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Abstract
One of the most studied areas of human reasoning from a computational point of view has been
planning. Classical Automated Planning (AP) deals with the generation of ordered sets of actions
that, when correctly executed, allow an agent (or set of agents) to transit from an initial state to
a final state where a set of goals are satisfied. We are interested on building intelligent systems
that sense, reason (plan) and execute plans in the real world. Since most real environments are
stochastic and/or dynamic, we focus on planners that handle the extra complexity of considering
non-determinism and/or dynamism. Currently, the two major approaches to deal with these envi-
ronments consist on explicit reasoning on probabilistic domain models, or, in the other extreme,
reasoning only with full deterministic models (removing all probabilistic information), execution
of generated plans, and replanning when needed. In this paper, we propose a variation of the second
approach. Our technique, Variable Resolution Planning (VRP), performs a detailed analysis of the
near future (first actions in the plan). After a given planning horizon, it abstracts away details as it
reasons about the far future. The advantages of this approach are that it: is faster than regular full-
fledged planning (both in the probabilistic or deterministic settings); does not spend much time on
the far future possibilities that will not be reached anyway, since in most cases it will need to replan
before finding the end of the plan; takes into account some main components of the far future (as
an improvement over pure reactive systems); and, from a cognitive perspective, plausibly is closer
to how humans plan in these kinds of environments.

1. Introduction

One of the distinct cognitive abilities of humans relates to our capability of long-term reasoning.
Thus, from the early works on computer science and artificial intelligence, the computational models
of AP have been widely studied in combination with general problem solving methods (Simon &
Newell, 1969). Planning was modeled as a search in a problem space defined as a set of states,
and a set of operators, that configured the domain model. Within a given domain, a set of planning
problems could be defined, each one composed of an initial state and a set of goals. Given that
fully enumerating potentially very large domains was not feasible, expressive languages have been
used for concisely representing large problem spaces. Those languages have been largely based on
predicate logic. As a prominent example, we can cite the currently used standard Planning Domain
Description Language (PDDL) (Fox & Long, 2003). Planners take as input a domain and a problem
and compute a plan (ordered set of instantiated operators, also called actions) that solve the problem;
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the execution of the plan allows the executing agent to reach a state where the goals are true from
the initial state.

We are interested on planning-execution cycles, as in robotics or videogames, where actions in
the plan have to be executed by an agent. A common approach to deal with the planning-execution
cycle consists of letting a planner fully solve the planning task for some (usually very large) time
and then execute the actions in the plan. This scheme presents some disadvantages, specially in
environments that present some level of uncertainty. First, AP could be prohibitively expensive for
most real world scenarios. In the presence of uncertainty, the computational complexity of planning
has been shown to be EXPTIME-complete (Littman, Goldsmith, & Mundhenk, 1998).

Therefore, the agent (perhaps a robot) will do nothing, or something random, while waiting for
a solution to be generated. This is usually unacceptable. Second, depending on the uncertainty
level, most actions of the generated plan will not be even applied if the execution of the previous
actions in the plan fail (generate an unexpected state, disallowing the execution of further actions
in the plan). So, most planning effort, specially the one devoted to reasoning on actions at the end
of the plan, will be wasted. Third, during the execution of the actions new information about the
environment could be discovered, changing the structure of the problem. Finally, if we consider
human planning, we do not usually devote a huge time to planning all potential details of issues far
into the future, specially in the presence of uncertainty.

There are different ways to approach planning and execution in this kind of environments. If we
have models on the dynamics of the environment (failures model of a robot, structure of the terrain,
accuracy of sensors, etc.), we can define a domain model with probabilistic information (such as in
Probabilistic PDDL (Younes & Littman, 2004) or RDDL (Sanner, 2011)). Then, a planner can build
a conditional plan (Peot & Smith, 1992) where the plan takes into account all possible alternative
scenarios, or generate a set of policies by solving it as a Markov Decision Process (MDP) as shown
by LAO* (Hansen & Zilberstein, 2001), or LRTDP (Bonet & Geffner, 2004). Usually, the dynamics
of the environment are not fully known, but learning could be used to first acquire it (Jiménez,
Fernández, & Borrajo, 2013). Also, these approaches require a huge computational effort and they
do not scale really well to real world problems. Therefore, a alternative solution, consists of using
a deterministic domain model (remove all probabilistic information) and replan when a failure in
execution is detected (Yoon, Fern, & Givan, 2007).

