look for the states which include parent-
child relations. Then we locate the two states that contain the parent, and the child. If the state 
that has the parent occurs after the state that has the child, it indicates that the designer followed 
an abstraction strategy. 

Add entity{requirement(rq),function(fn),artifact(ar),behavior(bh),issue(iu)} 

Specify attribute{requirement_source(rq,sc),…,equation_parameter(bh,qp)} 

Intra-relate structure{parent-child(pt,ch,hy),before-after(bf,af,hy)} 

Inter-relate relation{satisfies(fn,rq),realizes(ar,fn),…,relates(iu,any)} 

Propose alternative{structure{}, relation{}} 

Delete data{entity{},attribute{},structure{},relation{}} 
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To state the abstraction strategy formally, we can use the Problem Map operators that we 
explained in the previous section. The strategy may be employed with any entity but suppose an 
example with requirements. Three operators in a specific order define the strategy. Two are the 

addition of the requirements and one is relating the parent to the child where the parent was added 
before the child; see Error! Not a valid bookmark self-reference.. 

Table 2. A model of the abstraction strategy for requirements 

 

3.  Modeling problem formulation strategies 

We have come up with a list of strategies that designers may exhibit during designing. Some of 
these are based on the literature in design, and some are hypothesized introspectively. We have 
grouped them into five tasks that we identified in problem formulation, see Table 3. 

For each task, we give an example of one strategy. We state each strategy in a neutral sentence, 
without specifying whether it is representative of good or bad design practice, simply because 
there is no hard evidence for or against them. One of the main objectives of our research is to find 
the unknown effect of problem formulation strategies. To do the study, we should trace evidences 
of designers implementing the strategies, and to do so we should state these strategies formally. 

3.1  Tasks of Problem Formulation 

Suppose that the initial state is where the designer is briefed about the problem statement. This 
can be shown by a set of given requirements depicted by R_g as in Figure 2. In the following 
figures we show different states that explain each strategy by changes to the initial state. We 
should emphasize that the examples that we give for each strategy are not the only possible states 

that occur following the specified strategies. In addition, the states that we sometimes refer to as 
final states, do not necessarily represent when problem formulation or design ends. Design 
problems, unlike well-defined problems such as puzzles, do not have clear termination criteria, or 
parsimonious processes. 

Figure 2. The initial state of a problem map with given requirements 

R

R_g1 R_g2 R_g3

Add requirement(rq1) 

Add requirement(rq2) 

Intra-relate parent-child(rq2,rq1,hy1) 
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Table 3. A list of design strategies for the five tasks of problem formulation 

Task Strategies 

Information gathering Good designers are goal driven; they ignore irrelevant data 

Novices are data driven; they try to make something of every piece of 

information in the design brief 

Perception and assumption Good designers treat problems as ill-defined; they continuously add/delete 

requirements 

Poor designers introduce fictitious constraints and incorrect requirements 

Good designers identify the most critical requirements and focus on those 

first, ignoring routine requirements 

Expert designers rely on abstract analogies while novices analogize surface-

level cues 

Problem decomposition Good designers create multiple formulations 

Scoping is an important part of problem formulation – reducing design space 

Some designers are problem-driven; they develop requirements and 

functions before working on artifacts and behaviors 

Some designers decompose the problem to sub-problems first, and elaborate 

on artifacts and behaviors for each sub-problem 

Augmentation and support Good designers create and use multiple representations to discover gaps, 

inconsistencies and conflicts 

Good designers ask a lot of questions 

Designers use metaphors that abstract and map some aspect of the design to 

other domains to gain an understanding 

Designers analogize by different aspects of the source device: the function, 

the product architecture, the behavior, and the issues 

Analysis and verification Experienced designers use more generative reasoning, in contrast to the 

deductive reasoning used by inexperienced designers 

Good designers can identify conflicting requirements and functions 

Designers reflect on their process, what they did, did not do; they set 

priorities, and determine an efficient greedy task sequence 

Some designers propose artifacts and examine their behaviors to see if they 

meet the requirements 

3.1.1  Information Gathering 

For information gathering, we model the following strategy:  

Some designers are goal-driven; they ignore irrelevant data. 

