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Abstract 
In this paper we present a hybrid cognitive system to support robot navigation. The system 
leverages the ACT-R cognitive architecture by integrating an external knowledge component for 
high-level reasoning. Methodological and implementation aspects are provided, together with an 
overview of the system’s functionalities and the results of a preliminary simulation experiment.  

1.  Introduction  
Humans constantly negotiate space with a variety of entities in the world, moving towards targets, 
around obstacles, away from threats, sorting perceptual cues according to context, selecting and 
operating objects that functionally suit intended goals. This complexity of human behavior in the 
environment gradually emerges as the mind learns to couple visual perceptions to background 
knowledge and to perform patter recognition and context-driven reasoning. Though no ultimate 
explanation has been given of how humans can generalize over perceptual contents and create 
mental representations at the basis of spatial reasoning (Casati & Varzi, 1996), some principles 
have been distilled. For instance, according to (Tversky, 1977) & (Biederman, 1987), i) similar 
objects have a high degree of overlapping components (scissors and knives, chairs and tables, 
etc.); ii) spatial proximity depends on the context (nearby a hospital, there are probably a parking 
lot and a heliport); iii) objects that serve related ends typically appear together (pens and 
notebooks are usually found within a short range, since they are both related to the activity of 
“writing”).  
These generic principles embed just a small fraction of the large amount of common-sense spatial 
knowledge humans exploit in accomplishing everyday tasks. But, this knowledge is not provided 
a priori: it is learned by accumulation of experiences. Envisaging the future on the basis of past 
experiences is one of the primary activities of the human mind: this predictive competence, far 
too complex to be innate, is de facto realized as a mechanism of continuous ‘pattern recognition’ 
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(Kurzweil, 2012), where perceptual information and world knowledge come together. In this 
context, investigating the relationships between sensorimotor stimuli, visual perceptions, spatial 
knowledge structures and context-driven reasoning, is a key element to understand the 
mechanisms of high-level cognition that determine human intelligent behavior in space, and that, 
ultimately can be replicated by artificial intelligent systems. In this regard, the main challenge it’s 
to situate artificial systems in a real environment: several attempts have been made to reproduce 
cognitive aspects in robotic systems (Cassimatis, Trafton, Bugajska, & Schultz, 2004; Kelly & 
Avery, 2010; Trafton, Hiatt, Harrison, & Khemlani, 2012; Hawes & Klenk, 2012; etc.): 
“Cognitive Robotics” thus emerged as an interdisciplinary field where AI and Cognitive Science 
coalesce to approach general problem-solving from a “bounded rationality” perspective (Simon, 
1991), rather than relying on the search for optimal algorithmic solutions (Kurup & Lebiere, 
2012). If the problem of implementing intelligent systems for navigation and recognition in space 
goes back to the dawn of robotics (Moravec, 1988), the novelty of the cognitive approach is to 
take inspiration from human-like solutions.  
In this paper we follow this comprehensive approach: in particular, we illustrate an ontology-
driven cognitive system for predicting spatial configurations of buildings on the basis of visual 
cues about their constituent walls and surroundings. In the paradigmatic scenario, a robot 
navigates through an outdoor environment carrying out tactical behaviors typically issued by 
commanding officers (e.g. “screen the backdoor of the hotel”): the cognitive system, accordingly, 
aims at supporting navigation and planning routines with high-level pattern recognition, 
mimicking the human capabilities of discriminating spatial entities and their features and 
assembling a mental picture of the surroundings. 

2.  A Hybrid System for Knowledge-based Cognitive Processing  

In this section we briefly introduce the two components of the above-mentioned cognitive system, 
namely the ACT-R architecture (Anderson, 2007) and the SCONE Knowledge Base Systems 
(Fahlman, 2006). 

