
Second Annual Conference on Advances in Cognitive Systems Poster Collection (2013) 251-266

Planning with Qualitative Models for Robotic Domains

Timothy Wiley TIMOTHYW@CSE.UNSW.EDU.AU

Claude Sammut CLAUDE@CSE.UNSW.EDU.AU

School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia

Ivan Bratko BRATKO@FRI.UNI-LJ.SI

Faculty of Computer and Information Science, University of Ljubljana,
Trzaska 25, 1000 Ljubljana, Slovenia

Abstract
We aim to develop an online method for learning robot behaviours that requires only a small number
of trials, making it practical for use on a real robot. A hybrid method includes a symbolic planner,
using qualitative reasoning, that constructs an approximate solution to a control problem. This
approximate solution provides constraints for a numerical optimisation algorithm, which is used to
refine the qualitative plan into an operational policy. The method is demonstrated on a multi-tracked
robot intended for urban search and rescue.

1. Introduction

Typically, some form of reinforcement learning is used for online learning, that is, learning while
an agent performs a given task. The system performs a succession of trials, which initially will
fail frequently. As more experience is gained, the control policy is refined to improve its suc-
cess rate. In its early formulations (Michie & Chambers, 1968; Watkins, 1989; Sutton & Barto,
1998), reinforcement learning worked well as long as the number of state variables and actions
was small. Subsequently, many methods have been proposed to alleviate this problem. These in-
clude the use of function approximation, e.g. (Tesauro, 1995), relational reinforcement learning
(Džeroski, De Raedt, & Driessens, 2001), hierarchical learning (Dietterich, 1998; Hengst, 2002)
and hybrids of symbolic AI and reinforcement learning (Ryan, 2002). Model-based reinforcement
learning includes an initial “system identification” step that create a characterisation of the system
being controlled, so that a controller could then be derived. See, for example, Ng et al. (2006)
and Buskey et al. (2002), where data collected from a human pilot flying a remotely controlled
helicopter are used to learn a model of the helicopter. A reinforcement learning algorithm is then
run against this model to produce a controller.

Building such models generally requires strong domain knowledge to be built in. Most trial-and-
error learning systems are incapable of making use of general background knowledge, as humans
do. For example, if we are learning to drive a car that has a manual gear shift, the instructor does
not tell the student, “Here is the steering wheel. Here is the gear stick. Here are the pedals. Play

c© 2013 Cognitive Systems Foundation. All rights reserved.



T. WILEY, C. SAMMUT AND I. BRATKO

(a) Robotic Platform (b) Climbing a Ledge (c) Traversing Rubble

Figure 1: Track based rescue robot and simulated disaster environments

with them until you figure out how to drive”. Rather, the instructor will be quite explicit about the
sequence of actions to perform. To change gears, the instructor might tell the student that the clutch
has to be depressed simultaneously as the accelerator is released, followed by the gear change, and
so on. However, the instructor cannot impart the “feel” of the pedals and gear stick or control the
student’s muscles so that the hands and feet apply the right pressure and move at just the right speed.
This can only be learned by trial-and-error. So despite the qualitative knowledge, the student will
still make mistakes until the parameters of the control policy are tuned. However, with no prior
knowledge, learning would take much longer since the student has no guidance about what actions
to try, and in what order to try them. The qualitative constraints also give the learner what might be
described as “common sense” in that it can reason about the actions it is performing. In the example
above, the background knowledge was provided by a teacher but some or all of it could also be
obtained from prior learning.

We describe a system ultimately intended to speed up trial-and-error learning by using qualita-
tive background knowledge to constrain search. It builds on earlier work in hierarchical learning
by Ryan (2002), in which a hybrid learning system incorporates a planner. The planner generates a
sequence of actions whose implementation is not given but which can be learned by reinforcement
learning. Ryan’s method works well in discrete domains but does not scale well to continuous do-
mains, whereas we are interested in domains with continuous states and actions. Following a similar
approach Sammut and Yik (2010), developed a system that gave a bipedal robot the ability to learn
to walk. Here, a planner produced a sequence of qualitative actions that contained parameter values
not specified by the planner. Subsequent trial-and-error learning determined the values of those
parameters so that the qualitative plan was made operational.