On an extreme point of planning, we find reactive systems, which require much less compu-
tational effort. They greedily select the next action to be applied according to some configured -
or learned - knowledge. They are “mostly” blind with respect to the future, ignoring the impact of
the selected actions on the future actions and states. Thus, they often get trapped in local minima,
or dead-ends. For instance, they can consume resources that cannot be re-generated that might be
needed in the future.

Instead, we advocate here for a planning approach in the deterministic setting (no use of proba-
bilistic information), Variable Resolution Planning (VRP). It computes a valid head of the plan (first
actions in the plan) with all their details, since the first actions in the plan have a high probability to
be executed correctly. Then, starting at a given horizon, which is defined manually, VRP plans con-
sider only partial knowledge on the domain, abstracting away some details. We have been inspired
by work on search in classical games (search horizon), the use of abstraction in planning (Sac-
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erdoti, 1972; Knoblock, Tenenberg, & Yang, 1990) and the Variable Level-Of-Detail approach
(VLOD) (Zickler & Veloso, 2010). The main difference with search techniques in game playing
(as alpha-beta) is that we keep searching after the horizon, but in a smaller problem space, instead
of using an evaluation function to replace search. In the related work section we will cover the
main differences with previous work on abstraction in planning. The relation to VLOD is closer.
VLOD is a motion planning technique, so there is no explicit domain model as in the case of AP.
VLOD focuses search on obtaining accurate short-term motion planning, while considering the far
future with a different level of detail, by selectively ignoring the physical interactions with dynamic
objects. This technique decreases the computational cost of the motion planning process, so that
information about different elements of the environment is not used to search a path to reach all
goals. In our case, details are ignored by removing some predicates from the search.

The advantages of VRP are that: it can generate plans faster than regular planning (both in
the probabilistic or deterministic settings) if the right predicates are abstracted; it avoids spending
much time on the plan details in the far future and all related potential scenarios that will not be
reached, since we believe that in most cases it will need to replan before finding the end of the
plan; nevertheless, it takes into account key aspects of the far future (as an improvement over pure
reactive systems) not to be trapped in execution dead-ends (e.g. consuming all fuel in the first part
of the plan); and, from a cognitive perspective, we believe it is closer to how humans plan in these
kinds of environments (this remains to be a hypothesis within this paper).

This paper is organized as follows. In Section 2 presents some work related with our approach.
Section 3, we formally define the planning task. Next, in Section 4 we define our abstraction
mechanism. In Section 5 we describe how to implement Variable Resolution Planning in a planning-
execution environment. Section 6 shows an experimental evaluation of our technique over different
domains. Finally, in Section 7, we conclude and introduce future work.

2. Related Work

This work focuses on applying abstractions over AP to reduce the computational overhead in
stochastic or dynamic environments. There have already been many approaches that generate ab-
stractions in AP. The first work in abstractions (Sacerdoti, 1972) extended the work of Newell and
Simon on GPS (Simon & Newell, 1969) and used it to develop Abstrips, which combined ab-
straction with STRIPS. It defined abstraction levels by assigning criticalities to predicates as the
difficulty of achieving them. The planner used these criticalities to iteratively generate successive
abstract plans using only predicates in the corresponding abstract space. Alpine (Knoblock, 1991)
automatically generates abstraction hierarchies, using the preconditions of operators. In both cases
abstractions are used to generate an abstract plan. This is refined incrementally until the lowest level
of criticality is expanded and goals have been satisfied. Instead, our approach generates an abstract
plan, where the first k where actions are valid ones, and the rest of the plan is not necessarily valid.

A more cognitive perspective of planning task called opportunistic planning can be found in (Hayes-
Roth & Hayes-Roth, 1979). In this work, the plan exists at different levels of abstractions simulta-
neously and the planner alternates between the different levels of detail. Their planning paradigm is
based on the idea of considering human planning activity largely as opportunistic. This means that
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at each point in the process (planning, monitoring, execution), the planner’s current decisions and
observations provide several opportunities for plan development. Commonly these opportunities
are related with the state of the environment or the information known about it. The work presented
in this paper explores a similar idea using different level of abstractions. In contrast, our approach
only use two levels, one with complete information about environment and another one abstracting
some details to decrease the cost of the planning task. These details represent information that can
change in the future during execution making the plan generated previously fails.