2.1 Replicating Cognitive Mechanisms with ACT-R 

Cognitive architectures attempt to capture at the computational level the invariant mechanisms of 
human cognition, including those underlying the functions of control, learning, memory, 
adaptivity, perception, decision-making, and action. ACT-R (Anderson & Lebiere, 1998) is a 
modular architecture including perceptual, motor and declarative memory components, 
synchronized by a procedural module through limited capacity buffers (Figure 1). Declarative 
memory module (DM) plays an important role in the ACT-R system. At the symbolic level, 
ACT-R agents perform two major operations on DM: 1) accumulating knowledge chunks learned 
from internal operations or from interacting with objects and other agents populating the 
environment and 2) retrieving chunks that provide needed information. ACT-R distinguishes 
declarative knowledge from procedural knowledge, the latter being conceived as a set of 
procedures (production rules or “productions”) which coordinate information processing between 
its various modules (Anderson & Lebiere, 1998): accordingly, agents accomplish their goals on 
the basis of declarative representations elaborated through procedural steps (in the form of if-then 
clauses). This dissociation between declarative and procedural knowledge is grounded in 
experimental cognitive psychology; major studies in cognitive neuroscience also indicate a 
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specific role of the hippocampus in forming permanent declarative memories and of the basal 
ganglia in production processes (see Anderson, 2007, pp. 96-99, for a general mapping of ACT-R 
modules and buffers to brain areas and Stocco, Lebiere, & Anderson, 2010 for a detailed neural 
model of the basal ganglia’s role in controlling information flow between cortical regions). ACT-
R performs cognitive tasks by combining rules and knowledge: in these regards two core 
mechanisms are important in the context of this paper: i) partial matching, the probability of 
association between two distinct declarative knowledge chunks, computed on the basis of 
adequate similarity measures; ii) spreading of activation, the phenomenon by which a chunk 
distributionally activates different declarative patterns. These two basic mechanisms belong to the 
general sub-symbolic computation underlying chunk activation, which in ACT-R controls the 
retrieval of declarative knowledge elements by procedural rules. 
 

Figure 1 ACT-R Modular Framework 
 

2.2 Common Sense Reasoning through SCONE 

Inasmuch as humans make sense of the environment by means of coupling perception with 
knowledge, the ACT-R cognitive architecture should be enabled to generalize over perceptual 
inputs by applying fine-grained models of the world to concrete scenarios. In order to fulfill this 
goal however, ACT-R needs to properly encapsulate those models or ontologies (Guarino, 1998) 
and exploit them for high-level pattern recognition and reasoning. Ontologies are semantic 
specifications of a given domain or application and are generally used in combination with 
inference engines for deductive reasoning. Since ACT-R declarative module supports a relatively 
coarse-grained semantics based on slot-value pairs, and the procedural system is not optimal to 
effectively manage complex logical constructs, a specific extension is needed to make ACT-R 
suitable to fulfill knowledge-intensive tasks. Accordingly, we engineered an extra module as a 
bridging component between the cognitive architecture and an external knowledge-base system, 
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SCONE (Fahlman, 2006). SCONE is an open-source knowledge-base system (KBS) intended for 
use as a component in many different software applications: it provides a framework to represent 
and reason over symbolic common-sense knowledge. Unlike most diffuse KBS, SCONE is not 
based on Description Logics (Staab & Studer, 2004): its inference engine adopts marker-passing 
algorithms (Fahlman, 2006), originally designed for massive parallel computing, to perform fast 
queries at the price of losing logical completeness and decidability. In particular, SCONE 
represents knowledge as a semantic network whose nodes are locally weighted (marked) and 
associated to arcs (wires1) in order to optimize basic reasoning tasks (e.g. class membership, 
transitivity and inheritance of properties, etc.). The philosophy that inspired SCONE is 
straightforward: from vision to speech, humans exploit the brain's massive parallelism to fulfill 
all recognition tasks; if we want to deal with the large amount of knowledge required in common-
sense reasoning, we need to rely on a mechanism that is fast and effective enough to simulate 
parallel search. Shortcomings are not an issue since humans are not perfect inference engines 
either. Accordingly, SCONE implementation of marker-passing algorithms aims at simulating a 
pseudo-parallel search by assigning specific marker bits to each knowledge unit. For example, if 
we want to query an ontology of automotive body design to get all the parts of a car body, 
SCONE would assign a marker M1 to the ‘A-node’ Car and search for all the statements in the 
knowledge base where M1 is the A-wire (domain) of the relation part of, returning all the classes 
in the range of the relation (also called `B-nodes'). SCONE would finally assign the marker bit 
M2 to all B-nodes, also retrieving all the inherited subclasses (e.g. window section, rear panel, 
hood vent, etc.). The implementation of ontologies with SCONE allows for effective formal 
representation and automatic inferencing of knowledge structures. 