Another domain for learning locomotion applies to robots used in the field of Urban Search and
Rescue. These robots must traverse rough terrain such as rubble and staircases (Figure 1). Such
robots commonly have a main set of tracks to drive the robot and sub-tracks, or flippers, that can
be used to lift the robot’s body or configured to climb over obstacles. The robot must choose the
best trajectory to avoid becoming stuck and, in the case of robots that can change their geometry,
the robot must also decide how best to do that for the terrain ahead. In this paper, we focus on the
problem of choosing flipper positions to enable the robot to climb over obstacles.

The main contribution of this work is in modifying the qualitative reasoning system, QSIM
(Kuipers, 1986), to perform planning, rather than simulation. The actions in a qualitative plan are

252



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

Deliberation

Sequencing

Reactive Skills

World / Environment

Sense Data Actuator Commands

Skill Selection

Plan

Figure 2: Modules in the ICARUS Architecture and their cascaded organization

not directly executable on the robot as they do not include any numerical parameters, such as the
exact angle of the flipper. However, the advantage of using qualitative simulation for planning is that
the process produces constraints on the range of possible of parameter settings. These parameters
can be refined by reinforcement learning, now in a much smaller search space than if learning were
applied in an unconstrained space.

2. A Planning and Learning Hierarchy

In a typical three level architecture for a robot (Bonasso et al., 1997; Gat, 1998), shown in Figure
2, the upper “deliberative” layer is responsible for long-term planning, generating actions to be
performed. The intermediate, or “sequencing” layer selects the parameters required by the low-level
controller to implement the actions. In previous work (Brown & Sammut, 2011), a STRIPS-like
planner was used to generate actions. A constraint solver used information in the actions to limit the
search of a motion planner, which provided the parameters for the controller. This scheme worked
well because the robot in those experiments was wheeled and only need to drive over a flat surface.
However, a more complex locomotion task, like driving over rough and unpredictable terrain in a
disaster site, poses a challenge for a motion planner. In this case, we prefer to learn the robot’s low-
level behaviours. Like Sammut and Yik (2010), constraints derived from a plan are used to limit
the search in trial-and-error learning to refine the parameters for the controller. In the case of both
Brown and Sammut (2011) and Sammut and Yik (2010), a classical planner was used, followed by
a constraint solver, in a separate phase. However, a qualitative simulation algorithm such as QSIM
already incorporates a constraint solver. Additionally, combining the constraint solver in the planner
allows for semi-numerical reasoning in the planning.

In its normal mode of operation, QSIM is given an initial state and performs a simulation to
derive all possible states that may evolve from the initial conditions. QSIM has no concept of a
goal state or actions that may be invoked to try to achieve the goal. To address this, Hogge (1987),
Forbus (1989) and Aichernig et al. (2009) proposed planning architectures for qualitative process

253



T. WILEY, C. SAMMUT AND I. BRATKO

theory. Like many qualitative reasoning frameworks, qualitative process theory uses a Qualitative
Model to define the behaviour of a modelled system over time. The model consists of a set of
qualitative constraints in the form of Qualitative Differential Equations (QDEs). The constraints de-
fines relationships between variables in the system, and places restrictions on the value of variables.
For planning, Hogge and Forbus used STRIPS-like actions, where each action added and removed
constraints from the model. This in turn changes the behaviour of the system, allowing a planner
to search through potential states and reach the desired goal. For example, in a water tank system
where the tank has an out-flow pipe, in-flow pipe and a valves on the in-flow and out-flow pipes, an
action might be to open or close one of the valves. This action adds and removes constraints that
model the rate of change in the level of water in the tank.

Other frameworks for planning using qualitative reasoning include the reactive monitoring sys-
tems developed by DeJong (1994) and Drabble (1993). Qualitative reasoning is used to predict the
next state of a system and adjust the quantitative controls of the system accordingly. However, as
the name suggests, these were monitoring systems, not planners. These systems also used actions
in the same form as Hogge and Forbus.

More recently, Troha and Bratko (2011) successfully performed planning using QSIM within
the robotics domain. They trained a small two-wheeled robot to push objects into a given location.
The robot first learnt the qualitative effects of pushing a given object, then planned a sequence of
moves to place the object at a desired position with a desired orientation. However, their system
was specialised to learning the effects of pushing objects.