In recent years, abstractions have been used to generate heuristic techniques. Hoffmann and
Nebel (Hoffmann, 2003) used abstractions to compute the heuristic value of nodes by building a
relaxed plan to guide the search process, where the delete effects of actions are ignored. Another
use of abstractions to build heuristics are pattern databases (PDBs), which have been shown to be
very useful in several hard search problems (Culberson & Schaeffer, 1998) and Automated Plan-
ning (Edelkamp, 2001). VRP has been designed to generate abstract plans in stochastic environ-
ments by decreasing computation time regardless of the technique used to guide the search process.
More recently, in (Haslum et al., 2007) its authors exploited a new form of abstraction, in which
domain transition graphs (DTG) (Helmert, 2006) are generated together (to merge them) and then
shrunk by abstracting nodes that share the same relaxed distance to the goal. In these cases abstrac-
tions have been used to compute a heuristic value, that is used to look for the best path to the goal.
More recently, changes in the representation have been used to automatically generate finite-state
controllers from models (Bonet, Palacios, & Geffner, 2009). This represents a kind of contingent
problems where actions are deterministic and some fluents are observable. The controllers could be
considered general solvers in the sense that they do not solve only the original problem, but they
can also include changes regarding the size of the problem or the probabilities of the action effects.

In other hand

3. Planning Framework

In this work, we focus on the use of a deterministic, STRIPS AP approach (Fikes & Nilsson, 1971).
A classical planning problem is defined in PDDL using a lifted representation in predicate logic.
Most current planners always perform a grounding transformation first. Under that transformation,
a planning problem can be defined as a tuple P = (F,A, I,G), where:

• F is a finite set of relevant grounded literals (also known as facts), functions and fluents.

• A is a finite set of grounded actions derived from the action schemes of the domain, where
each action ai ∈ A can be defined as a tuple (Pre, Add, Del), where Pre(ai), Add(ai), Del(ai)
⊆ F . Pre(ai) are the preconditions of the action, Add(ai) are its add effects, and Del(ai) are
the delete effects. Eff(ai) =Add(ai)∪ Del(ai) are the effects of the action.

• I ⊆ F is the initial state.

• G ⊆ F is a set of goals.

A plan π for a problemP is a set of actions (in the common case a sequence) π = (a0, . . . , an−1),
∀ai ∈ A, that transforms the initial state, I , into a final state, Sn, where G ⊆ Sn. This plan π can
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be executed if the preconditions of each action are satisfied in the state in which it is applied, i.e.
∀ai ∈ π Pre(ai) ⊆ Si−1 (S0 = I).

4. Abstractions

In VRP, an abstraction can be defined as a function that transforms a planning problem into another,
where some details (values of some fluents) are ignored. Usually, abstractions help to reduce the
problem complexity. In this work, we generate abstractions by removing some predicates from the
lifted representation of the domain. Thus, since planners work at the propositional (grounded) level,
this is equivalent to removing literals from the preconditions and effects of actions in the grounded
representation. Next, we define some concepts related to our abstraction mechanism.

The first definition formalizes the mapping between a predicate in the PDDL domain definition
and its corresponding groundings for a given problem P .

Definition 1 A Predicate mapping, g(p, P ), is the set of propositions (facts) of predicate p in prob-
lem P .

For instance, in the classical Blocksworld domain, if p1 is (ontable ?x) and a PDDL prob-
lem, P1, contains three blocks (A, B, and C) on the table, then:

g(p1, P1) = {(ontableA), (ontableB), (ontableC)}

In our approach, an abstraction of an action a over a predicate p removes all propositions that are
groundings of p (g(p, P )) from the preconditions and effects of a. We define the candidate subset
of facts to be potentially removed, Cabs ⊆ F , as:

Cabs = F \ (Fs ∪ Ff ∪ FG)

where Fs ⊆ F is the set of static facts, or facts that do not appear in the effects of any action
(applying an abstraction over a static predicate does not reduce the number of actions to achieve the
goals); Ff ⊆ F is the functions set, or non-boolean facts that are groundings of PDDL functions
instead of predicates; and FG is the set of the dynamic predicates which are part of the problem goals
(G) (predicates which are part of the goal subset cannot be removed because the planner would not
reach a solution).

