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Abstract 

One of the key issues in the field of virtual agents is the design of agent architectures which fulfill 

the conditions necessary to manage at the same time real-time reactive behaviors and longer term 

cognitive abilities. We present in this article FlexMex, a flexible multi-expert meta-architecture for 

virtual agents. The main challenge lies in the structuration and organization of several modules 

addressing each a specific type of intelligence, each producing its own desires, goals, plans or 

motivations for behavior. The meta-architecture presented here is at a level which is largely 

independent of the module contents. The propagation of the behavior proposal through the 

architecture down to the level of a final decision step has to be in a flexible and manageable 

manner. We instantiate our proposal in the context of a projecting aiming at animating 

autonomous actors living in a virtual city, while respecting constraints of credibility, real-time, 

scalability and reuse of the architecture. 

1.  Introduction 

Several trends of research in cognitive psychology, AI, ethology and computer games have 
provided over the years several models and techniques which have been proved useful to simulate 
at least some aspects of human behavior. Choosing one over the other can be a matter of adhering 
to some basic assumptions of the fields, or on some specific functional or non-functional 

requirements of a given application. Another option, somewhat more pragmatic, is to see how 
these various contributions from research can be combined in an elegant way in a single 
framework that draws on each of them depending on the context at hand and is therefore able to 
simulate a wide variety of behaviors in multiple application domains. 
 To simulate credible virtual agents, it is now well recognized that an agent architecture has to 
handle short-term reactive behaviors and long-term cognitive abilities such as planning at the 

same time. Reactive architectures provide quick answers to the environmental pressure (with a 
low computational cost) and the cognitive ones allow for the richness of behaviors for credible 
virtual agents. Architectures combining both approaches are called hybrid architectures. 
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 This work is being carried out within the context of TerraDynamica, a collaborative project 
aiming at building an artificial intelligence framework for the simulation of human-like agents in 
virtual urban environments.  

 Terra Dynamica
1
 is faced with a number of significant challenges: 

 Credible virtual pedestrians: generation of their own goal, subjective reaction to city 
events, anticipation and planning of their behaviors, etc. 

 Scalability: a great number of agents might be required in the simulation. Thousand of 
pedestrians should be simulated at the same time. 

 Real-time: agent’s response time to the city events could be critical for the credibility of 

the agent behaviors. 
 Reuse of a generic framework: the possibility to use a single architecture and platform in 

several application domains such as video games, security, transports and urban 
simulations, each with its own goals and requirements.  

 We inferred from an initial analysis that our hybrid meta-architecture FlexMex should have 
four key properties to face these challenges and produce reactive and complex behaviors to 

simulate credible autonomous virtual agents : 
 Flexibility: distributed management of reactive and complex agent behaviors. The meta-

architecture should be able to blend them to obtain credible behaviors. 
 Modularity: no limit on the number and types of modules proposing behaviors, which 

depend on the agent complexity in the simulation. 
 Consistency: the modules proposing behaviors are independent and running in parallel. 

They all work as specialized expert to propose behaviors that seem appropriate for their 
own point of view. 

 Generality: allowing the reuse of the architecture. The meta-architecture should be 
independent of the context of the application and needs a specific instantiation.  

  
 To respect all of these requirements, we claim that a specific structuring and organization of the 

components in the architecture is needed, and we argue in this paper that this issue can be 
addressed largely independently from the actual content of the components. That is why we 
present in this paper what we call a meta-architecture, as the individual components are not 
described in any detail here except for their functionalities, inputs and outputs. Our approach is 
therefore somewhat related to the notion of control framework as used for example in the 
TouringMachine (Ferguson, 1992) or CogAff (Sloman, 2001) projects, though our proposal 

differs significantly. 
 In this paper, we present  FlexMex: a flexible multi-expert meta-architecture for virtual agents. 
This architectural design fulfill the requirements mentioned above and allows to organize the 
various input components (later named high-level modules) of the architecture, running in 
parallel and proposing consistent behaviors to a decision module, without any inhibitions and 
according to their own expertise. These components can be of a reactive nature such as the ones 

dealing with motivations or emotions, of a cognitive or deliberative nature such as the ones 
dealing with anticipation or planning, cooperative, etc. and can be activated or deactivated 
depending on the context of the simulation scenario. None of these modules is therefore essential. 
The meta-architecture is content independent and need to be instantiated in order to be 
implemented for specific applications.  

                                                 
1
 http://www.terradynamica.com 
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 After presenting some background on the agent architectures, we focus on key properties which 
an agent architecture needs and use this analysis grid to evaluate existing ones. We present then 
our FlexMex meta-architecture in some details and a description of its application in a 

collaborative project follows with an example of its instantiation. Finally, we discuss its 
advantages and possible limitations and conclude. 

