
Second Annual Conference on Advances in Cognitive Systems Poster Collection (2013) 167-183

© 2013 Cognitive Systems Foundation. All rights reserved.

Spatial Planning For Placement Command Understanding

Kalyan Moy Gupta KALYAN.GUPTA@KNEXUSRESEARCH.COM
Kellen Gillespie KELLEN.GILLESPIE@KNEXUSRESEARCH.COM
Justin Karneeb
Hayley Borck

JUSTIN.KARNEEB@KNEXUSRESEARCH.COM
HAYLEY.BORCK@KNEXUSRESEARCH.COM

Knexus Research Corp., 163 Waterfront Street, Suite 440, National Harbor, MD 20745.

Abstract

Object placement in virtual and real worlds is an important task for autonomous agents and
applications. Interacting with agents using natural language commands presents an intuitive
alternative to graphical and other operator control interfaces. However, understanding and
interpreting language for placement actions in 3D continuous spaces is computationally hard. In
this paper, we extend our previous work on resolving underspecified linguistic commands for
object placement using a spatial planning approach called object placement using ordered
application and simulation of constraints (OPOCS). This heuristic approach represents and
utilizes practical real-world knowledge of objects an their interactions. It does this with simulation
of human activities to accurately place and orient objects. We evaluated OPOCS and compared it
with a naïve algorithm for understanding 10 representative spatial terms and relations in 4
different 3D office worlds. Our findings show that OPOCS significantly outperforms a naïve
algorithm.

1. Introduction
A number of real and virtual world tasks involve objects being placed inside of them. For
instance, constructing a virtual scene in a graphical environment requires a user to place objects
in the world (e.g., Coyne & Sproat, 2001). Similarly, robots manipulating and moving objects in
their environments need to pick up and place these objects in their world (e.g., Cosgun et al.,
2011; Jiang et al., 2012). Using conventional graphical user or operator control interfaces for
such object placement tasks can be cumbersome to learn and use; it may even be impractical in
some situations. Instead, natural language (NL) commands can be issued to an application
system to place objects in a real or virtual world. For instance, an interior designer could issue
the following command to an interior design system “Put the printer on the desk.” Although
using natural language (NL) commands can be an intuitive and efficient alternative to graphical
interfaces (e.g., Coyne and Sproat, 2001; and Dupuy, 2001) machine understanding of natural
language commands to generate an appropriate response can be notoriously difficult due to the
polysemy and vagueness of spatial terms.

GUPTA ET AL.

168

 Understanding natural language placement commands requires suitable semantic
representations of spatial terms (Herskovits, 1986; Talmy, 2000; Bateman et al., 2010). Much
research in spatial term semantics has focused on developing context free computational models
(e.g., Regier and Carlson, 2001; Coventry et al., 1994). These models range from quantitative
(e.g., Kelleher & Costello, 2009) to qualitative (e.g., Lockwood, 2009). Although they further
our understanding of the complexity and fluidity required in lexical semantic representations,
they alone are insufficient for applications we described above. Consequently, in this paper, we
present an approach for understanding spatial terms so that an embodied agent can act on them.
We posit that actionable understanding and representation of spatial terms requires performing
the computational task of spatial planning. While we focus only on the understanding of spatial
terms in this paper, our ultimate goal is to support the claim that planning and simulation are core
cognitive processes for deep and embodied natural language understanding (Bergen, 2005). This
paper builds on our prior work on functional knowledge representations for spatial language
understanding (Gupta et al. 2011). Our contributions in this paper are as follows: First, we
introduce a new form of ambiguity in natural language called pragmatic ambiguity. Second, we
identify an object placement task as a spatial planning task, which we formulate as a weighted
soft constraint satisfaction problem. Third, we present a heuristic approach called Object
Placement by Ordered Constraint Simulation (OPOCS). OPOCS performs constraint satisfaction
by leveraging richly structured functional and pragmatics knowledge by implicitly simulating
human interactions with objects. Finally, we evaluate the effectiveness of OPOCS for
understanding NL placement commands containing 10 types of spatial terms to place objects in
3D office worlds. Our results show that OPOCS significantly outperforms a naïve baseline
approach.
 We organize the remainder of this paper as follows. We introduce the concept of pragmatic
underspecification in language in the following section. In Section 3, we present OPOCS, first its
knowledge representation approach, and then its constraint solving algorithm for placing an
object in 3D virtual worlds. We describe our empirical evaluation and results in Section 5. We
present related work in Section 6 and Section 7 concludes the paper.

2. Pragmatic Ambiguity in Natural Language Commands

Semantic ambiguities occur during natural language interpretation when there are multiple
meaning representations of an utterance. The multiple meaning representations can arise
structurally (e.g., argument roles and adjunct attachments) and from polysemous constituents
(Egg, 2010; Frison, 2009). Although we can resolve these semantic ambiguities, that alone is
insufficient to make an embodied agent ready to act as ambiguities will still remain at the
pragmatic level. We illustrate this with an interpretation of a NL command for object placement.
Consider a 3D virtual office world with a desk, a computer monitor, and a chair (see Figure 1). A
user issues a command “put the printer on the desk”, to which the system should respond with an
appropriate placement. Let’s assume that we have access to a suitable lexico-semantic
representation of the spatial preposition ‘on’ which resolves to a valid placement surface (i.e., the
desk). Despite this interpretation, we are presented with several choices for placement. For
instance, possible placements include on the desk to the left, right, front and back of the monitor.
However, the placements in front and back of the monitor are functionally invalid for a human
user as they obscure functional view and are unreachable, respectively. The utterance also does

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

169

not specify the proper orientation of the printer. Without such a specification, the printer could be
oriented in numerous ways in relation to the monitor and the chair, only some of which being
valid. For example, the orientation shown in Figure 1 is a valid one. However, the orientations
of the printer such as upside down or facing the wall would be invalid. We term this residual
ambiguity arising in the context of a situation and an NL command as pragmatic ambiguity.