2.3 Integrating ACT-R with SCONE 

The proposed integration between SCONE and ACT-R abides by the general cognitive 
constraints of the architecture: in particular, we extended ACT-R with a new module to bridge the 
architecture and the KBS, keeping their distinctive mechanisms properly separated. The “SCONE 
module”, as we simply call it, operates in a standard ACT-R fashion, where buffers are used to 
evaluate chunks when suitable requests are dispatched. SCONE module requests are designed to 
match legal queries in the KBS, which check the validity of a statement by means of the inference 
engine2: in our approach, this mostly happens when generalization over input signals can help 
detecting high-level patterns of information3. In principle, this is also possible when only partial 
information is available: partial matching and spreading activation mechanisms can fill the gaps 
and trigger the retrieval of the best-matching knowledge structures from a given ontology stored 
in SCONE. In the next section we present more in detail how these functionalities of the 
cognitive system have been instantiated in a model that predicts the topological and 
morphological features of buildings on the basis of constituent walls and surrounding features 
(grass, sidewalks, gravel, road signs, trees, garages, etc.). If it is true that ACT-R can per se deal 

                                                 
1 In general, a wire can be conceived as a binary relation whose domain and range are referred to, 

respectively, as ‘A-node’ and ‘B-node’. 
2 The SCONE marker-passing algorithms are similar to ACT-R spreading activation, leaving open the 

possibility of a deeper integration of the two frameworks in future work. 
3 Though this is currently the result of a modeler’s design choice rather an independent computational 

mechanism encapsulated in the architecture. 
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with simple logical reasoning on the basis its production mechanisms, when knowledge-intensive 
tasks come into play an external KBS like SCONE becomes a critical plug-in for augmenting 
ACT-R scalability, computational efficiency, and semantic adequacy. 

3.  A Cognitive Model for Building Prediction using Background Knowledge 

3.1  General Aspects 

We present here a hybrid model for predicting the geometry of buildings on the basis of their 
constituent walls and spatial and contextual knowledge (section 3.3). The model has been built in 
the framework of the hybrid cognitive system constituted by ACT-R cognitive architecture and 
SCONE KBS. Section 3.2 outlines the suite of spatial ontologies encoded in SCONE and used by 
the model to perform high-level reasoning. The robotic architecture also includes a component 
called the “World Model,” which effectively serves as an object store for elements identified by 
the robot’s perceptual systems. In the application scenario, as long as the robot perceives building 
components such as walls, doors, windows etc. and the World Model is populated with the 
resulting information (which plays the role of central information repository for all the other 
components), the ACT-R model is used to process the incremental data, and update the shape of a 
given building according to progressive predictions. In this way, the robot has access to 
incremental projections of the geometry of a building, which can then be synchronized with the 
navigation planning process. At this stage, the integration between the model and the RCTA 
architecture is currently under development. For this reason, we ran a synthetic simulation within 
the ACT-R environment to evaluate the model’s predictions (section 4).  
 