2.  Background 

Two main approaches coexist concerning decision-making architectures: the reactive approach 
(Brooks, 1986) and the cognitive one (Langley, Laird, & Rogers, 2009). A reactive agent acts in 
response to internal or external stimuli. An internal representation can be used but the agent 
handles no reasoning. A cognitive agent behaves by reasoning on a symbolic representation of 
itself and its environment. More recently, the concept of hybrid architecture has emerged. Its 
principle is to combine the two latter approaches and add up their advantages. In this section we 

base our classification of architectures on Duch, Oentaryo, & Pasquier (2008). As the number of 
agent architectures is important, we limit our classification to architectures for virtual agent. 

2.1  Reactive Architectures 

Initially, reactive architectures were developed to model simple behaviors. Reactive architectures 

are often strongly related to the bottom-up trend, which advocates the thesis that intelligence can 
spring from cooperation between simple modules. A good example of this trend is Brooks’ 
subsumption architecture (Brooks, 1986) or the Animat approach (Meyer, 1996). In Brook’s 
hierarchical architecture, several modules (each in charge of a specific behavior) judge the 
suitability of their own activation. In order to avoid conflicts, the modules are strictly prioritized: 
a high level module inhibits all lower level modules. 

Maes proposed a system where each behavior decides on its own activation using an activation 
level (Maes, 1990). These levels change dynamically and receive bonuses or penalties which are 
favoring multi-goals, opportunistic behaviors, while avoiding conflicts. DAMN (Rosenblatt, 
1997) is also an important work based on a voting mechanism. A DAMN agent has one module 
for each possible behavior (follow a road, avoid obstacles, maintain internal variable…). Each 
module grades each feasible action, deemed relevant to its interest. The top-rated action, the most 

relevant for all behaviors, is selected.  
Based on Rosenblatt and Payton’s work (Rosenblatt & Payton, 1989), Tyrrell proposed another 

way to handle decision or action selection (Tyrrell, 1993) by decomposing behaviors into sub-
behaviors until “elementary actions” are dealt with. In this “free-flow hierarchy” approach, at 
each step, all relevant stimuli are taken into account, and a key idea is that an agent does not take 
any decision before the final elementary action level is evaluated. The final decision is delayed in 

order to allow the agent to make compromises (actions which are useful to more than one 
behavior/goal). 

2.2  Cognitive Architectures 

The other decision-making modeling approach is the cognitive trend. Two key cognitive 
architectures are SOAR (Laird, Newell, & Rosenbloom, 1987) and ACT-R (Anderson et al., 
2004). They are based on problem solving and the use of production rules. Behaviors are the 
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result of planning functions that use different types of memory. For example, SOAR creates the 
agent working memory (which is the mind configuration used to solve the agent’s current 
problem) based on three types of knowledge: procedural memory which contains production 

rules; semantic memory which stores facts; and episodic memory which saves old working 
memories (in order to reuse it in future similar situations). 

PRODIGY (Veloso et al., 1995) is an architecture that integrates planning with multiple 
learning mechanisms. The knowledge is stored in a symbolic way in first-order predicate logic. 
This architecture uses a planning approach inspired from STRIPS (Means-Ends analysis). 

The BDI approach (Rao & Georgeff, 1995) is currently widely used. A BDI agent is made up 

of three components. It consists of desires (D) that can be conflicting or can be irrelevant in the 
current situation. It has beliefs (B) about itself and its environment and uses them to select and 
then work towards its intentions (I), which are helping the agent to accomplish its desires. 

2.3  Hybrid Architectures 

Hybrid architectures try to combine the strengths of reactive and cognitive approaches. For 
example, TouringMachine (Ferguson, 1992) is a three-layer architecture composed of a reactive 
layer, a planning layer, and a modeling layer (see Figure 1). The reactive one directly connects 
perceptions to actions, it ensure reactiveness and swiftness. The planning one generates and 
executes plans. The modeling one gives reflective and predictive capabilities to the agent by 
constructing cognitive models of world entities. All these layers have incomplete information, 

and the actions they propose can be conflicting, that is why a control framework is needed, which 
has to « behave appropriately in each different world situation ». 
 

 

Figure 1. TouringMachine architecture. 
  
 The InteRRaP architecture (Müller & Pischel, 1993) separates the decisional process into three 
steps. The first one is a reactive step: an InteRRaP agent has a set of behaviors, which can 
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respond to its current objective. If none of them matches, the decisional process goes to step two: 
planning. The agent tries to organize several behaviors in time to reach its goals. If it does not 
work, the last step is reached: cooperation. The agent tries to contact others agents and asks for 

help. 
 

 
 

Figure 2. InteRRaP architecture. 