Figure 1. Example 3D world for object placement

Clearly, this ambiguity is due to the omission of qualifying placement details from the command
(i.e., underspecification). For instance, a more specific command would be “Put the printer on
the desk, to the right of the monitor facing the chair”. However, such a precise command
formulation when multiple agents (e.g., a human operator and autonomous agent) operate in a
shared environment is unnatural. Therefore, there is a need to understand and respond to
pragmatically underspecified commands. What sorts of functional knowledge and conventions
are required to recover the underspecified elements of a command? Additionally, how can a
reasoner exploit them to perform placement planning? Identifying, encoding and utilizing richly
structured placement heuristics to accurately place objects in the real-world practical tasks is one
of primary contributions we make in this paper. We describe the OPOCS algorithm that performs
this task in the next section.

2.1 Spatial Planning Task Formulation

Given a 3D world W containing a set of objects O located in various places, and a natural
language command L requesting to place a target object ot in W, find a placement (x, y, z, Ω) that
best satisfies the intent I of the commanding agent. Let (x, y, z) represent the coordinate location
of target object and let Ω represent the orientation for ot. We postulate that the placement that
best satisfies is the one that minimizes the interaction cost for the commanding human agent and
meets the commanding agent’s intent. Clearly, brute force search in a knowledge-poor manner
would be expensive and is likely to result in invalid placements, as we demonstrated in our
example earlier. Therefore, in the next subsection we identify the types of knowledge and the
representation required and to constrain the placement. Computing the provably best placement is
NP hard (Jiang et al., 2012). Consequently, in OPOCS we adopt heuristic soft constraint
satisfaction approach, which we present in the section below.

GUPTA ET AL.

170

2.2 Knowledge Representation

Our goal in providing world knowledge to the OPOCS is to constrain the placement search. This
fundamentally requires only two types of constraints between objects: 1) distance and 2)
orientation. Since object placement commands are uttered by human agents who interact with
objects in the world, we introduce the notion of a human agent, α, as the primary basis for
perceiving and conceptually representing objects in the world for use in spatial planning. In the
following subsection, we detail agent properties representation and follow this with object
properties and interactions representation.

2.2.1 Agent Properties Representation
We assume that agent α interacts with objects using a set of primitive actions or perceived
affordances (Gibson, 1977, Norman, 2002). Further, we assume that agent α interacts with
objects in the world with a purpose or intention. Intentions can help constrain an underspecified
placement command by implying a locational preference. For instance, a computer monitor for
usage must be placed and oriented in a certain way on a work surface. Alternatively, if it is to be
placed for storage it may be placed in a box with a different orientation. We represent the
intention of interaction with one of the following values:

1. Use: This is when an agent intends to use the object. For example, default usage of chair is
for sitting, for which it must be upright. However, when intended for storage it need not be
oriented upright.

2. Store: This is when the agent intends to store the object for safe keeping. For example, chairs
may be stacked up when not used. Likewise utensils such as spoons and forks have different
locational preferences when intended for storage versus usage.

3. Maintain: This is a situation when an agent intends to perform maintenance acts on the
object. For example, unclean forks and cups may be placed in the dishwasher.

4. Build: This is a situation when an agent intends to use it for building another object.

We assume that agents interact with objects by being located at certain places in the world called
activity stations. Certain objects may themselves be activity stations. For example, a chair is an
activity station as an agent may sit on it while interacting with other objects such as a keyboard or
a mouse. Additionally, we represent certain agent properties, including age, gender, and
handedness, which can impact the ability to reach and interact with them. OPOCS can adapt its
responses to suit different agent characteristics. For instance, object placement for a child would
consider a much smaller reach than that of an adult. We also consider a limited number of poses
for α while they are located at the activity stations and interacting with objects in the world.
These poses include sitting, standing, and lying down. We consider the following two types of
agent interaction parameters to satisfy distance and orientation constraints between agents and
objects:
1. Reach: α reaches for objects to manipulate and interact with them. For instance, an office

worker may reach for pen to write with it. This type of interaction imposes a reachability
constraint between α and an object, which we in turn transform into a distance constraint as
an input to OPOCS. Depending on the type of object, α may prefer to use a different body
part. For example, α may use a foot to interact with a ball. This subtlety can affect whether
an object is reachable or not from a particular location (i.e., the underlying distance
constraint). Therefore, we subcategorize the reach interaction as follows (see Figure 2):

a. Reach.Arm: α reaches for objects with arms fully extended.

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

171

b. Reach.Forearm: α reaches for objects with only the forearm extended.
c. Reach.Foot: α reaches for object with its foot.
d. Reach.Assisted: α reaches for objects with tools.