Definition 2 An Abstraction of an instantiated action a ∈ A over a predicate p in a problem P is
defined by the function f(a, p) = (Preabsp (a), Addabsp (a), Delabsp (a)), where:

Preabsp (a) = Pre(a) \ g(p, P )

Addabsp (a) = Add(a) \ g(p, P )

Delabsp (a) = Del(a) \ g(p, P )

For instance, following the previous example in the Blocksworld domain, given problem P1 and
predicate p1 previously defined, suppose a0 is pick-up(A). If VRP selects to remove p1:
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Preabsp1 (a0) = {(clearA), (ontableA), (handempty)} \ {(ontableA), (ontableB), (ontableC)}
= {(clearA), (handempty)}

Addabsp1 (a0) = {(holdingA)} \ {(ontableA), (ontableB), (ontableC)}
= {(holdingA)}

Delabsp1 (a0) = {(clearA), (ontableA), (handempty)} \ {(ontableA), (ontableB), (ontableC)}
= {(clearA), (handempty)}

Definition 3 An Abstraction of a PDDL problem P over a predicate p, called P abs
p , is the result of

abstracting all components of P over p:

P abs
p = (F abs

p , Aabs
p , Iabsp , Gabs

p )

where

• F abs
p = F \ g(p, P )

• Aabs
p = {aabs | a ∈ A, aabs = f(a, p)}

• Iabsp = I \ g(p, P )

• Gabs
p = G, given that the predicates in the goals are not candidates to abstract

Definition 4 An Abstract Plan, Πabs
p , that solves a PDDL problem P removing a predicate p start-

ing at a horizon k is an action sequence:

Πabs
p = {a0, . . . , ak−1, ak, . . . an−1}

The k first actions are applicable in P if the actions ai, i = 0 . . . k − 1, are all in A, and there
exists a sequence of states (s0, . . . , sk), such that s0 = I , Pre(ai) ⊆ si and si+1 = si ∪Add(ai) \
Del(ai) for each i = 0, . . . , k− 1. The rest of actions starting from ak are applicable in P abs

p , if the
actions ai, i = k . . . n − 1, are all in Aabs

p , and there exists a sequence of states (sk, . . . , sn), such
that Preabs(ai) ⊆ si and si+1 = si ∪ Addabs(ai) \Delabs(ai) for each i = k, . . . , n− 1. Thus, a
partial abstract plan is composed of a standard sound plan from the initial state s0 to state sk−1 and
an abstract plan from state sk to a goal state sn. In this paper definitions use only one predicate, but
they can be extended using a set of predicates.

5. Variable Resolution Planning

Variable Resolution Planning is based on two ideas: it is not always possible to collect all the
information about the dynamics of a real world environment or if it is possible to get it, the amount
of information that describes the environment cannot be managed. According with these ideas,
VRP ignores some information about the environment from a horizon k. The abstraction that we
perform during the planning process is showed in Figure 1. The abstract plan generated, in bold in
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Figure 1. Representation of the abstract planning process.

the figure, will be composed of less actions than the standard plan. It computes a valid head of the
plan (before horizon k) with all the information known about the environment. Thus, this part of
the plan will be composed of the actions that most probably will be executed in the environment.
Next, starting at a given horizon, the planning process solves the problem by ignoring some details
about the environment. We will first present how planning works in VRP and then how to integrate
planning and execution in VRP.

5.1 Planning

There are different ways to implement the VRP idea in current planners, depending on the PDDL
version planners can handle. If the planner supports functions and numeric preconditions, VRP can
automatically compile a PDDL domain into one with functions to define the different abstractions
(we do not detail this compilation here). Unfortunately, very few planners handle numeric precon-
ditions. Therefore, we have to modify the planners code to perform domain-independent predicate
abstractions. In this work, Metric-FF (Hoffmann, 2003) has been used as a base to implement
our approach. This planner provides greater expressiveness than other planners allowing numeric
preconditions and effects in actions, which can more accurately describe some elements from real
environments. We call the new planner Abstract-MFF. Apart from the standard inputs of Metric-FF,
Abstract-MFF also receives as input: k (the horizon) and p (the predicate to abstract at time step
k). Once the initial instantiation is performed (computing the instantiated problem and all its com-
ponents, P = (F,A, I,G)), Abstract-MFF generates data structures to use the horizon k and the
predicate p. Thus, Abstract-MFF generates a search tree where nodes of depth less than or equal to
k use the original definition of the problem, and nodes below that depth use an abstracted version
of the problem.

By abstracting p, Abstract-MFF instantiates a new version of the problem. From the original
set of actions, Abstract-MFF creates three sets. The first set A1 contains the actions unaffected by
the abstraction. The second set A2 contains the actions that have p as precondition or effect. The
third set A3 contains the actions derived from applying the abstraction to the actions in A2. After
computing the abstraction, Abstract-MFF searches using a modified version of A∗, such that when
the depth of a node is lower than the horizon k, the actions used are A1 ∪A2. Otherwise the actions
are A1 ∪A3. Finally, the output of the planner is an abstract plan.