A different approach to developing a framework for using qualitative reasoning in robotics was
proposed by Mugan and Kuipers (2012) called QLAP (Qualitative Learner of Action and Percep-
tion). QLAP uses a different qualitative reasoning system to QSIM or qualitative process theory.
Actions are defined as the occurrence of an event of the form X → x, where variable X is set to the
qualitative value x. For each event a small quantitative controller or Q-Table, Qi(s, a), is learnt. For
each state s in the table action a is performed which corresponds to invoking another event Y → y.
In this way controllers are linked in a tree-like fashion. A task is completed by executing events that
set all variables to their desired values, which causes a chain-reaction of actions to be triggered. In
QLAP no planning is performed although it does allow for domain independent learning. Addition-
ally, the tree representation means actions or events are highly linked such that if the configuration
of one part of the robot is changed the entire tree of Q-tables must be re-learnt. We prefer to use a
learning framework that allows for modularity as various aspects of the robotic system may change.

2.1 Framework for Learning System with Qualitative Planning

This work proposes a learning system (Figure 3) that is a modification of the design proposed
by Sammut and Yik (2010). Whereas, the previous work used a STRIPS-like planner, this work
proposes a qualitative planner where qualitative simulation is integrated with a heuristic state-action
planning method. This includes a new formulation for qualitative actions that correspond to the
physical actions of the robot. Actions in the resulting plan are parameterised and constrained. The
constraints are used to restrict the search space of trial-and-error learner which finds the optimal
values for the action’s parameters.

254



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

Qualitative 
Model

Qualitative 
Planner with 

QSIM
Refine 

Parameters

Parameterised &
Constrained

Action Sequence

Figure 3: Architecture for learning robotic behaviours using a qualitative planner that incorporates
the Qualitative Simulation algorithm, and a quantitative trial-and-error learner.

3. The Experimental Platform - Negotiator, a track-based robot

The robotic platform used in conducting experiments and shown in Figure 1a, is designed for Urban
Search and Rescue. The robot consists of an iRobot Negotiator base that has been augmented
with sensors and on-board computers. The vehicle contains two drive tracks and two sub-tracks,
or “flippers”. Each group of right and left tracks can be controlled independently, and the flippers
can be rotated around a pivot point in parallel with one another. The vehicle is controlled using
two actions that set the velocity of each track and the position of the flippers. Figure 4 shows the
physical location various variables of the system and a basic task of climbing a ledge.

4. Qualitative Representation

The robot, and its interactions with the environment, are represented by qualitative constraints in
the form of qualitative differential equations (QDEs). These express relations between qualitative
variables. The value of a variable is described by a qualitative magnitude relative to landmark values
and a direction (either increasing, decreasing or steady) that describes how the magnitude changes
over time. Table 1 lists a subset of the qualitative variables of the Negotiator system originally
presented in Wiley et al. (2013).

The qualitative constraints place restrictions on the magnitude and direction of the qualitative
variables. For example the relationship M+(x, y), enforces that as variable x increases, variable

Base Flippers

✓b

posx/y

✓f

� v +
✓f

� v +

Ledge

xle

yle

posfx/fy posbx/by

Figure 4: Representation of the Negotiator system and the task of climbing onto a ledge. The control
variables are highlighted in red.

255



T. WILEY, C. SAMMUT AND I. BRATKO

Table 1: Qualitative Variables in the Negotiator system. Landmarks such as θfflat, θbflat arise from
properties of the robot and it’s actions, while other landmarks such as maxpxt and xfall arise from
the robot interacting with the environment.

QVar Landmarks Category Type Description

posx [x0,maxpxt, xle, xfall, xgoal] State Robot x-position
posy [y0, yle] State Robot y-position
posfx [x0, xle, xgoal] State Flipper x-position
posfy [y0, yle] State Flipper y-position
posbx [x0, xle, xgoal] State Base x-position
posby [y0, yle] State Base y-position
θf [−π, θcrit, 0, θfflat, π] Control Periodic Flipper angle
θb [−π, θbflat, θcrit, 0, π] State Periodic Base angle
v [vmin, 0, vmax] Control Discrete Velocity of the robot
θfb

[
−π,−π2 , 0, π2 , π

]
State Periodic Sum of θf and θb

y must also increase, and likewise as x decreases. The set of qualitative variables and qualitative
constraints that describe a system form the Qualitative Model of the system. The model is influenced
by both the physical properties of the robot and the operational environment of the robot.