2. See: For many tasks, α must visually interact with objects in the world. For instance, to locate
an object with the intent of reaching and manipulating the object. For α to see an object it
must be oriented toward the objects. This imposes a visibility constraint on the target
placement, i.e., the object must be visible from a certain location, which we transform into
orientation and distance constraints. In certain situations, α must be able to read the
information present on the object. We represent this with the read action, a tighter constraint
than see. An agent reads the information present on the object such as signs or writing.
Clearly, this can be subcategorized to read fine print, read normal print, read large print, read
poster print etc. Reading imposes a shorter distance constraint that visibility while preserving
the orientation.

Figure 2. Agent interaction parameters

2.2.2 Object Properties & Interaction Constraints Representation

The objects afford certain interaction actions and functions for human agents and thereby can
constrain the placement of functionally related objects. For the purposes of agent-to-object and
object-to-object interaction we consider the surfaces of an object and their orientations as the
primary basis of our representation. We use it to represent applicable distance and orientation
constraints between objects in our knowledge base. Furthermore, we specify additional
knowledge and preferences about placement heights. We represent the following properties for
object surface (see Figure 3):
• Intrinsic axes and their canonical geo-orientations: We anchor three-dimensional axes at the

centroid of a surface, with the positive local z-axis as its outside normal, the positive local y-
axis as its intrinsic right and the positive local x-axis as its intrinsic top. Figure 3 shows the
representation of two surfaces on the table: table.top.face and table.leg.face, as
well as their intrinsic axes. We represent the canonical geo-orientations with the axis
annotations ‘top’ and ‘bottom’. Clearly, many objects and their surfaces do not have a
canonical orientation, such as a tabletop.

GUPTA ET AL.

172

Figure 3. Example surfaces and their intrinsic axes representations for a table

• Preferred height: We specify the preferred height constraint of a surface with categorical
labels representing the agent attributes with the following labels: floor, knee, waist, chest and
eye.

• Functional interaction constraints: There are two types of functional interaction constraints,
those with an agent and those with other objects.
o We represent the interaction of a surface with an agent with the following values (see

Figure 4):
 Activity surface: A surface may be a region where the agent is located while

performing interaction activities. For instance, a chair’s seat is an activity surface
where an agent is located in a sitting pose while interacting with other objects.
Likewise, a floor is an activity surface where the agent may interact with other
objects such as a table while in a standing pose.

 Reachable: The surface must be reachable by an agent for some activity surface
 Visible: The surface must be visible from an activity station
 Readable: The surface must be readable from some activity station. For example, the

face of a computer monitor must be readable by an agent.

Figure 4. Example functional knowledge for a kitchen table

o We represent interaction constraints between objects with the following labels:

"kitchen_table" : {
 "support" : True
 "containment" : False
 "default_intent" : "USE"
 "installable" : False
 "activity_station" : True
 "attracts" : ("book" "laptop" ...)
 "height_preference" : "FLOOR”
 "one_per_activity_station" : True}

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

173

 Support: One surface supports another surface, such as a table.top.face may
support a monitor.stand.bottom surface as the table is supporting the
monitor itself.

 Share activity region: Certain objects may be collocated because they share the same
activity region. For instance, monitor, mouse and keyboard surfaces may share
activity regions that involve a workstation (e.g., an office chair seat)

 Attract same kind: Certain objects such as books and plates may attract their own
types and are consequently collocated. This value specifies such a preference.

 Installable: Certain objects are installable allowing OPOCS to relax vertical surface
placement constraints. For instance, pictures may be placed on vertical surfaces such
as walls.

2.3 OPOCS Algorithm

Overview
Based on a given 3D world comprising stationary objects and a NL command to place an object,
the algorithm proceeds as follows. First, it identifies a set of possible surfaces on which it can
place the target object. Next, it identifies a set of activity surfaces and subsequently segments
them to select a set of relevant activity stations. This simulates a human agent’s activity and
interaction with relevant objects in the world. Intuitively, relevant activity stations are those that
allow for the easy reachability and manipulation of a number of related and collocated objects.
Based on the specified spatial constraints and the world, the algorithm then infers the applicable
placement constraints by using its knowledge. Using the identified activity stations and the
applicable placement constraints, it computes a placement that best satisfies the expressed and
inferred constraints. We present the details of these steps below.

Inputs
1. O, a set of objects located in W.
2. ot, the target object to be placed (e.g., a printer).
3. LC, a linguistically expressed placement constraint (e.g., on the desk). This typically

comprises a landmark or reference object ol (in this example, ‘the desk’) and a spatial relation
r (in this example, ‘on’).

4. KB, the functional interaction knowledge base containing the agent and object interaction
knowledge covering all objects in W (O and ot). (see Section 3.2)

5. Representative agent α for whom the placement is to be performed.

Output
The best placement p<x, y, z, Ω>, where best implies the highest constraint satisfaction score.

Processing steps
1. Get candidate placement surfaces (CPS): A candidate placement surface cps is one on which

the target object ot could be placed for the given command LC. We identify Ol as the set of
all objects associated with the landmark object ol. We then identify all the surfaces
associated with ol and the spatial relation r as the initial set CPS. We filter them based on the
following criteria to obtain the final set of CPS:
a. If ot is not installable, then we only consider those surfaces whose outside normal points

upwards, else we also consider surfaces whose outside normal points horizontally.
b. The height of the surface must be within the height preference range of ot.