Designers gather information from different sources such as catalogs during designing, but in 
the early stages, i.e. problem formulation, we can assume that the main source is the problem 
statement, either as a written brief, or from an interview with the customer. In P-maps, this 

information is in the given requirements. The strategy of ignoring irrelevant information can be 
stated in P-maps as, not all given requirements are followed. In other words, there will remain a 
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few given requirements that are not decomposed further, or related to other entities. Figure 3 
shows a state where the designer defined functions for one given requirement and one derived 
requirement, and followed up the formulation by proposing an artifact and specifying its behavior 

for one of the functions. 
 

Figure 3. An example of the state after following the information gathering strategy 

Modeling this strategy implies actions or operators that do not occur. However, we can still 
model this strategy without using negation by stating only the operators that are used. We trace 
the strategy in the absence of the operators that would otherwise prove that it was not employed. 
We can also determine the degree to which working on a requirement constitutes lack of attention 

to another requirement. This can be going from one requirement to a function, artifact, and a 
behavior, in addition to decomposing one or more of these related entities further for at least one 
requirement as in Figure 3. The operators for this definition are stated in Table 4. Notice that for 
simplicity, we only show the relevant operators. The absence of “Inter-relate” or “Intra-relate” 
operators for two of the given requirements is evidence that the defined strategy was followed. 

Table 4. The operators for the given example of information gathering strategy 

R

R_g1 R_g2 R_g3

F

F1 F2

A

A1 A2

A1.1 A1.2 A1.3

B

B1

B1.1 B1.2

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation

R_d4

Add requirement(R_g1) … Add requirement(R_d4) 

Specify requirement_source(R_g1,given) 

Specify requirement_source(R_d4,derived) 

Inter-relate satisfies(F1,R_g1) 

Inter-relate realizes(A1,F1) 

Inter-relate parameterizes(B1,A1) 

Intra-relate parent-child(A1,A1.1,hy_A1) 

Intra-relate parent-child(B1,B1.1,hy_B1) 
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R

R_g2 R_d6

F

F3 F4R_d4 R_d5

R_d4.1 R_d4.2

R_d7

R_d6.1 R_d6.2

3.1.2  Perception and Assumption 

The next strategy is about how designers perceive a problem after they gather information about 
it. We model the following strategy:  

Some designers deliberately treat problems as ill-defined and question given 
requirements. 

We described the information gathering strategy in terms of which sources of information 
would be used. The perception and assumption strategy is about judging the credibility and the 
importance of the designer’s assumption about the problem. We can state this in P-maps as less 
number of requirements are given, that they are added throughout the design session, and that 

some given requirements may be dropped. An example of this strategy is shown in Figure 4. It 
implies dropping or altering some requirements after they were elaborated. The operators 
corresponding to this example are given in Error! Not a valid bookmark self-reference.. For 
simplification, we assume referential integrity where the deletion of an entity means the deletion 
of all data regarding that entity. 

 

 

 

 

R

R_g1 R_g2 R_g3

F

F1 F2 F3R_d4 R_d5

R_d1.1 R_d1.2

I1

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation
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Figure 4. An example of the states that represent the perception and assumption strategy 

Table 5. The operators for the given example of perception and assumption strategy 

 

3.1.3  Problem Decomposition 

For the next task, problem decomposition, we model this strategy: 

Some designers are problem-driven rather than solution-driven; they focus on 
understanding the problem before attempting to solve it. 

In P-maps we can see evidence of adopting this strategy when designers add artifacts and 
behaviors, or add more details to them towards the end of the session. Similarly to the previous 
strategy, the example is best understood in the transition from the initial state to the point where 
we search for the strategy through an intermediary state; see Figure 5. Requirements are 
elaborated in both states, but the elaboration of artifacts and behaviors appear at the final state. 
Additionally, hierarchies, especially in requirements and functions are expanded in breadth first at 

each level. The operators of this example are shown in Error! Not a valid bookmark self-

reference.. The operators that add new entities at lower levels appear after all entities were added 
at the level above. 