 
Figure 3. PECS architecture. 
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 The ICARUS architecture (Langley & Choi, 2006) uses four modules (see Figure 2). “Argus” 
selectively perceives the environment. “Daedalus” plans agent’s behaviors (means-end analysis 
from GPS (Newell & Simon, 1963)). “Meander” deals with reactive behaviors and executes plans 

from “Daedalus”. “Labyrinth” stores the agent’s knowledge.  
 The PECS architecture (Schmidt, 2005) uses four modules too, but they are not organized into 
a hierarchy (see Figure 3). A physical module deals with homeostatic variables, an emotional 
module is in charge of the agent’s emotional state, a social module manages the cooperation 
between agents and a cognitive module takes care of the agent's knowledge. They are in 
permanent competition in order to take control of the agent. The PECS architecture determines 

which module is the most relevant to deal with the current situation. Afterwards, that module is 
selected to drive the agent. PECS is a winner-takes-all architecture: only one module drives the 
agent at any given time. 

As we have seen in the related work section, many organizations of high-level modules in 
hybrid architectures are possible but they are all with some limitations: 

 In the InteRRaP architecture, the cognitive modules are used only if the reactive one does 

not find any solution: the cognitive modules can therefore be bypassed.  
 In the ICARUS architecture, the reactive and cognitive modules are organized in a 

hierarchical manner. 
 In the PECS and the TouringMachine architecture, the reactive and cognitive modules are 

at the same level, but in a winner-takes-all organization. 
 They all use only predefined modules and they do not use a distinct decision module. 

From our point of view, none of these organizations of components in hybrid architectures is 
entirely satisfactory. Indeed, they do not meet our four requirements at the same time : flexibility, 
modularity, consistency and generality. In the next section, we will detail the key proprieties 
necessary for meeting our four requirements to obtaining credible autonomous virtual agents in 
comparison with existing hybrid architectures. 

3.  Key Proprieties of our Architecture  

Before listing the architecture target proprieties, we want to define some terms in order to avoid 
any confusion. We will first describe what we call high-level modules, which output behavior 
proposals. They include reactive modules which produce short-term behavior proposals based on 

the agent’s motivations or emotions, etc., cognitive modules which propose longer-term 
behaviors based on anticipation, logical reasoning, learning, etc. They are mainly responsible for 
the behavior complexity of virtual humans. We consider them all as high-level modules compared 
to a decision module which integrates behavior proposals coming from high-level modules 
together and selects the most appropriate actions.  

In our meta-architecture, we made the choice of combining reactive and cognitive abilities. 

Indeed our agents need to handle quick adaptations to changes in the environment and have to 
produce credible behaviors for the virtual humans implying behavior complexity and planning in 
cognitive modules. This planning has to continue until its end but can also be interrupted if 
needed. That places us in the hybrid approach.  

We will detail our key proprieties to have a generic architecture (see section 3.4) with parallel 
high-level modules proposing coherent behaviors (see section 3.1) to the decision module, 

without inhibitions (see section 3.3) and according to their expertise (see section 3.2).  
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3.1  Flexibility 

Independently of the parallel or hierarchical organization, many hybrid architectures are designed 
with priorities or competition between high-level modules. They respect a specific order in the 
control of the components (e.g. reactive before cognitive), such as the InteRRaP architecture. 
Therefore, cognitive modules are often in practice bypassed. Competition between high-level 
modules is also often used in hybrid architectures. Only one selected module can control the 
agent at a given time. They are winner-take-all architectures such as the PECS architecture (see 

Figure 3).  
 These types of architectures lack flexibility and reactivity. In real-time simulation, the notion of 
quick adaptation to the changes in the environment is very important to the credibility of the 
behaviors produced. So the reactive modules should have the possibility to propose adaptive 
behaviors at any moment in time, even if it requires interrupting the current behavior. A good 
hybrid architecture should not have to restrict the propagation of the information in order to be 

reactive and switch rapidly between behaviors. Therefore, the choice between the behaviors of 
the high-level modules (reactive and cognitive) should not be made before the decision stage. The 
latter can then consider all the possible behaviors in order to choose the most appropriate one. 
The notion of Free-flow architectures takes inspiration from free flow hierarchies (Tyrrell, 1993) 
coming from ethology. It gives more flexibility to the behaviors (Bryson, 2000) and more 
specifically, allows opportunistic and compromise behaviors. Free flow architectures are efficient 

even if there is no hierarchical organization between high-level modules (see section 3.1). 
 From our point of view, flexibility and reactivity in hybrid architectures are essential. The 
concept of free flow architecture allows high-level modules to propose behaviors without 
inhibitions in order to have compromise and opportunistic behaviors. No high-level module can 
be bypassed or be a priori preferred (as opposed to ICARUS). The choice of the most appropriate 
behavior is made only in the decision module based on the current context. 