139



M. MARTÍNEZ, F. FERNÁNDEZ, AND D. BORRAJO

5.2 Planning and Execution

We have implemented a planning-execution-replanning loop on some domains and problems to
evaluate the approach presented in this paper. We have used the simulator MDPSim (Younes et al.,
2005) to simulate the execution of plans.1 To simulate failures, we provide a probabilistic version
of each domain in PPDDL to MDPSim, where actions can generate unexpected states with different
probabilities. Note that the planner does not have any probabilistic knowledge on the domain. We
assume we do not have that information available. This probabilistic version of the domain is given
to MDPSim so that MDPSim can act as the real world. In our case, a state is considered as an
unexpected state when the next action in the plan cannot be executed in the environment. In those
cases, MDPSim returns the previous state (the action could not be executed). We have chosen the
simplest case to define failures, because we did not have access to a simulator that was able to
introduce more complex uncertainty scenarios, as those with exogenous effects.

Algorithm 1 shows the planning and execution cycle. Given a planning task (consisting of
a deterministic PDDL domain and problem descriptions), p (the predicate to be removed) and k
(horizon), the planner generates an abstract plan (where the first k actions are non-abstracted actions
and the rest are abstracted actions). We assume we do not know the probabilistic model of the world.

Next, the planner sends every action to MDPSim. MDPSim executes each action (with the
stochastic model of the PDDL domain). If the resulting state is not the expected one according to
the deterministic version of the domain, Abstract-MFF generates a new plan from that state. This
process is repeated as a re-planning loop until a goal state is reached.

Data: Problem: P = (F,A, I,G), predicate p, horizon k
1 begin
2 plan← planning(P, p, k);
3 lastState← I;
4 while plan is not empty at the current state do
5 action← getAction(plan);
6 expectedState← generateState(action, lastState);
7 environmentState← sendActionToMDPSIM(action);
8 if environmentState = expectedState then
9 lastState← environmentState;

10 else
11 P ← generatePlanningProblem(P, lastState);
12 plan = planning(P, p, k);

Algorithm 1: Description of the execution process in the stochastic environment.

1. MDPSim was developed for the First Probabilistic Planning Competition.
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6. Experiments and Results

In the experiments, we compare Abstract-MFF (AMFF) with the standard Metric-FF planner and a
reactive version of Metric-FF we have built, called Reactive Metric-FF (RMFF). RMFF generates
a plan composed by only one action each time. It uses a deterministic domain and selects the best
next action acording with the heuristic used by the planner. RMFF has been designed to analyze the
effects of a reactive model that observes the environment and generates the next action to execute
in the environment.

Experiments were performed on an Intel Xeon 2.93 GHZ Quad Core processor (64 bits) running
under Linux. The maximum available memory for the planners was set to 6 GB, the maximum
planning time for a problem has been set to 1000 seconds and the maximum execution time was
set to 18000 seconds. Each problem was executed fifteen times until goals are reached (we call it a
run). The probability of an action execution failure has been included in the definition of the action
in the PPDDL domain description. We show results with 30% of failure probability. No planner in
the comparison (AMFF, Metric-FF or RMFF) had access to the probabilistic version of the domain.

The following sections provide an evaluation of VRP over two benchmark domains from the
International Planning Competition (IPC) set:2 Rovers from the IPC-3 and Gold-Miner from the
learning track of the IPC-6. We used Rovers, because it is a domain similar to the ones used for
robotics tasks that perfectly match the kind of domains where we believe VRP will work best. And
we have used Gold-Miner, because it is also a robotic task, but it presents dead-ends which are hard
to solve by reactive behaviours or greedy approaches.