The standard representation of qualitative models in QSIM is extended for the purposes of plan-
ning in the qualitative domain. Qualitative variables are extended by introducing control variables,
in conjunction with standard QSIM qualitative variables, herein termed state variables. Control
variables, when set, affect changes in the state of the system and may transition discontinuously.
State variables are dependent and may not freely change value, but must follow the transition rules
defined in the qualitative simulation algorithm. However, rather than being constrained by exterior
action, state variables are dependent on control variables. For instance, the variables posbx and θb
are state variables, while θf and v are control variables as these variables represent actions per-
formed on the physical robot. Discrete and periodic qualitative variables are also introduced. The
magnitude of a discrete qualitative variable may only reside at a landmark and the rate of change
may only be steady. Discrete variables are further categorised as nominal, which may transition to
any landmark in their domain, and continuous which may only transition between adjacent land-
marks. Periodic variables, such as angles, allow additional transitions between landmarks at the
extremities of their domains. For example, θf may transition between the landmarks −π and π.

Qualitative constraints are extended by introducing Preconditions. These conditional constraints
are termed qualitative rules and have the form:

Name : Precondition→ Constraints

where the constraints are a set QDE’s. Qualitative rules allow constraints to be applied in a subset
of the robot’s state space, rather than applying globally as in typical applications of QSIM. Conse-
quently, the qualitative simulation algorithm is modified such that constraints are only enforced in
a state when the preconditions are satisfied. For example, the angle of the robot’s body with respect

256



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

to the ground, θb depends on the angle of the flippers, θf . In some regions of the state space, both
angles increase together, while in other regions θb decreases as θf increases.

Qualitative rules may, optionally, be grouped together by a common set of preconditions to
form operating regions. For example, when the Negotiator robot is on flat ground, the robot’s
behaviour and the qualitative constraints representing this behaviour differ substantially compared
to the behaviour of the robot as it is traversing the leading edge of the ledge. This defines two
distinct operating regions, one for flat ground and one for traversing the ledge.

4.1 Qualitative Model for Negotiator climbing a ledge

The qualitative model for Negotiator and the task of climbing the ledge was originally presented in
Wiley et al. (2013). Part of the model is presented again in Table 2, with some modifications. The
model contains two operating regions: “flat” for where the robot is on flat ground, and “ledge” for
where the robot is traversing the leading edge of the ledge1.

The behaviour of the robot in the model is largely determined by the x/y-position of the robot
(posx and posy), the x/y-position of the flippers (posfx and posfy), and the landmark values
maxpxt, xle, xfall and yle. As posx passes through landmark maxpxt the flipper must be in con-
tact with the leading edge of the ledge, causing the robot to begin driving onto the ledge. As posx
passes through xle and xfall, the base of the robot then comes into contact with the leading edge
of the ledge. After xfall, the centre of mass of the robot causes the robot to fall onto the top of the
ledge. In addition to this, the angle of the flipper and the angle of the base may not exceed a critical
threshold, θcrit, as the robot does not have sufficient power to drive over the ledge if the angle of the
robot is too steep. Finally, some states are impossible, indicated by ⊥, the unsatisfiable constraint.
Any transitions into states where ⊥ applies are immediately discarded.

5. Planning Actions using Qualitative Simulation

Given a seed qualitative state q0 occurring at time point t0 a single iteration of the qualitative sim-
ulation algorithm (QSIM) produces a set of qualitative states {q0,1} that are immediately reachable
from the seeding state. All the successor states occur during the time interval t0,1. By repeated appli-
cation using multiple iterations of QSIM, a set of state sequences [(q0,1, t0,1), (q1, t1), (q1,2, t1,2), . . .]
is produced, that describe the set of all possible qualitative states that may be derived (eventually
reached) from the seeding state and the qualitative trajectory taken to reach the state. State in a
sequence (which also do not include the seed) are ordered by time and either occur at a time point
or during a time interval. Time points represent instances in time while time intervals are non-zero
lengths of time whose exact duration is unknown. Time points and intervals alternate such that a
time point is followed by an interval and vice-versa. Finally, the length of each state sequence is
variable, and some sequences may be subsets of each other.

For planning in the qualitative domain, a Qualitative Action is defined as executing one or more
iterations of QSIM to produce a sequence state, where the value of all control variables in the

1. The common preconditions for each operating region are not listed in Table 2. The common preconditions for the
“flat” operating region are (posfx ≤ xle ∧ posx ≤ xle) ∨ (posx ≥ xfall). The common preconditions for the
“ledge” operating region are (posx ≤ xfall) ∨ (posx ≥ xle ∧ posfx ≥ xle).