GUPTA ET AL.

174

c. The smallest dimension of the surface must be larger than the largest dimension of the
target object.

2. Get candidate activity surfaces (CAS): An activity surface is one on which agent α is located
while interacting with other candidate objects. For example, this may be the floor or furniture
such as a seat. A cas is one that is within α’s reachable distance from at lease one cps.

3. Get all objects in contact with CAS and CPS (OCON): For all the surfaces in CPS and CAS,
we identify all objects that are in contact with these surfaces. We then recursively identify all
the objects that are in contact with the objects thus far identified. Next, we identify their
categories as well to retrieve placement constraints associated with each type of an object.

4. Get activity surface constraints (ASC): Activity surfaces are locations in the world where an
agent may be located while interacting with an object. For every object in OCON, we identify
whether it is an activity surface and an activity station, how many objects of the type are
allowed in a particular activity station (as) (i.e., the object per station cardinality constraint),
and whether it is a self-category attractor. For example, a chair seat is an activity surface and
an activity station, and a book is not. Typically, only one chair may be placed per activity
station, but many books may be placed per activity station. Furthermore, a book attracts
other objects of its own type. In addition, certain objects may be co-located within the reach
of the same activity stations, while others may not. In this step, for each pair of objects in
OCON, we establish whether they can belong to the same as attached to a different one.

5. Get applicable placement constraints (PC): For all pairs of objects in OCON including the
agent and their relevant surfaces, we identify and retrieve all the constraints.

6. Get scored activity stations (SAS): The goal of this step is to identify activity stations as sub
regions on activity surfaces. To compute activity stations, we place a grid of cells, called the
cas-grid, over each cas in CAS. We control the cas-cell size in a cas-grid with a parameter.
We use a smaller size for a finer degree of control for placement. However, smaller cell size
exponentially increases the computation time. Next, for each object oi in OCON, we place
agent α at the object and vote on the cells in the grid as follows. First, if the cas-cell is located
on an activity station (e.g., seat of a chair), then it gets and high positive vote (e.g., 5). Next,
if a cas-cell is reachable from a voting object ov in OCON that should not be in the same
activity station as ot, a large negative vote (e.g., -100) is cast on the cas-cell; otherwise, the
cell gets a positive vote (e.g. +1). For example, a printer may not share the same activity
station as a laptop. In that case, this approach ensures that a printer and a laptop are not
placed together. Also, if ov is of the same kind as ot, and the cardinality constraint for the
ov for the station is 1, then it casts a large negative vote (e.g. -100) to prevent using the same
activity station. We total the votes for each cas-cell in the grid into a cas-cell-score.
Contiguous cells in a grid with a score > 0 comprise an as, which is added to the SAS. The
magnitude of a vote indicates the weight or influence of a particular type of constraint.
Figure 5a shows SAS computation in the office world. Light areas around the furniture show
most probable activity regions. The dark areas show forbidden and low probability regions.

7. Get scored placement regions (SPR): A placement region, pr, is a region on a cps where ot
may be placed to satisfy as many constraints in PC as possible. We score the pr to obtain a
scored placement region spr as follows (see Figure 5b): First, we place a grid on each cps,
known as a cps-grid. Next, from each cas-cell belonging to CAS, we vote on all the cells (i.e.
cps-cell), in the cps-grids. If a cps-cell is reachable from a cas-cell then the cas-cell votes on
the cps-cell with its cas-cell-score. All relevant objects in OCON also vote on cps-cells
based on their interaction constraints with the ot that belong to PC. If a cps-cell is located on

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

175

an ov, and as determined if, ov and ot are of the same category and, if the category is a self-
category attractor for the given intent then the cps-cell gets a large positive vote (e.g.,
+20). For example, a book attracts a book to be placed together, or ‘stacked’. Since many
cas-cells can vote on a cps-cell, we retain the max vote value as the cps-cell score. The
constraints are available in PC that we obtained in step 6. Please note that an object in
OCON can cast a negative vote if it needs to prevent placement to maintain visibility. For
example, a projector may cast a negative vote in front of its lens for every object other than a
projection screen. All contiguous cps cells with votes more than a certain threshold are
collected as an spr and added to SPR. This process is repeated till all the contiguous regions
have been identified. Figure 5b shows SPR visualization. Bright green areas show SPRs with
high scores and dark green and orange depicts areas with negative scores.

8. Get the geo-orientation (go): We treat getting the geo-orientation as an independent task
from identifying a spr. We use the surfaces of ot and examine their constraints in PC in order
to select a preferred geo-orientation. Using this, we set the geo-orientation of the target
object surface. For example, the preferred geo-orientation of a book’s cover could be facing
up so it can be seen. This is set as one of the orientation components in Ω.