3.2  Modularity 

Most hybrid architectures contain a predefined and finite list of high-level components, as in 
TouringMachine, InteRRaP, ICARUS and PECS architectures. It limits the number and the type 

of high-level modules in these hybrid architectures. 
 The modularity of the high-level modules can overcome these limitations. Indeed, each module 
represents one or several capacities of an intelligent agent. For instance, an affective module lets 
an agent deal with emotions, a cooperation module to collaborate efficiently with other agents, a 
cognitive module to plan complex behaviors and/or anticipate, etc. These high-level modules are 
experts in their domain and propose behaviors according to their expertise to the decision module. 

Their number and their type are not a priori limited. With FlexMex, one can adjust the capacities 
of agents in a simulation by activating or deactivating high-level modules according to the role of 
the agent in the simulation and computational resources at hand. It impacts the complexity and 
the type of behaviors that the agent can adopt. 
  Modularity is essential to the diversity, the consistency and the flexibility of the behaviors in 
high-level modules of hybrid architectures. Their number and their expertise vary depending on 

the capacities that we need in the simulation. It can be useful for the scalability of the architecture 
such as simulating a virtual city populated with large numbers of inhabitants. 
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3.3  Consistency 

Many hybrid architectures are designed in horizontal layers with a hierarchical organization 
between high-level modules such as the InteRRaP architecture. Other hybrid architectures 
authorize multiple communications between components such as the TouringMachine 
architecture (see Figure 1) in which information can be injected or removed through the control 
framework. It means that some modules have to integrate numerical outputs coming from others 
modules. 

 Numerical integration is one of the main difficulties in many agent architectures when 
numerical values are used to communicate between modules. These numerical values can be 
useful to integrate and combine results in order to select the most appropriate behaviors. The 
values of numerical variables are already difficult to estimate inside modules. Therefore, when 
some modules have to take into account outputs from other modules, the result can be very 
complicated to interpret meaningfully. For instance, if the emotional status of a virtual human is 

‘happy’, other modules have to integrate this emotion and combine with their own values to 
reflect this happiness in their behavior choice. The main problem is to decide how to modify the 
parameters according to other inputs and how many times to apply them. The complexity of this 
process increases quickly with the number of numerical inputs.  

One solution to avoid the numerical integration issue is to place all the high-level modules at 
the same level and to limit the number of communications between modules. Most of the 

integration and combination is therefore handled in a single decision module. Indeed, independent 
high-level modules, working in parallel, can control more easily the evolution of their parameters 
in order to propose more consistent behaviors to the decision module. 

3.4  Generality 

Most hybrid architectures are designed to work on specific tasks, domains or types of domain 
even if they can be parameterized to better match a new domain. Hence, and these are only 
examples, they will often focus on the adequacy with human cognition, on the realism of 
behavior produced, or on the cost-benefit in terms of amount of computation vs. the credibility of 
the behaviors in a given context. 

 In our hybrid architecture, we need a module organization which has to be independent from 
the module content and the context of the simulation. Indeed, the needed capacities of virtual 
humans can be instantiated according to the tasks or the domains. None of the capacities is 
essential. For instance, to simulate some scenarios in a credible virtual city, its inhabitants need 
motivational capacities to be autonomous and affective capacities to react credibly to the city 
events. All the high-level modules propose behaviors to the decision module according to their 

expertise without any inhibitions (see section 3.3). However, a common formalism and 
representation has to be respected in order to maintain the consistency and the diversity of high-
level modules and to allow their combination. The behavior propositions should always be 
associated with a priority representing the importance of the behaviors according to the expertise 
of the high-level modules. It allows the decision module to integrate these behaviors and have the 
possibility to choose the most appropriate ones.  

 Hybrid architecture should ideally be designed independently from a specific task or 
application domain, and can be instantiated accordingly. We plan to test our architecture in 
several domains such as video/serious games, security, transport simulation or urban planning. 
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4.  Flexible Multi-Expert Meta-Architecture (FlexMex) 

4.1  Principle 

Each high-level module produces its own desires, goals, plans or motivations for behaviors or 
intentions. We define behaviors (or intentions or goals) as high-level tasks such as “organize a 

train trip”, and actions as either intermediate (such as “go to the crossroad”) or primitive (“give 
money to buy ticket”). Behaviors are decomposable in sequence of intermediate and ultimately 
primitive actions.  
 Our flexible multi-expert meta-architecture consists of three levels (see Figure 4): (1) high-
level modules that formulate and propose candidate behaviors, (2) a decision module that 
arbitrates between candidate behaviors and selects actions, and (3) low-level modules that execute 

the selected actions. We summarize the module organization and the functioning of our FlexMex 
architecture according to the four target properties. To avoid the limitations of hierarchal 
organizations of hybrid architectures, we use parallel high-level modules, i.e. they are all at the 
same level. They can exchange some information if needed but our goal is to limit the number of 
communications between modules in order to avoid the numerical integration issue (see section 
3.1). The high-level modules receive information from the environment. Each one can also access 

some relevant information such as characteristics of the agent (personality, memory, etc.). Each 
high-level module is expert in its domain such as affects, logical reasoning, coordination, etc. 
They have their own algorithm based on homeostasis, resources management, learning, etc. to 
propose behaviors according to their expertise without any inhibitions, and independently from 
the other modules. However, none of the high-level modules is in itself critical (FlexMex is 
operational as long as at least one high-level module is activated). Their number and their type 

can vary and are not a priori limited.  
 