 
 
 

Add requirement(R_g1) 

Specify requirement_source(R_g1,given) 

Add requirement(R_d1.1) 

Specify requirement_source(R_d1.1,derived) 

Intra-relate parent-child(R_g1,R_d1.1,hy_R1) 

Inter-relate satisfies(F1,R_g1) 

 

Delete requirement(R_g1) 

Add requirement(R_d6)… Add requirement(R_d6.2) 

Specify requirement_source(R_d6.2,derived) 
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Figure 5. An example of the states following the problem decomposition strategy 

 
 
 
 

R

R_g2

F

F1 F2R_d4 R_d5

R_d4.1 R_d4.2

F3 F4R_g1 R_g3 R_d6 R_d7

R_d6.1 R_d6.2

F5

A

A1 A2 A3 A4

B

B1 B2

I1

A1.1 A1.2 A3.1 A3.2

R

R_g2

F

F1 F2R_d4 R_d5

R_d4.1 R_d4.2

F3 F4R_g1 R_g3

A

A1 A2

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation
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Table 6. The operators for the given example of problem decomposition strategy 

 

3.1.4  Augmentation and Support 

We have chosen the following example of an augmentation and support strategy to model: 

Some designers generate multiple and more abstract representations to discover 
inconsistencies and build insight. 

In P-maps this strategy can be seen as a combination of different actions. One is manifested in 

generating more disjunctive decompositions. Another will be that, requirements and functions are 
decomposed more frequently than artifacts or behaviors are. The other is that more solution 
principles are used rather than physical embodiments, and artifacts in general are added 
frequently without being further decomposed or related to many entities. An example of the 
resulting state and the operators corresponding to it are given in Error! Not a valid bookmark 

self-reference. and Table 7. 

Add requirement(R_g1) … Add requirement(R_d5) 

Add requirement(R_d4.1), Add requirement(R_d4.2) 

Intra-relate parent-child(R_d4,R_d4.2,hy_R1) 

Add function(F1), Inter-relate satisfies(F1,R_g1) 

Add function(F4), Inter-relate satisfies(F1,R_d5) 

Add artifact(A1), Inter-relate realizes(A1,F1) 

 

Add requirement(R_d6) … Add requirement(R_d7) 

Add requirement(R_d6.1), Add requirement(R_d6.2) 

Intra-relate parent-child(R_d6,R_d6.2,hy_R1) 

Add function(F5), Inter-relate satisfies(F5,R_d7) 

Add function(F4), Inter-relate satisfies(F1,R_d5) 

Inter-relate relates(I1,R_g3), Inter-relate relates(I1,F3) 

Add artifact(A4) 

Add artifact(A1.1), Add artifact(A3.2) 

Intra-relate parent-child(A3,A3.2,hy_A1) 

Add behavior(B1), Add behavior(B2) 

Inter-relate parameterizes(B1,A1) 

Inter-relate parameterizes(B2,A3) 
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Figure 6. An example of the resulting state of the augmentation and support strategy 

Table 7. The operators for the given example of the augmentation and support strategy 

 

R

R_g2

F

F1 F2R_d4 R_d5 F3 F4
R_g1 R_g3

A

A_s1 A_s2 A_p3 A_s4

F1.1 F1.2 F1.3 F1.4

R_g: given requirement

R_d: derived requirement

A_s: solution principle

A_p: physical embodiment

thin lines: intra-group relation

thick lines: inter-group relation

line types: disjunctive compositions

Add requirement(R_g1) … Add requirement(R_d4) 

Intra-relate parent-child(R,R_g1,hy_R1)… 

Intra-relate parent-child(R,R_d4,hy_R1) 

Add requirement(R_d5) 

Propose parent-child(R,R_g1,hy_R2) 

Propose parent-child(R,R_d5,hy_R2) 

Intra-relate before-after(F2,F3,hy_F1) 

Intra-relate parent-child(F1,F1.1,hy_F1) 

Intra-relate parent-child(F1,F1.2,hy_F1) 

Intra-relate before-after(F1.1,F1.2,hy_F2) 

Intra-relate before-after(F2,F4,hy_F2) 

Intra-relate parent-child(F1,F1.3,hy_F2) 

Intra-relate parent-child(F1,F1.4,hy_F2) 

Add artifact(A_s1), Inter-relate realizes(A_s1,F1) 

Add artifact(A_s2), Propose realizes(A_s2,F1) 

Add artifact(A_p3), Add artifact(A_s4) 

Intra-relate parent-child(A,A_s1,hy_A1) 

Propose parent-child(A,A_p3,hy_A3) 

Propose parent-child(A,A_s4,hy_A3) 
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3.1.5  Analysis and Verification 

For the last task, we model this strategy: 

Some designers identify key issues, especially in conflicting requirements, and set 
priorities. 