9. Get the interactive orientations (io): The valid interactive orientations of our target object’s
surfaces are those that conform to various orientation constraints such as visibility and
readability contained in PC and applied from the as associated with each spr. To obtain an
interactive orientation (io) at an spr, we begin with an orientation in the horizontal plane that
aligns the axis of an object to the edge of the placement surface and incrementally rotate it
(e.g., 45 degrees) and check for the applicable constraints with objects in OCON. Whenever
a constraint is not met, that particular orientation is given a penalty based on the constraint’s
priority (low, medium, or high). Once all possible orientations are scored the one with the
smallest penalty score is selected as io and added to complete the omega.

10. Get a best placement (p): We select the SPR with the highest score and its corresponding best
orientation at the placement

Figure 5a. SAS visualization Figure 5b. SPR visualization

GUPTA ET AL.

176

3. Evaluation

Our objective was to evaluate the placement performance of OPOCS and compare it to a naïve
placement approach for resolving pragmatic underspecification of spatial prepositions. We
present our evaluation approach and the results in the subsections below.

3.1 Data Sets

We created four unique single-room office world data sets for testing. These included: i)
Manager Office, ii) Executive Office, iii) Home Office, and iv) Satellite Office. The office
worlds contained the same 13 types of objects typically found in offices (see Figure 6). For
instance, office desks, chairs, and shelves as furniture, office equipment such as computers and
whiteboards, and decorative items such as flower vases and pictures. Despite having the same
semantic types, the objects varied across worlds in terms of their shapes and sizes. For instance,
different desk models were used across the worlds, but all had a semantic term ‘desk’.

Figure 6. Example office world displayed in IDEA

We varied the placement and the layout of objects as well so that they imposed a different set of
placement constraints in each world. In each world we created a set of 74 test cases across 10
spatial relations. Table 1 shows example test commands. The spatial relations we evaluated
comprised the following four categories:
1. Functional spatial prepositions: These included the English prepositions “in” for containment

and “on” for support and placement functions.

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

177

2. Projective spatial prepositions: These include projective prepositions in the horizontal plane
left, right, in front of, and behind, and projective prepositions in the vertical dimension over
and under (in the back of)

3. Proximal or distal prepositions: This included near
4. Configurable preposition: This included beside.

We checked the test cases were checked for reasonableness of request in the environment.

Table 1. Example test commands

Put the printer to the right of the microwave
Put the filled cup under the shelf
Put the notepad in front of the sofa
Put the picture behind the table
Put the clock over the whiteboard

Figure 7. Visualization of multiple WPR for a test case.

For each test case, we created weighted ground truth placement using crowd sourcing. We
developed a web-based Integrated 3D Environment for Annotation called IDEA (see Figure 6).
We presented each test case to 20 independent annotators. IDEA presented placement commands
visually by means of a speech bubble associated with a request avatar. The annotators then used
their keyboard and mouse to place and orient target objects in response to a NL placement
command. Prior to doing the actual assignments, users had the opportunity to learn and practice
using IDEA for placement annotation with an online tutorial. We created the placement ground
truth, which included a set of valid placement regions with preferred orientations. Each placement
region had a score. This is a marked departure form the majority of existing evaluation
approaches where annotators must agree on a single correct response (i.e., ground truth) to a test
case. Although a single solution may be appropriate for classification problems, it is not so for a
synthesis task such as planning or design. For the object placement task multiple solutions are

GUPTA ET AL.

178

practically acceptable. Therefore, we admitted multiple possible answers and clustered them for
probability instead. This also eliminated the issue of inter annotator agreement that arises from
unrealistic admittance of only one solution.
We computed the weighted placement regions (WPR) using agglomerative clustering (Clust,
2013). We compute the weight of a cluster i wi as follows:

𝑤𝑖 = #𝑎𝑖/max (𝑎)
where, #ai is the number of annotations contained in the cluster and max(a) is the maximum
number of annotations over all the clusters. Therefore, the weight of a cluster is [1,0). Similarly,
we clustered the orientations into a weighted orientation angle (WOA). WOA weight
computation was the same as WPR. Figure 7 shows multiple WPRs for a test case using yellow
globes.
 Many of our test cases had more than one WPR and WOA. We hypothesize that the number of
WPRs is an indicator of task difficulty and underspecification for a particular spatial relation.
Our analysis shows that functional prepositions (i.e., in and on) are the most underspecified (7
and 6 WPRs respectively), followed by distal or proximal prepositions (2-4 WPRs). The
projective prepositions are the least underspecified. By the same token, the positioning task is
harder than the orientation task (5 vs. 2.5) clusters.

3.2 OPOCS Knowledge Base

The OPOCS knowledge base comprised 39 types of objects typically found in offices. These
ranged from books to white boards. Table 2 shows representations data and constraints meta data
for three objects. Regarding the number of spatial constraints in the knowledge base, the
orientation constraints were the most frequent, followed by visibility, and the distance constraints.

Table 2. Example representation records

Properties Wall Clock Office Desk White board
Support No Yes No
Containment Yes No No
Installable Yes No Yes
Activity Station No No No
Attracted Objects 0
Preferred Height Eye Floor Eye
Constraint Types Orientation, visibility,

distance
Orientation Orientation, and

visibility

3.3 Measures

We assessed the object placement performance with the following three measures:
1. Position Accuracy (PA): This measures the accuracy of placement by comparing it with

WPRs. If the computed placement is contained in one of the WPRs then it gets the score of
the WPR it is contained in or else it gets 0.