3.2  Modular Ontologies for the Representation of Space 

Despite the extensive literature on using spatial reasoning in information systems (Bateman & 
Farrar, 2005), to our knowledge there has been just one attempt to apply spatial ontologies to 
tactical behaviors executed by unmanned ground vehicles (BouSaba, Esterline, Homaifar, & 
Fatehi, 2008). In this respect, our approach aims at making a step further with respect to state-of-
the-art, by actually engineering and testing spatial ontologies into a full-fledged cognitively-
driven robotic system. For this purpose we have developed HORUS (Hybrid Ontology for the 
Representation of Unified Space), a comprehensive ontology of buildings created by mapping 
primitive concepts and relations extracted from a library of spatial ontologies to the World 
Model’s semantic data types. HORUS is essentially grounded in two open-source ontologies: 
DOLCE-Lite, which includes basic spatial concepts and related properties (part, region, extension 
etc., see Borgo & Masolo, 2009) and RCC-Ontology, including primitive topological relations 
like “connection”, “overlap”, etc. (Kutz, Lücke, & Mossakowski, 2008). HORUS has the twofold 
purpose of 1) providing machine-readable semantic specifications of the World Model datatypes 
and 2) structuring and populating the declarative knowledge of an ACT-R model for building 
prediction. Regarding point 1), we have mapped the spatial representation of buildings and walls 
of a test site (Fort Indiantown Gap – FTIG – see Figure 2 for an aerial view of the facility) with 
geometrical and morphological properties adopted by the navigation planner of the RCTA 
architecture. Integration was engineered by using the suite of different spatial ontologies 
mentioned before. In this sense, HORUS exemplifies a modular approach, where conceptual 
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qualitative and quantitative spatial properties are considered as separate information layers from 
the representational and inferential viewpoint, though being incorporated into a common 
ontological infrastructure (a quantitative ontological layer for the representation of discrete 
measures is also available, though in this paper we are mainly focusing on qualitative spatial 
reasoning).  
Figure 3 illustrates the main distinction between architectural and functional features of walls and 
buildings, where the former are internally constrained by metric and construction characteristics 
(quantitative layer), while the latter refer to the spatial regions defining the area of operations of 
the mobile robot. For instance, we can notice that the functional building_1 is comprised – among 
others – of functional wall_1F, whose architectural equivalent wall_1 is externally connected to 
wall_2 (both walls are disconnected from asphalt_1). 
Concerning point 2), HORUS has been implemented in the SCONE KBS, serving as a knowledge 
repository and inference engine of the ACT-R cognitive model for building prediction: in 
particular, chunk-types for walls, building patterns, surrounding objects and urban features, have 
been designed on the basis of the conceptual specifications of HORUS and properly rendered into 
ACT-R declarative semantic chunks. The mechanism of building pattern recognition based on 
HORUS leverages a combination of general common-sense knowledge and specific topological 
features of given test-sites. In the medium term, we are planning to rely on diversified use cases 
from FTIG realistic scenario to implement and assess cognitive learning mechanism for 
recognizing previously unseen buildings, eventually storing new emergent patterns in HORUS as 
the result of a cognitively-based knowledge acquisition process. 
 

 
             Figure 2 – FTIG test-site.  
 
 
 

            
 
 
 

     

    Figure 3 – Example of distinction      
  between features buildings. 
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3.3  Functional Model of Building Prediction 