  

Figure 4. Flexible multi-expert meta-architecture for virtual agents. 
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 No final decision is made before the decision module is reached allowing flexibility and 
reactivity. Opportunistic and compromises behaviors are therefore possible, as in the free flow 
hierarchies (Tyrrell, 1993). The high-level modules output candidate behaviors with an associated 

priority. The latter represents how important it is, from the point of view of the expertise of the 
originating module, that this behavior be selected. Let us note that each module can output 
several (behavior, priority) couples simultaneously. These priorities are used in the decision 
module for integrating the propositions of behaviors and for choosing the best actions. 

4.2   Decision Module 

Basically our decisional module is based on free-flow hierarchy by (Tyrrell, 1993) which is itself 
based on (Rosenblatt & Payton, 1989). The decisional module takes as input prioritized behavior 
proposals and gives as output a small set of elementary actions which should be immediately and 
simultaneously executed by the agent. Each behavior proposal is decomposed into a sequence of 
elementary actions then emerged compromise behaviors, and finally the preferred action is 

chosen. However we introduced some major changes. 
 First of all, we add an integration phase at the beginning of the decisional process. In fact, our 
architecture combines the decisional module with a modular set of high level modules. One result 
is that the behavioral proposals can be very different from each other (for example a cognitive 
module could propose a mission, resulting from many actions during a long time frame; and a 
“reflex” module could propose in the same time an elementary action such as “blink”). This 

particularity is not an issue because of the free-flow decisional process feature: no final decision 
is made before all behavior proposals are decomposed into elementary actions. So each proposal 
is integrated in the same way. The real problem in this phase is the potential difference of 
prioritizing scales. High level modules could be seen as black box, and each has its own rules to 
calculate priorities. Each behavior proposal priority is between 0 (considered as the absence of 
priority) and 1 (an absolute priority, overriding all others). If there is disequilibrium between 

high-level modules, one can modify the incriminated modules, or take it into account when the 
weights are created. Furthermore, automatically learn how to deal with disequilibrium is an 
excellent path in order to add some learning in our architecture. One way to do so is to use the 
anticipatory planning, for example by adjusting the module’s weights each time the anticipatory 
planning detects a preferred behavior which was proposed by the module B instead of the current 
behavior which was proposed by the module A. 

 One other major difference is that we do not only compare elementary actions between each 
others to find the more accurate: we compare entire alternatives. That is to say that instead of a 
classical decomposition into elementary actions, during the decomposition we search all the 
possible paths that can be chosen to accomplish the agent’s goals. Indeed, if it can be relevant to 
make an animal or a robot thinks in short term range only (a couple of actions), it is impossible in 
order to guarantee credibility to a human behavior. It seems obvious that humans are able to 

choose their behavior not only by comparing them step after step. That is why our decisional 
process compares behaviors in their totality. This phase is very important because, according to 
its knowledge, an agent may have various possibilities to fulfill each goal, and this is at this point 
of the decisional process that we compare the most relevant alternatives. The comparison takes 
into account the duration, the cost, the length of the journey, and of course the preferences of the 
agent. Compromises are directly made between alternatives though the elementary actions they 

have in common. 
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5.  Application in a Collaborative Project 

5.1  A Hybrid Architecture for Credible and Autonomous Pedestrians 

In this section, we instantiate our flexible multi-expert meta-architecture for virtual agents with 
the agent architecture used in the collaborative Terra Dynamica project

2
. This project aims at 

building an artificial intelligence framework for the simulation of human-like agents in virtual 
urban environments to populate virtual cities with credible and autonomous pedestrians. 
 
 Terra Dynamica is faced with a number of significant challenges: 

 Credible agents : they should generate their own goal, react subjectively to city events, 
anticipate and plan of their behaviors, etc. When users look at the city simulation, 

pedestrians should have credible behaviors at each moment in time and over the time. It 
implies that the pedestrians have to react quickly to all the events and also able to do 
complex behaviors. They should give the illusion of "living their own lives" such as 
eating in a restaurant with friends at lunchtime, doing shopping on the way to go home or 
greeting others pedestrians on the way. Hybrid architecture need flexibility in their 
behavior selection to give the credibility to virtual pedestrians. 