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

179

2. Orientation Accuracy (OA): This measures the orientation accuracy by comparing the
orientation generated by a placement planner with WOA. If the orientation is contained in
one of the WOAs it gets the weight associated with WOA as its score otherwise it is 0.

3. Computation Time: This is the computation time in milliseconds.

3.4 Test Execution Environment

We ran the test cases using our CoASTeR testbed to evaluate algorithms that perform complex
spatio-temporal reasoning tasks such as a placement planning in response to a natural language
command. CoASTeR (Communicative Agents for Spatio-Temporal Reasoning) Workbench
includes a multi-agent simulation server with 3D visualization and a Testbed. The Testbed can
automatically load test case scripts, execute them against one or more reasoning agents, and
compare their performance against specified metrics. We ran all the test cases against OPOCS
and a naïve Baseline (BL) algorithm. The BL algorithm randomly selected a candidate surface
with a random placement and orientation.

3.5 Results

Table 3 shows the position accuracy of OPOCS vs. BL across all the 4 sets on 10 relations. It
shows that OPOCS significantly outperformed BL (0.29 vs. 0.0008, p <0.01). Performance on
functional prepositions (i.e., the most underspecified) ranges from 0.08 (Home) to 0.67
(Executive) with an average 0.37 for “in”, and 0.1 (Home) to 0.51 (Manager) for on with an
average of 0.34. The performance on the projective prepositions ranged from 0 (Front in Home)
to 0.8 (Behind in Manager). Across the data sets, on average, it ranged from 0.17 (Front) to 0.54
(Over). The performance on distal relation near ranged from 0 (Home) to 0.14(Manager) with
and average of 0.12.

Table 3. OPOCS vs. BL Position Accuracy Performance on Office Worlds

Relations Manager Executive Home Satellite Mean
OPOCS BL OPOCS BL OPOCS BL OPOCS BL OPOCS BL

Behind 0.80 0 0.73 0 0.00 0 0.20 0 0.43 0
Beside 0.63 0.09 0.38 0 0.04 0 0.55 0 0.46 0.025
Front 0.17 0 0.23 0 0.00 0 0.26 0 0.17 0

In 0.42 0 0.67 0 0.08 0 0.31 0 0.37 0
Left 0.19 0 0.33 0 0.11 0 0.22 0 0.21 0
Near 0.14 0.05 0.19 0 0.00 0 0.16 0.09 0.12 0.03
On 0.51 0.03 0.57 0 0.10 0.03 0.17 0 0.34 0.01

Over 0.75 0 0.13 0 0.50 0 0.75 0 0.54 0
Right 0.51 0.13 0.33 0 0.07 0 0.13 0 0.26 0.03
Under 0.17 0.17 0.17 0 0.33 0 0.19 0. 0.21 0.04
Mean 0.43 0.04 0.37 0 0.12 0.003 0.29 0.009 0.29 0.00008

The variation in the test worlds caused significant variations in the performance. The Satellite and
Home office worlds were more difficult than Manager and Executive worlds as reflected by their

GUPTA ET AL.

180

mean scores across all relations; 0.43 and 0.37 vs. 0.12 and 0.29 respectively. This difficulty was
in part caused by multiple instances of landmarks such as lamps in the Home and satellite offices
that caused landmark referential ambiguities. This was compounded by markedly different
arrangements. A close examination of 0 valued performance cases revealed a number of near
misses, which we judged as acceptable placements, but our metric assessed them as 0.

Table 4 shows the orientation accuracy performance of OPOCS vs. BL. On average OPOCS
significantly outperforms BL on orientation accuracy (0.66 vs. 0.15 p < 0.01). The orientation
accuracy ranges from 0.26 (Over in Manager) to 0.93 (Behind in Executive). Clearly, the
orientation performance of OPOCS is substantially higher than the placement performance
because the orientation task is relatively easier. Also it is noteworthy that there is little variation
in orientation performance despite variations in the data sets.

Table 4. OPOCS vs. BL Orientation Accuracy Performance

Relations Manager Executive Home Satellite Mean
OPOCS BL OPOCS BL OPOCS BL OPOCS BL OPOCS BL

Behind 0.81 0.11 0.93 0.29 0.81 0 0.81 0.14 0.84 0.13
Beside 0.68 0.02 0.74 0.05 0.65 0.26 0.69 0.19 0.71 0.12
Front 0.73 0.17 0.74 0.06 0.71 0.17 0.59 0.26 0.69 0.16

In 0.70 0.16 0.70 0.05 0.81 0.05 0.62 0.16 0.71 0.11
Left 0.54 0.23 0.60 0.05 0.59 0.14 0.60 0.15 0.58 0.14
Near 0.53 0.29 0.56 0.07 0.59 0.20 0.68 0.21 0.59 0.19
On 0.58 0.13 0.89 0.17 0.87 0.21 0.61 0.40 0.74 0.22

Over 0.26 0.25 0.27 0.02 0.26 0.25 0.28 0.25 0.27 0.19
Right 0.61 0.19 0.75 0.14 0.73 0.13 0.56 0.13 0.66 0.15
Under 0.81 0.01 0.83 0 0.72 0.19 0.73 0.02 0.77 0.05
Mean 0.63 0.15 0.70 0.09 0.67 0.16 0.62 0.19 0.66 0.15

The mean computation time for OPOCS was 0.9 seconds on a Macbook pro. This was deemed
acceptable in our application. The computation time varied across different relations and appears
to be correlated to the number of WPRS, which is consistent with our expectations.