257



T. WILEY, C. SAMMUT AND I. BRATKO

Table 2: A subset of the qualitative model for Negotiator climbing a ledge. Corresponding values
for various QDE’s are provided by the corr(..) notation.

Name Region Preconditions Constraints

drive deriv(posx, v)
pos_fx sum(posx, cos(θfb), posfx)
pos_fy sum(posy, sin(θfb), posfy)
sum_fb sum(θf , θb, θfb)
flat_1 flat −π ≤ θfb ≤ 0 const(θb, 0)
flat_2 flat 0 ≤ θfb ≤ π

2 M-(θb, θfb), corr(0, 0)
M+(θf , θfb), corr(0, 0)

flat_3 flat π
2 ≤ θfb ≤ π M+(θb, θfb), corr(0, π)

M+(θf , θfb), corr(π, π)
in_ledge_1 ledge posx > xle, posy < yle ⊥
in_ledge_2 ledge posfx > xle, posfy < yle ⊥
in_ledge_3 ledge posbx > xle, posby < yle ⊥
le_mpxt ledge M-(posx, θfb)

M-(posx, θb), corr(maxpxt, 0)
M+(posx, posy), corr(maxpxt, 0),

le_xle ledge xle ≤ posx ≤ xfall M-(posx, θb)
M-(posy, θb)

sequence are constrained to fixed values. A Qualitative Action, ai, is annotated as:

ai := {CQV ar1 = Dom/Mag, CQV ar2 = Dom/Mag, . . .}

where each CQV ari denotes the value that the control variable is constrained to for the entirety
of the action. The finite set of all actions is thus the cross-product of all combinations of valid
qualitative values for each control variable. It is important to note that a qualitative action does
not include a specific state sequence produced by QSIM. Instead, performing an action may result
in multiple successor states. At most, one successor state is produced for every state sequence
produced by QSIM.

Planning with qualitative actions is performed using a classical state-action based approach.
However, care must be taken since each action produces a set of state sequences of variable lengths,
rather than a set of singular states. Also a distinction must be made between states used at the level
of the planner, denoted by si, and states within the state sequences at the level of QSIM denoted by
qi (for time points) or qi,i+1 (for time intervals). However, both the states at the level of the planner
and at the level of QSIM are qualitative descriptions of the robot.

A plan is constructed from an initial state sinit to a goal sgoal2. Given a state in the planner si,
the successor states {si+1} are produced by the following algorithm:

2. In practice (see Section 7) the goal state is typically under specified. For example, the goal state may only specify
the x/y-position of the robot. All other variables are unspecified. Thus, variables such as the angle of the flipper and
thus the x/y-position of the end of the flipper may take any valid value in the goal. Therefore, multiple states may
match the specified goal.

258



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

s0 s1 s2

q0 qn. . . q0 qn. . .

ai aj

seed QSIM equal seed QSIM equal

Figure 5: Representation of the qualitative planning process, from the planner state s0 through s1
to the planner state s2. State s0 and action a0 produce state s1 and likewise for (s1, a1)→ s2. The
QSIM state sequences q0, . . . , qn are the result of performing action ai or aj . Each q0 is produced
by QSIM, by using s0 or s1 as a seed state. Planner states s1 and s2 are equal to the last element qn
from each state sequence.

1. Choose an action ai to perform.

2. Given, ai, find all state sequences [seq0, . . . , seqn] where si is used as the state to seed QSIM.

3. The set of successor states {si+1} is the last state in each sequence [seq0, . . . , seqn].

Figure 5 shows the outcome of this algorithm, namely the relationship between states at the level of
the planner and states from the QSIM state sequences.

The plan from sinit to sgoal, shown below, is a sequence of states at the planner level, actions to
perform, and QSIM state sequences. The plan is strictly ordered by time, where each action at any
stage of the plan is executed immediately following the completion of the action from the previous
stage, and no two actions may occur simultaneously.

init : (sinit, ai, [q0, . . .])

→ (s1, aj , [q0, . . .])

→ . . .

→sgoal

5.1 Heuristic Planning

In order to use heuristic planners, various methods are presented for defining the cost of an action
and the heuristic estimate from a state at the planner level to the goal. The cost of performing an ac-
tion is defined as the length of the state sequence produced by QSIM. The heuristic (or estimate) for
any state to a goal state is defined in relation to the Qualitative Magnitude Distance for a qualitative
variables in the state.