6.1 Rovers Domain

The Rovers domain was designed for the sequential track of IPC-3 (2002) and was inspired on the
Mars exploration rovers missions where an area of the planet is represented as a grid of cells, called
waypoints. They contain samples of rock or soil that can be collected by the robots. Each robot can
traverse across different waypoints and can perform a set of different actions (analyze rock or soil
samples or take pictures of a specific waypoint). All the data collected by the robots has to be sent to
the lander, that is placed at a fixed waypoint. VRP needs the definition of two parameters: horizon
and predicate for abstracting. Taking into account the large number of alternatives, we have se-
lected a subset of significant values for them. We have considered four predicates for removal: at,
have_rock_analysis, have_soil_analysis and have_image. In this paper, we only
show results for predicates at and have_rock_analysis, because the results generated with
the other predicates are similar to those obtained when predicate have_rock_analysis is re-
moved. We have selected four different horizons for each predicate. k = 1, 5, 10 and 20. Table 1 re-
ports the planning time for the Rovers domain when removing predicate have_rock_analysis
with a 30% probability of failure in a set of 10 problems. The first column defines the problem
number, the second column describes the results obtained by Reactive Metric-FF, the third column
describes the result obtained by Metric-FF, and the rest of columns correspond to the results of
Abstract-MFF with different values of k. For each planner, each column shows the average of the

2. ipc.icaps-conference.org
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Table 1. Planning time for the Rovers domain when removing predicate have_rock_analysis with a
30% probability of failure. The first column corresponds to one IPC problem of the Rovers domain, the sec-
ond column corresponds to Metric-FF and the remaining columns correspond to Abstract-MFF with different
values of k. For each planner, each column shows the average of the sum of planning times of each run, the
standard deviation (SD) and the time of the first planning process (FT) (all times measured in seconds). In
bold, we highlight the best results per row.

Prob RMFF Metric-FF AMFF (k=5) AMFF (k=10) AMFF (k=20)

Time FT Time FT Time FT Time FT Time FT

20 48 ± 8 1 32± 4 2 26 ±6 2 21± 10 1 27± 9 1
21 61± 9 1 52 ±16 12 64± 20 3 52 ±40 3 69± 22 4
22 110± 6 1 192± 26 15 83 ±14 3 99± 46 4 108± 39 4
23 271± 69 1 528± 193 32 153 ±21 7 177± 113 6 170± 71 8
24 129 ± 18 1 136± 10 17 90± 12 6 85 ±49 7 104± 37 5
25 2978 ± 348 1 9657± 932 263 1564 ±219 72 1567± 813 78 1796± 621 58
26 398 ± 24 1 680± 42 25 599 ±160 15 662± 329 16 617± 292 54
27 1268 ± 475 1 4581± 674 237 1874± 585 78 1554 ±887 44 1989± 621 35
28 1154 ± 187 1 3132± 223 168 949± 175 39 929 ±461 31 1181± 362 36

Total 6417 18983 5385 5149 6065

sum of the planning times of each run in seconds and the standard deviation (SD) in seconds and
the time of the first planning process (FT) in seconds.

The results reported in Table 1 show that removing a predicate that is part of the preconditions
of actions that are used to achieve the problem goals, like have_rock_analysis, provides
better performance in difficult problems. In some cases, Reactive MFF offers better results in terms
of execution time, but the actions used to solve the problem are many more compared to other
planners. Abstracting this kind of predicate allows the planner to achieve goals more easily, reducing
the number of actions required to find a state where goals are true. For instance, if we remove the
predicate have_rock_analysis in the action communicate_rock_data, the number of
actions needed to obtain a rock sample and send it to the lander will decrease. This is because the
robot does not have to move to the waypoint where the rock is and it does not have to pick the rock
sample up to analyze it; the rover only needs to send information to the lander. Thus, solving the
path planning part is not relevant when planning for all actions. It will be needed when in fact the
rover has to actually move to a specific waypoint. And, at that time, it will compute those details
(they will be in the head part of the next plan).

Table 2 reports the planning time for the Rovers domain when removing predicate at with a
30% probability of failure in a set of 10 problems. In this case, results are not so impressive as those
for predicate have_rock_analysis, although Abstract MFF outperforms Metric-FF in most
problems. Our initial assumption was that predicates like at would offer better performance than
the rest of predicates in domains where a robot or a vehicle has to move through different positions.
However, this did not happen in the Rovers domain.
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Table 2. Planning time for the Rovers domain when removing predicate at with a 30% probability of failure.
The meaning of columns is the same as in the previous table.