 
 Scalability: a great number of agents might be required in the simulation of a virtual city. 

Only virtual pedestrians where the users look at are showed. As the users can change 
their point of view, other pedestrians should be simulated even if they are not directly 
visible. However simulate to many pedestrians at the same time is not possible actually. 
The hybrid architecture should be enough modular to manage the complexity of the 

pedestrians according their roles in the simulation and where the users look at. 
 

 Real-time: agent’s response time could be critical. To be credible, the pedestrians should 
react in real-time to internal and external events. For example, if there is an explosion, 
pedestrians should be afraid and flee to save their lives. If not, they will be not credible. It 
is similar with the opportunism. The pedestrians should consider all information to satisfy 

their goals even they have to change their current plans. Managing real-time pedestrians 
in an large virtual city requires a consistent and efficient hybrid architecture. 
 

 Scope: the possibility to use the same architecture in several domains such as video 
games, security, transports and urban simulations. Specific scenarios are defined by 
industrial partners to evaluate the model to be used in several applications such as urban 

planning, management of city traffic, pursuit in a town or demonstration simulation. The 
high-level modules are chosen according the scenario and the role of the pedestrians.    

 
 Our FlexMex architecture is well positioned to face these challenges. The reuse of our hybrid 
architecture is facilitated because it is not designed for a specific task or domain and can be 
instantiated to match new simulation problems. With the modularity of our meta-architecture, we 

can manage the scalability challenge. We can define (possibly for each agent) the number and the 
type of high-level modules in the architecture according to the role of the pedestrians and to the 

                                                 
2
 http://www.terradynamica.com 
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focus of the users in the simulation. As our architecture has a hybrid, parallel and free flow 
organization of the high-level modules, it can handle real-time response time. The complexity of 
the rich environment and corresponding behaviors are also handled with the cognitive part of the 

hybrid architecture. 
 
 To instantiate the high-level modules of our meta-architecture, we have to determine which 
capabilities are needed by the virtual pedestrians to populate a virtual city in a manner. The 
instantiated architecture has to produce behaviors satisfying some properties: 

 Adaptability: they have to react quickly to the simulation dynamics in real-time both 

internally (e.g. motivations), and externally (environment, city events). 
 Flexibility: ongoing behaviors should be interrupted when necessary and compromise 

behaviors should be preferred in the choice process. 
 Complexity: they can have complex behaviors resulting from planning in order to be 

credible. 
 Anticipation: they can predict their future behaviors to optimize the choice of the more 

appropriate behaviors. 
 Autonomy: they can generate their own goals in order to give the impression of living 

their own lives. 
 Consistency: the behavior generated by the architecture have to be consistent at each 

moment in time and also over time.  
 Collaboration: they can interact, cooperate and collaborate with other virtual pedestrians 

to deal with collective problems.  
 
 

Figure 5. A pedestrian architecture based on our meta-architecture 
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 The capacities can be grouped in four high-level modules in our instantiated architecture for 
credible virtual pedestrians (see Figure 5): 
 

 A motivational module proposes behaviors in reaction to the evolution of internal 
variables such as the energy level. It represents the reactive, present-oriented intelligence 
of the agent and is essential for the autonomy of the virtual pedestrians. The dynamic of 
the motivations’ homeostasis is managed to urge the pedestrians to act to satisfy their 
current motivations (de Sevin & Thalmann, 2005).  
 

 An affective module proposes behaviors in reaction to external events in a subjective 
manner. It represents also the reactive, present-oriented intelligence of the agent and is 
essential for the credibility of the virtual pedestrians. This module lets an agent react 
subjectively and emotionally to some simulation events, for example a fire or a riot. We 
use a model based on a theory of conservation and acquisition of affective and material 
resources (Campano, de Sevin, Corruble, & Sabouret, 2011). It can also enhance the 

social interactions and the adaptation of the virtual pedestrians. 
  

 A cognitive module elaborates plans to reach specific complex goals. It represents the 
deliberative, future-oriented intelligence of the agent and can be allocated computational 
resources depending on the current time pressure (Reynaud, de Sevin, Donnart, & 
Corruble, 2012): 

o Anticipation: predicting the next choices of behaviors of the virtual actors and 
proposes alternative behaviors to the decision module which can be more 
appropriate in a long-term perspective. 

o Long-term planning: designs complex course of action to achieve complex goals. 
Also improves on the behaviors proposed by the reactive modules based on past 
experience.  

 
 A cooperative module deals with collective goals. The virtual actors can work together to 

achieve shared goals or tackle problems that they cannot solve alone. A good example of 
this is the coordination problem for collective tasks such as multi-agent patrolling 
(Poulet, Corruble, Seghrouchni, & Ramalho, 2011), which can be relevant to simulate 
police patrols or post-disaster rescue operations in cities. 