The qualitative magnitude distance (QMD) for a qualitative variable, denoted as
QMD (Dom1/Dir1,Dom2/Dir2) is the number of distinct values the variable must pass though
in order to continuously, and according to the rules of QSIM, transition from the qualitative value

259



T. WILEY, C. SAMMUT AND I. BRATKO

Dom1/Dir1 the qualitative value Dom2/Dir2. The QMD is defined piecewise as:

QMD(Li/Diri, Lj/Dirj) = 2 + 2 ∗ (# of landmarks between Li and Lj)

QMD(Li..Li+1/Diri, Lj/Dirj) = 1 + 2 ∗ (# of landmarks between Li and Lj)

QMD(Li/Diri, Lj ..Lj+1/Dirj) = 1 + 2 ∗ (# of landmarks between Li and Lj+1)

QMD(Li..Li+1/Diri, Lj ..Lj+1/Dirj) = 2 ∗ (# of landmarks between Li and Lj+1)

where each Li is a landmark in the domain of the qualitative variable.
Two heuristics based on the qualitative magnitude distance, MaxQMD and the TotalQMD, are

defined as:

MaxQMD = max
v∈{QV ar}

QMD(si(v), sgoal(v))

TotalQMD =
∑

v∈{QV ar}

QMD(si(v), sgoal(v))

where {QV ar}3 is the set of qualitative variables, and si(v) and sgoal(v) are the qualitative values of
variable v in the respective states. MaxQMD is the maximum of the qualitative magnitude distances
for all variables in the given state, while TotalQMD is the sum of the distances.

Based on the definition of the cost of performing an action, MaxQMD does not over estimate the
true minimum cost of planning from the given state to the goal, proving an admissible heuristic. This
is because the rules of QSIM enforce that the qualitative variable with the maximum QMD must,
at a minimum, transition through the number of states given by the QMD. The remaining qualita-
tive variables may simultaneously transition to their required values for the goal with the maximal
variable. In contrast, TotalQMD typically over estimates the true cost of reaching the goal. Thus,
TotalQMD is inadmissible, and may lead to less than optimal plans. MaxQMD favours reducing
the distance to the goal for the variable that is the furthest away from the goal. TotalQMD favours
states where the combined set of variables is closer to the goal. The behaviour and performance of
the heuristics is further discussed in Section 7.

5.2 Implementation considerations

A planner that naively implements the theoretical algorithm for calculating successor states at the
planner level will be very inefficient. The inefficiency is caused by the finding all state sequences
given the seeding state. The total number of state sequences may be large, and many sequences
will be subsets of other sequences. Instead, for the purposes of efficiency a planner may restrict
the state sequences produced by QSIM to length one. It is trivial to show that any plan produced
by using state sequences of length one is equivalent to a plan produced in the theoretical manner,
provided that sequences of a repeated action are merged into a single action. That is, the plan
(s0, ai) → s(s1, ai) → . . . → sn is equivalent to the merged plan (s0, ai) → sn where the QSIM
state sequence for the action is s1, . . . , sn.

3. For partially specified states, {QV ar} is limited to only those qualitative variables appearing the in the specification
of the goal.

260



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

6. Trail-and-Error Learning

The plan generated by the qualitative planner is only a general guide for how to reach the goal or
complete the desired task. In particular, actions are parameterised by the qualitative values of the
control variables and their relative rates of change. Actions are further implicitly parameterised
by time. Each action in the plan is executed sequentially. However due the nature of qualitative
simulation, the length of time required to execute each action is unknown. For instance, the action
{θf = 0..π/inc} specifies to increase the flipper angle between the values 0 and π for an unknown
duration of time. The precise parameter values are found by trial-and-error learning.

The plan allows a trial-and-error learner to restrict its trials to a much narrower range of pa-
rameter values than it would if some form of Reinforcement Learning were applied naively. For
example, the constraints from the QSIM plan can be used to bound the search space for a sim-
ple form of Markov chain Monte Carlo (MCMC) sampling of the parameter space (Andrieu et al.,
2003). This performs what is, essentially, a hill-climbing search of the parameter space, selecting a
point in the multi-dimensional space of parameter values, testing those values, then selecting a new
point based on the results of the trial. In this case, the trial is the robot’s attempt to climb the ledge.
This method was used successfully by Sammut and Yik (2010) to learn the parameters for a bipedal
gait, given a qualitative description of the phases of walking cycle. In that work, a 23 degree of free-
dom robot learned a stable gait in 46 trials, averaged over 15 attempts (Yik & Sammut, 2007). The
work presented here is a generalisation of Sammut and Yik because in their experiments, the planner
was highly specialised for that particular task, whereas using the qualitative planning approach is
much more flexible in only requiring the specification of the domain model.