Prob RMFF Metric-FF AMFF (k=5) AMFF (k=10) AMFF (k=20)

Time FT Time FT Time FT Time FT Time FT

20 50 ± 3 1 32± 4 2 26± 6 2 21 ±10 1 27± 9 1
21 65± 6 1 52 ±16 12 64± 20 3 52 ±40 3 69± 22 4
22 104± 9 1 192± 26 15 83 ±14 3 99± 46 4 108± 39 4
23 271 ±69 1 528± 193 32 321± 84 19 297 ±42 14 301± 59 15
24 136 ± 36 1 136± 10 17 129± 72 13 103 ±29 10 119± 46 12
25 3174 ± 453 1 9657 ± 932 263 6544± 328 104 5567 ± 743 98 5996 ± 832 97
26 410 ± 47 1 680 ± 42 25 691 ± 315 28 671 ± 279 25 624 ± 79 37
27 1739 ± 621 1 4581 ± 674 237 3874 ± 498 166 2954 ± 731 110 2973 ± 621 137
28 2316 ± 509 1 3132 ± 223 168 3949 ± 315 142 4128 ± 537 138 3997 ± 512 168

Total 8265 18983 15681 13892 14214

In general, results obtained in the Rovers domain confirm our initial hypothesis: in problems
where planning time is high, abstractions significantly reduce such time. The first group of problems
are moderately difficult and abstraction does not show a significant reduction of planning time. But,
in harder problems as 25 or 27, Abstract-MFF obtains a reduction of the total planning time of 30%
when removing the predicate have_rock_analysis. Results also showed that the most impor-
tant element in the abstraction is the predicate. When the information represented by the predicate
in the domain has a great influence over the solution, abstraction will produce a modification in the
complexity of the problem, changing the number . Using this kind of abstraction can increase or
decrease the number of nodes expanded and the branch factor during search, as it can be observed
for problem 28. In this problem, while the abstraction of the predicate have_rock_analysis
decreases the complexity of the problem and the number of nodes expanded to find a solution de-
creasing the time to solve it, the abstraction of the predicate at decrease the number of nodes
expanded during search, but increase the branch factor diminishing the initial advantages of remov-
ing the predicate at. Moreover, abstractions do not work equally well with all predicates. In the
case of the Rovers domain, there are some dynamic predicates which do not offer advantages over
traditional planning. For instance predicate calibrated, needed for the rovers cameras, does
not decrease the planning time when removed, because the process to achieve groundings of this
predicate implies the execution of only one action and does not have a big influence over the search.

Regarding the value of k, the results shown in the different tables for the Rovers domain indicate
that there is no general rule about the influence of the value of k in the performance of the planner.
In some problems, lower values of k are better and in others the opposite is true. We hypothesize
that the efficiency also depends on the percentage of action failures or the problem to solve. Initially,
we expected that small values of k tend to increase the number of re-planning steps, since a bigger
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Table 3. Planning time for the Gold-Miner domain when removing predicate robot_at with a 30% proba-
bility of failure. The meaning of columns is the same as in the previous table.

Prob RMFF Metric-FF AMFF (k=5) AMFF (k=10) AMFF (k=20)

Time FT Time FT Time FT Time FT Time FT

10 - - 542 ± 112 45 93 ± 9 8 65 ± 6 13 491 ± 45 21
11 - - 661 ± 73 54 120 ± 15 11 95 ± 12 18 598 ± 61 30
12 - - 598 ± 72 48 235 ± 36 7 82 ± 14 13 570 ± 92 28
13 - - - - 280 ± 25 15 91 ± 17 11 - -
14 - - - - 309 ± 32 14 72 ± 74 16 529 ± 94 26
15 - - - - 318 ± 27 7 65 ± 18 9 548 ± 52 23
16 - - 798 ± 93 69 95 ± 17 7 69 ± 11 9 - -
17 - - - - 218 ± 29 11 93 ± 15 12 - -
18 - - 910 ± 101 76 92 ± 21 14 87 ± 11 16 - -
20 - - - - 264 ± 18 23 430 ± 19 27 570 ± 73 33

Total - 3509 2024 1194 3306

part of the plan is abstracted, but planning time will be less, given that the plan is shorter on each
planning episode.

6.2 Gold-Miner Domain

The Gold-Miner Domain was designed for the learning track of IPC-6 (2008) and was inspired on
the gold extraction process in a mine. In this domain, there is a robot in a mine and it has to reach
a location that contains gold to extract it. The mine is defined as a grid with each cell either being
hard or soft rock. The robot can use two different tools to destroy rocks: bombs and a laser cannon.
The laser cannon can shoot through both hard and soft rock, whereas the bomb can only penetrate
soft rock. However, the laser cannon also will destroy the gold if used to uncover the gold location.
The bomb will not destroy the gold. For this domain, initially we had considered three predicates
for removal: robot_at, holds_bomb and hold_laser. However, abstracting the predicate
hold_laser does not offer advantages over the normal planning process. Thus. we do not report
the results for abstracting this predicate. We have selected five different horizons for each predicate.
k = 1, 5, 10 and 20. Table 3 reports the planning time for the Gold-Miner domain when removing
predicate robot_at for a set of 10 problems..