The diagram in Figure 4 shows at the functional level how the cognitive system elaborates 
perceptual information. In particular, the human-like capability of recognizing complex objects– 
in our specific case buildings – on the basis of component parts and relative spatial properties is 
emulated by the pattern matching mechanisms realized by ACT-R cognitive architecture 
synchronized with SCONE KBS. In the real application scenario, the cognitive system looks up 
perceptual information in the World Model: for the sake of simplicity, we just assume here that 
semantically labeled perceptual inputs are directly fed into the cognitive system. The ACT-R 
model encodes perceptual inputs in declarative memory, associating them to pre-defined chunk-
types, the most relevant ones being “Wall” and “Building”. The chunk type “Wall” contains 
metric information represented by appropriate slots, e.g. height, width, length, and orientation. 
The chunk type “Building” denotes known configuration of the building via a set of specific 
walls, some invariant structures of the surroundings like a “Sidewalk”, some “Gravel”, a “Pole” 
or a “Dumpster”4. After the encoding phase, which in a real-world scenario is reiterated as long 
as the robot moves and perceives the environment, the actual procedures of recognition trigger: in 
particular, partial matching is used to compare input walls to the set of walls that constitute 
building patterns. This comparison is driven by metric characteristics: similarity is defined with 
respect to the difference between the dimensions of a perceived wall and the dimensions stored in 
declarative memory. The model is currently able to compute the difference of length and height: 
the smaller the difference, the more likely the perceived wall belongs to the building pattern 
containing a wall with the same dimensions. But in reality, wall-size is not always sufficient to 
discriminate which is the best matching building: for instance, hotels and hospitals may look akin 
in terms of shape and wall composition, despite having completely different purposes. In these 
regards, it may be beneficial for the recognition procedures to also process distinctive features of 
the building surroundings, like signs, benches, parking lots, heliports, sidewalks, gravel, ground 
etc. In the example illustrated in figure 4, few walls are detected by the robot vision systems, 
together with a car and a sidewalk. In order to enhance the overall recognition/prediction, the 
ACT-R model evokes the SCONE KBS through the dedicated module, querying HORUS about 
whether the collected perceptual contents instantiate any significant ontological relationship. In 
particular, tests are made to check for 1) equivalence, the fact that two entities are of the same 
kind (e.g. car, sedan) 2) part-of, the fact that an entity is part of another (wheel, car), and 3) 
feature, defined as a special “parasitic” part that exists in virtue of the host object (e.g. a bump of 
a road, a hole in a shoe, the bottom of the table, and – in our context – all the features of a 
building, e.g. a window in the wall, the grass porch of a house, the sidewalk in front of the 
entrance door, etc. – (Simons, 2000) and (van Inwagen, 1995). At the architecture level, these 
tests correspond to a sequence of comparable procedures, where only the contents of the SCONE 
buffer change according to the type of ontological query: in this sense, further tests can be easily 
added to the system as specific realizations of the same reusable production schema.   
As depicted in Figure 4, the query trivially fails for the first two tests (NIL value returned), 
whereas the fact that the detected sidewalk is a feature of the detected wall W1 is confirmed as 
being a true statement in the ontology HORUS – which means that it has been included as an 

                                                 
4 These configurations are harvested from a database containing topological and morphological information 

about a given test-site. 
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assertion or ‘A-Box’ in the ontology (Sowa, 1984). In our model, a validation of perceptual cues 
by background knowledge prompts the ACT-R sub-symbolic mechanisms of spreading of 
activation, so that the related chunks (in this example only “sidewalk”) are used to boost the 
activation of the “consistent” building pattern chunks, penalizing the inconsistent ones. ACT-R 
chunk activation is calculated by the following equation:  

On the basis of the first term, the more recently and frequently a chunk i has been retrieved, the 
higher the activation and the chances of being retrieved (tj is the time elapsed since the jth 
reference to chunk i and d represents the memory decay rate). In our scenario this would 
correspond to the priority accounted to more recent perceived walls over older visual cues. In the 
second term of the equation, the contextual spreading activation of a chunk i is set by the 
attentional weight Wk, given the element k and the strength of association Ski between k and the i 
(the more “consistent” k and i are, the higher will Ski be). The third term states that, under partial 
matching, ACT-R can retrieve the chunk that matches the retrieval constraints to the greatest 
degree, combining the similarity Simli between l and i (a negative score that is assigned to 
discriminate the ‘distance’ between two terms) with the scaling mismatch penalty MP (in our case 
similarity between walls is based on metric dimensions). The final factor adds a random 
component to the retrieval process by including Gaussian noise to make retrieval probabilistic.  
We’ve previously used the quotation marks to highlight that the notion of “consistence” into play 
here goes beyond pure logical formalisms, involving cognitive plausibility weighted through 
stochastic mechanisms: this is a noteworthy aspect of using a non-algorithmic cognitive approach 
to problem solving, where reasonableness of results replaces optimality. The unified output of the 
reasoning procedures can be expressed by a probability distribution over the activated building 
patterns, where the most active pattern is “Hotel” in the example provided by Figure 4. 
. 