4. Related Work

Bateman et al (2010) introduced a spatial ontology layer that considerably refines and extends
conventional lexical semantics with numerous task-based features. Their ontology contains
spatial modality features such as distance, direction, path and motion. Although this is useful as a
semantic knowledge when utilized in a semantic parser, this approach will still result in pragmatic
ambiguity. In contrast, we focused on representation of functional knowledge for recovery of
underspecified distance and orientation constraints. We rely on incorporating the contextual
information via world knowledge along with relatively simple lexico-semantic representations,
similar to Roy et al. (2005).
 Wordseye (Coyne & Sproat, 2001) performs scene construction (i.e., object placement) via
natural language commands. Wordseye includes a knowledge base of functional interactions

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

181

between human agents and object using a notion of spatial tags. Their scene construction or
depiction process exploits handcrafted rules along with spatial tags to place objects. Like
Wordseye, our approach uses a knowledge base of function interactions to generate constraints,
albeit with widely different representations. In particular, we represent orientation and distance
constraints between object surfaces and agents using functional relations, activity stations and
their cardinalities. We then use a human activity simulation to satisfy contextual constraints in
least cost manner, which Wordseye does not. Furthermore, unlike Coyne and Sproat, 2001, we
present and extensive evaluation of our approach across 10 static relations.
 Kelleher et al. (2009) presents a spatial reasoning approach for transforming a qualitative
semantic representation of locative expressions into a geometric representation. They present
computation models for proximal and projective prepositions inspired by potential fields. They
perform spatial reasoning to aggregate the effects of contextual or distractor objects to find the
optimal fields. Their potential field aggregation approach is similar to OPOCS compute SPR step.
However, OPOCS differs significantly from their approach in the following aspects. First,
OPOCS uses a simple unweighted potential field but not only uses distance interaction constraints
but also orientation constraints between objects using specific object categories. In contrast,
Kelleher only uses object attributes to compute fields. Second, OPOCS uses the notion of activity
stations and implicitly simulates human interactions with the environment, which Kelleher et al.
do not. Kelleher et al. (2009) evaluate their computational models in a 2D environment with
simple geometric shapes and disregarding function. In contrast, we evaluate our placement
approach in a 3D environment with functional objects.
 Jiang et al (2012) present an approach for learning to place new objects in real world. Their
approach includes knowledge of real world placement preferences and strategies such as stability,
and stackability. They use an integer programming approach with linear programming relaxation
to find least cost placements. This is, in principle, similar to OPOCS that exploits human
placement preferences via default intentions and candidate surface heights. However, OPOCS
uses a heuristic approach with simulation to find candidate placement. Our work also differs in
objective that it is directed to resolving underspecification spatial commands. One important
difference between OPOCS and their work is that OPOCS has only been applied to virtual
environments where it has complete encoded knowledge of objects in the environment. In
comparison, Jiag et als’ placement algorithm learns placement knowledge and performs
placement in noisy and real environments with a real robot.
 Pandey and Alami (2010) present an approach for computing weighted convenience maps. The
maps called Mightability maps contain spatial information about reachability and visibility for
use in human robot cooperative tasks. Their approach amounts to simulating perspective taking to
detect what would be reachable and visible to a human. In OPOCS, a very similar computation
is performed in Step 7 (get Scored Placement Surface). In addition, in OPOCS, we utilize the
knowledge of when and where to apply visibility and reachability constraints for spatial planning.
Furthermore, we use the same to search for relevant activity stations.
 Cosgun et al. (2011) present a planning algorithm for placing objects on a table surface.
Unlike OPOCS, their focus is on rearranging (i.e., pushing) existing objects to place a new object.
They evaluate their push planning approach on 2D maps of objects. In contrast, OPOCS is
focused on placing objects with linguistics commands on available spaces. Kurup and Cassimatis
(2010) present a qualitative spatial reasoning approach that can be used for spatial planning.
However, their approach is qualitative and limited to 2D worlds.

GUPTA ET AL.

182

5. Conclusions

Developing robust and accurate approaches for interacting with autonomous agents using NL is
an active area of research and so is developing lexical representations and ontologies of spatial
planning in 3D environments. However, polysemy and vagueness in language combined with the
continuous nature of realistic 3D environments make this a computationally challenging task. In
this paper, we introduced a new layer of linguistic ambiguity beyond the conventional semantic
ambiguity called pragmatic ambiguity and underspecification. We then proposed and constrained
spatial planning approach for resolving pragmatic underspecification. We presented OPOCS that
represents and exploits functional knowledge of objects and human activities to recover
unspecified pragmatic and contextual constraints to effectively place objects. Our evaluation of
OPOCS on 4 office worlds over 10 representative spatial terms demonstrated that it significantly
out performs a naïve baseline. We also introduced a novel weighted multi-ground truth
computation approach for test data using crowd sourcing. This is a significant departure from
conventional evaluation approaches where a single ground truth is considered. We argue that, for
spatial planning, which is a type of synthesis task, multiple ground ranked truths must be
considered as we did in OPOCs.
 OPOCS and our evaluation are not without limitations. First, we evaluated OPOCS in worlds
with around 40 objects. However, placement tasks only concerned a dozen types of objects.
Although, our objects and placement tasks were realistic their variety was not large enough to test
the scalability and robustness of OPOCS. Our future evaluations will consider a much larger set
of objects in the world and the placement tasks. Algorithmically, OPOCS only used hand-
engineered knowledge and assumed complete world knowledge. In future, we will develop
approaches for learning placement knowledge and the impact of degrading the world knowledge
on OPOCS placement performance. We are presently working on case-based approaches for
learning object placement knowledge and heuristics. We intend to utilize the evaluation data
obtained from crowd sourcing for learning. Given the complexity of evaluation we limited
ourselves to a small set of representative static spatial terms. Our future work will extend
representation of dynamic and configurable spatial terms such as along, across and between.
Finally, we will explore application of OPOCS to real environments.