A main characteristic of Gold Miner is that reactive approaches typically fall into dead-ends, as
it can be observed in Tables 3 and 4. However, when executing Abstract Metric-FF, the search pro-
cess can avoid dead-ends when the abstraction is applied after the dead-end appears. For instance,
removing predicate robot-at allows the robot to execute any action at every location, decreasing the
complexity of the problem. Given that the robot does not need to destroy the rocks to generate a
path to the gold, it can move to the position where the gold is picked up. In this case the planning
process is performed partially while the robot is performing actions on the environment. Table 4
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Table 4. Planning time for the Gold-Miner domain when removing predicate holds_bomb with a 30%
probability of failure. The meaning of columns is the same as first table.

Prob RMFF Metric-FF AMFF (k=5) AMFF (k=10) AMFF (k=20)

Time FT Time FT Time FT Time FT Time FT

10 - - 542 ± 112 45 - - 75 ± 18 9 82 ± 7 11
11 - - 661 ± 73 54 - - 91 ± 14 7 89 ± 11 9
12 - - 598 ± 72 49 - - 71 ± 12 8 128 ± 18 11
13 - - - - - - 68 ± 12 6 176 ± 32 15
14 - - - - - - - - 212 ± 23 12
15 - - - - - - - - 205 ± 28 11
16 - - 798 ± 93 68 - - 94 ± 13 7 164 ± 15 17
17 - - - - - - 101 ± 23 9 193 ± 26 13
18 - - 910 ± 101 76 - - 87 ± 9 6 142 ± 28 12
20 - - - - - - - - 210 ± 34 10

Total - 8509 - 587 1601

reports the planning time for the Gold-Miner domain when removing predicate holds_bomb for
a set of 10 problems.

However, if predicate holds-bomb is removed, problems can only be solved when the value
of k is high, because the predicate holds-bomb indicates when a robot is holding a bomb. If
the number of actions to hold a bomb is greater than k, the robot can enter in a cycle using the
abstraction to reach the goals in the last part of the plan. This domain shows interesting results,
because the abstraction is not enough to avoid the dead-end, but when combined with a high horizon
k, dead-ends are avoided, decreasing the execution time of the problem.

7. Conclusions

In this paper, we have presented a new planner, Abstract-MFF. It uses an abstraction mechanism,
VRP, that dynamically removes some predicates during the planning process based on a temporal
horizon, in order to improve planning performance in stochastic and dynamic environments like
robotics systems. The main contribution of this work consists on defining VRP, and analyzing how
it can be used to improve the application of planning techniques to real environments. VRP tries to
simulate human cognitive processes by selectively abstracting information about the environment
when planning and replanning if needed. Planning time is reduced with respect to the time required
by regular planning processes, specially on ignoring details on future components of plans that
will most probably not be needed anyway. Also, VRP generates the first plan much faster, which
in real environments is critical, as it allows the execution to begin earlier. Besides, the quality of
the solutions (number of executed actions) using VRP is roughly the same as the one of the base
planner, with an overall improvement of a 5%.
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There are several future research lines. On one hand, a key aspect is how to select the predicates
that generate abstractions. There are three properties to be analyzed: the relevance of the predicate
into the problem; the difficulty of generating the predicate, as effects of actions, during the search
process; and whether the removal of the predicate can lead a dead-end. Besides, another way to
abstract information from the states consists of abstracting a sub-set of grounded predicates, not
necessarily all corresponding to the same predicate. For example, in the Blocksworld domain, it
is possible to remove grounded predicates for some blocks while leaving the same predicate for
other blocks. Another key parameter of VRP is the selection of the value of k. It can be even
dynamically chosen, depending of how much does the information about the environment change,
or what predicates are removed during search. In short, the usefulness of removing a predicate
and the selection of the value k may depend on the stage the search process is in. Changing the
abstraction accordingly may be beneficial, which means that both the abstracted predicates and the
value k should not be fixed at the beginning but rather vary dynamically during search.

Finally, we are interested in applying this technique to other kinds of problems which have more
information encoded in predicates and actions about environment, like robotics, video-games or
automatic road transportation systems. In particular, several of these types of problems are currently
out of reach of state-of-the-art domain-independent planners, which which can be used to generated
abstractions to decrease the complexity of the planning process.
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