 Figure 4 Diagram of The Cognitive Model for Building Prediction. 
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4.  Evaluation  

The current capabilities of the hybrid cognitive system have been analyzed in a synthetic 
simulation designed to cover alternate perceptual conditions: in this respect, the test that we 
conducted assumes that the semantic perception modules can classify objects in the field of view 
without ambiguity or degradedness5.  
The evaluation set consists of the 14 different buildings located in the FTIG test site, including 
“restaurant”, “church”, “fire station”, “crypt”, “ops storage”, “police station”, “mayor’s 
mansion”, etc.: despite the distinctive semantic labels, the inherent differences within buildings 
mainly concern the metric level, in particular the height and width of constituent walls. 
Consequently, we designed differential experimental settings with the purpose of gauging the 
effect of variable levels of complexity in the prediction process, hypothesizing that the robot 
progressively perceives one wall, two walls, three walls and four walls. This sequence of visual 
inputs denotes incremental levels of completeness with respect to predefined building patterns, 
although – as we’ll see in the experiments – permutations of walls from different building 
patterns are also explored. In addition to metric similarities, we tested the extent to which, 
validating extrinsic differences within buildings by means of the HORUS ontology increases the 
probability of retrieving the correct pattern. In compliance with this premise, the ontology reflects 
the constraint that each building can be associated to no more than two relevant features, 
spanning from diverse types of terrain (e.g., “grass”, “asphalt”, “gravel” and “concrete”), to 
significant types of connected parts like “stairs”, “doors”, “windows” and characteristic 
contiguous objects, e.g. “gas pump” (which actually occurs only in the pattern associated to the 
“gas station”), “tree”, “pole” or “car” (whose multiple instances are usually located nearby 
parking lots or garages). The association between buildings and features mirrors the actual spatial 
arrangement of related entities in the FTIG environment. In the first experiment (Figure 5), we 
fed the cognitive system with all the permutations of the walls constituting a single building (in 
the specific case “restaurant”), alternatively generating a consistent feature (“stairs”) or an 
inconsistent one (“tree”). The knowledge component is triggered and combined with metric 
computations only when the consistent object is encoded and recognized as such by the hybrid 
cognitive system (using SCONE), whereas only metric computations activate when inconsistent 
objects are recognized as such. In this regard, we refer to the combined recognition mechanism as 
“contextual” prediction, whereas the metric-based similarity evaluation is referred to as “context-
free” prediction. This distinction, which applies to all the experiments presented in this section, is 
exposed by figures 5-8, where 1) the graphs on the left columns represent the average results 
across visual conditions for the context-free predictions (where only partial matching based on 
walls dimensions is used), whereas 2) the graphs on the right column depend on factoring in 
contextual reasoning validation (which translates to spreading of activation from the detection of 
consistent objects to related building patterns in the prediction mechanism). From a cognitive 
point of view, in the experimental setting 2) the ontology is effectively used to determine the 
representation of the context, with elements that are judged as unrelated or incompatible excluded 
from the pattern recognition process, and thus unable to spread activation. In the second 
                                                 