We can show this in P-maps with more issues that are added. These issues are sometimes in 
relation with two or more requirements, reflecting conflicts that the designer detects. Another 
indication of following the strategy is in further decomposition of the issues. Figure 7 and Table 8 
show the graphical representation of the resulting state and the operators that reveal when this 
strategy was implemented. 

 

Figure 7. An example of the state showing the analysis and verification strategy 

Table 8. The operators for the given example of the analysis and verification strategy 

 

 
 
 
 
 
 

 
 
 

                                 

Add requirement(R_g1) … Add requirement(R_d4) 

Add issue(I1) 

Inter-relate relates(I1,R_g1)  

Inter-relate relates(I1,R_g2) 

Add function(F2) 

Add issue(I1) 

Inter-relate relates(I2,R_d4)  

Inter-relate relates(I2,F2) 

Intra-relate parent-child(I1,I1.1,hy_I1) 

Intra-relate parent-child(I1,I1.2,hy_I1) 

 

R

R_g1 R_g2 R_g3

F

F1 F2 F3R_d4

I

I1 I2

I1.1 I1.2

R_g: given requirement

R_d: derived requirement

thin lines: intra-group relation

thick lines: inter-group relation
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3.2  An Operational Example 

We do not have a fully functioning system that detects when the strategies that we exemplified 
are employed yet. However, we have a working example of how it can be operationalized. 
Previously, we had collected protocols from eight experienced designers working on designing a 
water sampler. We encoded the protocols as P-maps (Danielescu et al. 2012). We then defined 
three strategies and searched for their traces in the encoded protocols. 

We presented the first strategy as an introductory motivation. We called it upward abstraction. 

We only found abstractions for functions and artifacts. For example, one designer first proposed 
using a sandbag for submerging the device and shortly afterwards thought more generally of 
using a consumable. In another example, a designer thought of a function that could cancel the 
sampling operation, and added it as a parent to the ascending function. 

For the second strategy, we thought that some designers might follow a strict process, for 
example in moving from requirements to functions rather than other entities. We called it forward 

processing. We looked at each requirement to see if it was satisfied by a function before being 
related to other entities. Only two designers had found relations between a requirement and a 
function, and of the two, only one had defined this relation before relating the requirement to 
entities other than function. 

The third strategy was about whether designers add entities similarly to depth-first or breadth-
first search. We called this strategy breadth-first decomposition. We could not expect the 

designers to strictly expand each branch before adding other branches to the hierarchy. Thus we 
looked instead for the number of times the depth-first expansion was violated. For each parent-
child relation with the same parent, we looked for the number of times when the child became a 
parent itself before all the relations for the first parent were subsumed. We found no examples of 
this strategy among our eight subjects. The results of tracing these strategies are given in Table 9. 

Table 9. Number of occurrences of three strategies for eight experienced designers 

                            Designer 
Strategy  

1 2 3 4 5 6 7 8 

Upward abstraction 3 7 4 11 4 3 12 5 
Forward processing 0 0 1 0 0 0 0 0 
Breadth-first decomposition 0 0 0 0 0 0 0 0 

 

4.  Other Representations of Design Thinking Strategies 

Looking at the literature, two topics are of interest. First is a descriptive model of design 

processes. The models of activities and their representations may suggest how to formulate 
strategies. The strategies can be formulated directly in terms of specific sequences of actions, or 
indirectly by looking at the changes in the state of the mental models that represent design 
thinking. Second, observations of good and bad designing practices may suggest what the 
strategies should or should not promote. Knowing how the strategies should be stated, and what 
they should be about is necessary for finding problem formulation strategies that lead to creative 

designs. 
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A few past studies of design thinking have described models of the design process, parts of 
which relate to design strategies and their representations. These models were inspired by Newell 
& Simon's (1972) study of human problem solving with state-operator sets. Similarly, they 

employed protocol analysis as the method for data collection and analysis. Two notable efforts  
were carried out by Ullman, Dietterich, & Stauffer (1988), and Gero & Mc Neill (1998). 