Acknowledgements
This research was funded by Office of Naval Research. We thank the reviewers for helpful
comments and suggestions.

References
Bateman, J.A., Hois, J., Ross, R., and Tenbrink (2010). A linguistic ontology of space for natural

language processing, Artificial Intelligence, Vol 174, pp. 1027-1071.
Baylog J.G., Wettergren, T.A., Hyland, J.C., & Smith, C.M, (2008). Robust Search for Structured

Object Placement Using Unmanned Vehicles, OCEANS 2008: IEEE
Bergen, B. (2005) Mental Simulation in Spatial Language Processing, Proceedings of the

Twenty-Seventh Annual Conference of the Cognitive Science Society.
Clust(2013). Hierarchical Clustering, Retrieved from

http://en.wikipedia.org/wiki/Hierarchical_clustering on 10 August 2013.

 PLANNING FOR PLACEMENT COMMAND UNDERSTANDING

183

Cosgun, A., Hermans T., Emeli, V., and Stillman, M. (2011). Push Planning for Object Placement
on Cluttered Table Surfaces, IEEE/RSJ Conference on Intelligent Robots and Systems (IROS),
San Francisco

Coventry, K.R., Carmichael, R. & Garrod, S.C. (1994). Spatial prepositions, object-specific
function and task requirements, Journal of Semantics, 11, 289-309.

Coyne, B., & Sproat, R., (2001) WordsEye: An automatic text-to-scene conversion system,
SIGGRAP’01, Proceedings of the 28th annual conference on computer graphics and interactive
techniques, pp. 487-496, New York, NY: ACM.

Dupuy, S. (2001). Generating a 3-D simulation of a car accident from a written description in
natural language: The CARSIM system. Proceedings of the Workshop on Temporal and
Spatial Information Processing, pp.1-8.

Egg, M., (2010) Semantic underspecification: concepts and applications, Language and Linguistic
Compass, Vol 4(3) pp 166-181

Frison, S. (2009). Semantic Underspecification in Language Processing, Language and
Linguistic Compass, Vol 3 (1). pp. 111-127

Gibson, K.J. (1977). The Theory of affordances. In R. Shaw and J Bransford (Eds.), Perceiving,
acting, and knowing: Toward and ecological psychology(pp. 67-82). Hillsdale, NJ: Erlbaum.

Gupta, K.M, Schneider, A., Klenk, M., Gillespie, K., Karneeb, J. (2011). Representing and
Reasoning wth Functional Knowledge for Spatial Language Understanding. Workshop on
Computational Models of Spatial Language Interpretation-2, Boston, MA: CogSci-2011

Herskovits, (1986) Language and spatial cognition, Cambridge University Press, Cambridge, MA
Jiang, Y., Lim, M., Zheng,C., & Saxena, A. (2013) Learning to Place New Objects in a Scene,

International Journal of Robotics Research (IJRR).
Kelleher, J. and Costello, F. (2009). Applying computational models of spatial prepositions to

visually situated dialog, Computational Linguistics, Vol 35, No.2. pp. 271-306
Kurup, U., & Cassimatis, N.L., (2010). Quantitative spatial reasoning for general intelligence,

Proceedings of the Third Conference on Artificial General Intelligence Conference, pp. 1-6, Lugano,
Switzerland: AGF.

Lockwood, K. (2009) Using Analogy to Model Spatial Language and Multimodal Knowledge
Capture, PhD Dissertation, Northwestern University, Department of Computer Science,
Evanston, IL

Norman, D. (2002). The design of everyday things, New York, NY: Basic Books.
Pandey, A.K. & Alami, R. (2010). Mightability maps: A perceptual level decisional framework

for co-operative human-robot interaction. In the proceedings of the IEEE Conference on
Intelligent Robots and Systems (IROS)

Regier, T., & Carlson, L. (2001). Grounding spatial language in perception: An empirical and
computational investigation. Journal of Experimental Psychology: General, 130, 273-298.

Roy, D. (2005) Grounding words in perception and action: computational insights, Trends in
Cognitive Sciences, Vol 9. No 8.

Talmy (2000). How Language Structures Space, in Toward a Cognitive Semantics-Vol.1, MIT
Press, Cambridge, MA.

http://linguistics.berkeley.edu/~regier/papers/avs-jepg.pdf
http://linguistics.berkeley.edu/~regier/papers/avs-jepg.pdf