5At the time of writing the authors are assembling the Intelligent Architecture for the annual assessment of 

the RCTA program, where the cognitive system will be actually deployed in a robotic infrastructure and 
experimentally evaluated in a test site.  
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experiment (Figure 6), we augmented the complexity of the test by generating all the 
permutations to walls of two different buildings, the “mayor’s mansion” and “service station”, 
which are relatively similar in terms of the height and width of walls but obviously different, 
from a human standpoint6, with respect to semantic connotations and telicity7. In this case, we 
assessed that the recognition of the “gas pump” clearly helps to disambiguate the context, 
especially in the less informative situations, where only one or two walls are detected. This 
remark generally holds for every experimental condition that we considered: the higher the 
number of walls successfully associated to the correct building, the smaller the discriminatory 
effect of the ontology (though it can still be crucial for the refinement of specific algorithms – e.g. 
path planning). For the sake of testing increasing complexity, in the third experiment, wall 
permutations relative to three buildings were generated (“garage”, “townhouse” and “crypt”) and 
alternately coupled with two features (“opening” and “grass”), respectively consistent with the 
first two different buildings. As figure 7 indicates, while the process based on purely metric 
similarity was in average retrieving the “townhouse” as the most likely candidate, adding the 
ontology-driven cognitive mechanism allows discarding that result and boosting the recognition 
of the “garage” and the “crypt”. “Grass” was also a pertinent feature of the “church” building, and 
this is reflected by the probability of activation of the corresponding pattern (labeled as “C” at the 
extreme left of the figure). The final experiment concerned the “church”, the most complex 
building of the test set, whose peculiar configuration is generally unique in the FTIG site. 
Although being morphologically distinctive in a given environment might be seen as an 
unconditional advantage for the prediction task, in practice the unusual spatial configuration of 
the walls, the singular presence of a bell tower as part of the building and the heterogeneous 
heights and widths of the constituent walls imply that the cognitive system needs to analyze an 
extensive information stream, in terms of geometric characteristics, conceptual and temporal 
structures. This complexity is clearly reflected by the results reported in the left columns of figure 
8, where the probability value of the church pattern is slightly higher than the others, but overall 
extremely low in all four conditions. The right column shows, instead, that validation by 
knowledge boosts the value of the predicted patterns, even if - by using the shared surrounding 
feature “concrete” - the two patterns for “crypt” and “restaurant” are almost equally retrieved.  
Because of the computational requirements of this knowledge-intensive simulation framework, 
we could not extend the experimentation beyond wall permutations of three buildings and three 
objects, although we aim at reporting these results in future work. Nevertheless, we think that the 
general trends of the predictions properly reflect the benefits of using ontology-based cognitive 
reasoning in conjunction with probabilistic computations, notwithstanding the intrinsic limits of 
assessing the cognitive system independently from the deployment in robots.  

                                                 
6 Since the final objective of the cognitive system is to be deployed in a robot working with soldiers as a 

team member, sharing mental models with them is important.  
7Telicity denotes the property of operational/social functionality assigned to artifacts. 
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LEGENDA: Y-axis: probability associated to building predictions; X-axis: labels for the14 buildings considered (C: 
Church; B: Bar; P: Police Station; H: Hotel; OP: Ops Storage; F: Fire Station; CR: Crypt; G: Garage; OF: Office 
Building; A: Aid Station; M: Mayor’s House; R: Restaurant; S: Service Station; T: Townhouse. 
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Figure 7 

Figure 6 

Figure 8 



A. OLTRAMARI, J. VINOKUROV, C. LEBIERE, A. STENTZ, J. OH 

196 
 

5.  Conclusion 

In this paper we presented a hybrid cognitive system for high-level recognition of buildings in a 
robotic framework. We showed how the integration between cognitive architectures and 
ontologies can leverage human-like capabilities in artificial agents. Future work will be devoted 
to a broad validation of the system with respect to a dataset of real-world scenarios, where the 
hybrid system will be enhanced both in terms of learning capabilities and quantitative spatial 
reasoning.  
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