 
The parallel multi-expert high-level modules receive as inputs the information of the 

environment to update their world state. They compute their behavior proposal(s) with their own 
algorithms (based on homeostasis, affective models, planning, etc.). They are all expert in their 
behavioral domain and represent specific capabilities of the virtual actors. The more high-level 
modules an agent has, the more it can adapt to the environment, adopt complex behaviors or 

interact with other pedestrians in order to be more credible. However, not all the agents have to 
be very smart so we can handle more agents if they have fewer high-level modules active..  

The high-level modules propose to the decision module behaviors which they consider 
important at the moment in time without any inhibitions. It lets them react quickly to the 
simulation changes, manage the real-time time responses and interrupt the current behavior if 
necessary. The high-level modules do not know if their behavior proposals will be selected by the 

decision module. The behavior priorities are propagated in the architecture to help the integration 
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algorithm of the decision module to combine behaviors and choose the most appropriate primitive 
actions taking into account the context of the virtual agent such as time, distance, etc. The low-
level modules deal with intermediate actions such as navigation ("go to location x") and primitive 

actions such as interactions with the environment ("buy y").  
We have instantiated our FlexMex meta-architecture for an urban simulation by defining 

capacities and the high-level modules associated in order to populate a virtual city with credible 
and autonomous pedestrians. This process can be done with other domains or problems. 

5.2  Scenario Examples 

5.2.1  Security: Demonstration in a Virtual Town 

The goal of this scenario example is to simulate protesters walking on a road that is monitored by 

the police. Some rioters are at the end of the demonstration and break some shop windows. The 
scenario can be used to help the police manage demonstrations and train the police by simulating 
different situations of demonstrations. All these virtual agents have to behave in a credible 
fashion and therefore need specific capabilities: 
 

 The protesters: 

o An affective module evaluates whether they wish to join the demonstration, to 
adapt to the events and to decide whether they join the rioters, continue the 
demonstration or leave it. 

o A cognitive module anticipates on the evolution of the demonstration and on 
the actions of the rioters/policemen. 

o A cooperative module is used to collaborate and remain coordinated with other 

protesters.  
o A motivational module is used to provide basic autonomy, urge to manifest 

and survival. 
 The policemen: 

o A cooperative module to remain coordinated and to patrol around the 
demonstration. 

o A motivational module provides autonomy and reactivity to the rioters’ acts of 
aggression. 

o A cognitive module to plan arrests of some rioters and other complex actions. 
 The rioters: 

o A motivational module to be autonomous, break the showcases and escape 
from the policemen. 

 
 We can create some profiles of agents according to the capabilities that they need in the 
simulation scenario. The important virtual humans (the protesters) have several high-level 
modules in parallel while the secondary virtual humans (the rioters) are mostly reactive. For the 
latter, only behaviors coming from the motivational module will be taken into account. For the 
protesters, the decision module has to integrate all the possible behaviors coming from several 

high-level modules. We can create a credible simulation scenario of a demonstration in a flexible 
and easy way and focus on scenario priority in term of virtual human capacities. These profiles 
can be useful for the scalability of the application.  



 

FLEXIBLE MULTI-EXPERT META-ARCHITECTURE FOR VIRTUAL AGENTS 

 

  

 

83 

5.2.2  Video Game: Terrorist Attack 

The goal of this application is to catch a dangerous terrorist who wants to plant a bomb in a 
crowded place in the virtual city for obscure motives. The player has to help the policemen to 
catch the terrorist. He/she has access to all the information available to the police and can observe 
the crowded place. The police patrols in the virtual city to try to avoid the terrorist attack and can 
question pedestrians if they have some doubts.  
 Several type of autonomous agents have to behave in a credible fashion and therefore need 

specific capabilities: 
 

 The terrorist: 
o A cognitive module to plan how to plant the bomb, modify their plans if 

something appends, anticipate the possible problems and remain unnoticed by the 
police. 

o An affective module to be able to act credibly in presence of stress, anger and 
fear. 

o A motivational module to be autonomous and survive. 
 The policemen: 

o A cognitive module to anticipate what the terrorist is doing and to plan how it 
can plant its bomb 

o A cooperative module to collaborate with the users and other policemen in order 
to catch the terrorist. 

o A motivational module to be autonomous and credible. 
 The pedestrians: 

o An affective module  to interact with policemen during a questioning and express 
fear if they see the bomb. 

o A motivational module to be autonomous and give the illusion that the 
pedestrians "live their lives". 
 

 The users monitor all the actions of the autonomous policemen and can send some information 
to them to help catch the terrorist such as “the criminal could be this virtual agent with the 
briefcase”. The policemen will question this agent in order to know if it is the terrorist or not. 