Ullman et al. (1998) pioneered modeling design cognition in the field of mechanical 
engineering. In their Task Episode Accumulation model, the design state consisted primarily of 
proposals and constraints. They defined ten operators such as select, calculate, and reject. They 
called a meaningful sequence of the operators to address some primitive goals an episode. They 

identified six types of episodes: assimilate, plan, specify, repair, verify, and document. They also 
stated that within each episode, designers choose the operators based on a set of heuristic rules. 
Finally, at the highest level, different episodes compose a design task. A task is a stage of the 
design process, e.g. conceptual, or detail design.  

The observations from Ullman et al. (1998) came from analyzing both the operators and the 
states. They calculated the amount of time that the subjects spent on each operator, episode, and 

task. For example, at the conceptual design stage, they observed that the subjects spent most of 
the time on assimilating information and specifying proposals. Similarly, they calculated the 
number of constraints and proposals, and found for example that derived constraints increase 
significantly during post conceptual stages, while given constraints mostly appear at the 
conceptual stage. 

Another established framework is Function-Behavior-Structure (Gero 1990). Gero described 

the activities in the design process in terms of transformations between pairs of function, 
behavior, structure, and the documented design. Gero & Mc Neill (1998) identified a set of micro 
and macro strategies based on the sequences and the iterations of how functions, behaviors, and 
structures were encoded from protocols. 

Other studies, especially those of the differences between expert and novice designers, give 
some clues about the strategies that designers use. However, seldom are they defined in a general 

way, independent of the task, or adopted deliberately, much less tested to see how they influence 
creativity. Ho (2001) stated that expert designers approach directly the main goals and work 
backward for required knowledge. He added that novice designers eliminate parts of the problem 
when they fail to handle it. Ball & Christensen (2009) described mental simulation and 
analogizing as strategies that designers use when faced with uncertainty. Edelman, Agarwal, 
Paterson, Mark, & Leifer (2012) introduce the idea of scaffolds as vehicles to build insight, which 

can be of metaphors that abstract and map some aspect of the design to other domains. They find 
that radical breaks come from generating many alternatives, often with frequent redesigns.  

Most of these strategies are based on observations with the objective of understanding the 
design process. There are no explicit hypotheses about these strategies to check when they occur 
or under what condition. There is also a need to study the effect of these strategies on design 
outcome. 

5.  Conclusions and Future Work 

We introduced the Problem Map framework to represent problem formulation strategies in 
design. We defined the operators in the framework, and explained how a certain combination of 

different operators, often in specific sequences, account for a design strategy. We defined the five 
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tasks of problem formulation, and gave an example of a formalized strategy for each task, in 
terms of possible changes from an initial state, and the set of operators that are involved in 
forming that strategy. We also gave examples of tracing three different strategies in collected 

protocols. It is likely that some of the strategies that we want to trace later occur infrequently or 
even not at all. 

We have built a computer tool based on the Problem Map framework that enables us to collect 
massive data from many designer subjects. Armed with the knowledge of pertinent problem 
formulation strategies, we can examine how effective it is to encourage designers to follow the 
strategies that we can correlate with creative outcome. We can use established measures in the 

field of engineering design to determine which outcomes are more creative. We will be able to 
instill the correlations that we find, as a recommendations system that is embedded in our tool. 
For each relevant design strategy, we can write the advisory rules that recommend that strategy, 
and specify the situation where it applies. Then, we can see whether prompting designers with a 
certain strategy will improve their creativity or not. The tool facilitates a convenient way of 
looking for instances of the strategies automatically, for a large number of participants in the 

learning phase, and later on in the testing phase of the research. A rigorous method of hypothesis 
testing may ultimately turn design into the science of design.  
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