However the terrorist is cunning and will not be caught easily.  
This scenario could be also used in the context of security analysis to simulate a terrorist attacks 
and help train the police in this type of situations in virtual city. 

6.  Discussion  

6.1  Advantages 

The main advantages of our flexible multi-expert meta-architecture are the flexibility, 

consistency, generality and modularity. We limit the dependencies between high-level modules 
and the numerical integration issue. All the behaviors are proposed without any inhibition by the 
high-level modules. It allows opportunism, compromise behaviors and the possibility to interrupt 
the current behavior if another is more urgent. If the situation changes rapidly, as we have several 
behaviors active in parallel, the meta-architecture can focus on another behavior that is more 
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appropriate with respect to the new situation. It enhances the adaptation of our agents to their 
environment.  
 In addition to the adaptation, our agents can adopt complex behaviors as a result of their 

cognitive module. If they can only adapt to the environment changes, they behave in a simple 
manner and the users can detect it. Our meta-architecture can manage simple adaptive behaviors 
in parallel with smarter behaviors such as anticipation or long-term behavior planning. It gives 
consistency to the virtual human over time instead of reactive behaviors at each moment in time. 
Moreover, each high-level module is expert in its domain and it enhances the coherence of the 
behaviors proposed to the decision module. 

  None of the high-level modules is essential. Each one gives a form of intelligence to our 
agents: short-term adaptation with reactive modules, long-term adaptation with cognitive ones 
and social adaptation with cooperative ones. We can use them depending on our purpose, on the 
targeted degree of the complexity and credibility of our agents, and on the available 
computational resources. For instance, important characters in a simulation have all high-level 
modules activated and can do complex behaviors while secondary characters have only 

motivational module to be autonomous. It is then possible to determine profiles of our agents 
according to their roles in the simulation so as to configure them consequently.  

6.2  Limitations 

In FlexMex, the decision module can be challenging. Indeed it has to integrate several behaviors 

and the associated priorities coming from heterogeneous high-level modules. However the main 
advantage is that we limit the complexity inside the high-level modules which can be more 
difficult to deal with. The second advantage is that we can monitor the complexity in the more 
efficient and flexible way in the decision module. We choose to combine behaviors during their 
decomposition in atomic actions using free flow hierarchies allowing compromise solutions (see 
section 4.2). The decision module is currently under final implementation and the whole platform 

is about to be evaluated with several application scenarios. 
 The second limit relates to the connections between modules. They have to be limited to avoid 
the numerical integration issue (see section 3.3). Our solution is that the modules can know only 
the inputs and the outputs of other modules. Variables in modules can be modified only by the 
modules them-selves. Moreover the inputs and the outputs of the high-level modules should be 
understandable by the meta-architecture. The modules have only their own representations and 

decision algorithms inside them but the proposed behavior with their associated priority are 
known by the decision module in order to be able to decompose them into elementary actions. 
 Another limit can be the lack of reactivity because of the complexity of the meta-architecture. 
As the role of FlexMex is to take into account all proposed behaviors without inhibitions 
according the context of the virtual pedestrians, the reactive behaviors will be blended into more 
complex behaviors or interrupt the current behaviors. The agent does always the more 

appropriated actions according to its environment and current state. Then sometimes it adapts its 
behaviors, sometimes not. It depends on its personality, and on the priority of other behaviors. 
But in any case, reactive behaviors coming from rapid response from the environment will be 
considered in the decision module but cannot always follow. It is also possible to define a priority 
on specific behaviors in the decision module, for example for reflex actions that we execute in 
any cases. However our goal is the credibility of the virtual pedestrians, so we do not wish that 

reactive behaviors be executed systematically. 
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7.  Conclusion and Perspectives 

In this article, we presented FlexMex: a flexible multi-expert meta-architecture for virtual agents 
meeting some important flexibility, modularity, consistency and generality requirements. These 
requirements are essential for obtaining credible behaviors for autonomous virtual agents in terms 
of complexity, adaptability, diversity and reusability. The meta-architecture is composed of high-
level modules, running in parallel and proposing coherent behaviors to the decision module, 

without any inhibitions and according to their expertise 
 While individual high-level components of our architectures have already been implemented 
and evaluated separately, we have to finalize their integration in a single instantiated FlexMex 
architecture in our collaborative project to evaluate it fully. Then, we plan to evaluate the 
implication and the importance of our four key properties: the module parallelism, the 
modularity, the free flow organization and the generality. The architecture is to be used in several 

applications in the video game, security, transport and urban planning domains in the Terra 
Dynamica project. We also wish to compare FlexMex in more details with well-known 
architectures such as the PECS, InteRRaP and ICARUS architectures. We are currently finalizing 
work on a generic behavior integration in the decision module for our FlexMex meta-architecture.  
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