7. Preliminary Results

The qualitative planner has been implemented in Prolog using the A* heuristic search technique
(Hart, Nilsson, & Raphael, 1968) and a modified version of the implementation of QSIM found in
Bratko (2011). The planner additionally uses the efficiency improvement discussed in Section 5.2,
where only state sequences of length one are produced by QSIM. The model used for planning is
the full model that is partially presented in Section 4 and Wiley et al. (2013).

The task to be solved is climbing the ledge. This task is encoded, as shown in Table 3, with
an initial state on the flat ground before the ledge, and a goal state that is on top of the ledge.
Specifically the robot starts at posx = x0/std, θf = 0/std, with a velocity of zero (v = 0/std).
The goal state is partially specified, with the robot finishing at posx = xgoal/std, also with a
velocity of zero.

7.1 Experiments

Experiments for planning from the specified initial state to the goal were conducted. The MaxQMD
and TotalQMD heuristics were compared for performance, in terms of both the time taken to find a
plan, and the length of the found plan. It was also discovered that the specification of the goal state
greatly impacted the performance of the planner, thus the specification of the goal was also varied.
The results of the experiments are presented in Table 4. The sequence of states in the plan produced

261



T. WILEY, C. SAMMUT AND I. BRATKO

Table 3: Initial state and partially specified goal state for the task of climbing the ledge. Marked
variables (∗) are optionally included in the goal state depending on the experiment.

Initial state: posx = x0/std Goal State: posx = xle/std
posy = zero/std v = 0/std
posfx = x0..xle/std posfx = xgoal..∞/std∗

posfy = 0/std posbx = xle..xgoal/std∗

posbx = −∞..x0/std
posby = 0/std
θf = 0/std
θb = 0/std
θfb = 0/std
v = 0/std

Table 4: Results of experiments with the qualitative planner. For each test, the total execution time,
and number of states in the plan are reported. The heuristics and inclusion is posfx and posbx in the
goal are varied across the set of tests.

No. Heuristic posfx posbx Time (sec) Plan length

1 MaxQMD No No 13 9
2 TotalQMD No No 209 9
3 MaxQMD Yes No 13 9
4 TotalQMD Yes No 35 9
5 MaxQMD No Yes 1,668 11
6 TotalQMD No Yes 1,428 13
7 MaxQMD Yes Yes 1,581 11
8 TotalQMD Yes Yes 13 13

during Experiment 1 is presented in Table 5 as an example. and the plan of actions, constructed as a
result of merging repeated actions, is presented in Table 6. For clarity, less important variables have
been omitted from the presented results. The experiments were conducted on a MacBook Pro 8,1
(2GHz Intel Core i7) laptop, using the SWI-Prolog (version 6.4.1) Prolog environment. SWI-Prolog
was executed with one CPU core and 4GB of memory.

7.2 Discussion

Comparing the performance of the two heuristics, neither heuristic out performs the other in all
experiments. Instead, the heuristic with the best performance is greatly dependent on the specifi-
cation of the goal state. TotalQMD significantly out performs MaxQMD when all three position
variables (posx, posfx and posbx) are specified in the goal. This performance is largely due to two
factors. First, as the value of velocity the goal is zero, in any state where the velocity is not zero,
the estimate with TotalQMD increases by one as QMD (v = 0/std, v = vmax/std) = 1. Thus
TotalQMD prefers to first visit states where velocity is zero, even though the robot must have a

262



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

Table 5: Sequence of states in the plan for Experiment 1. The states have been ordered by time.

Time State

t0 v = 0/std, θf = 0/std, posx = x0/std, posy = 0/std,
posfx = x0..xle/std, posbx = −∞..x0/std, θb = 0/std, θfb = 0/std

t0,1 v = vmax/std, θf = θcrit..0/dec, posx = x0..maxpxt/inc, posy = 0/std,
posfx = x0..xle/inc, posbx = −∞..x0/inc, θb = 0/std, θfb = −π2 ..0/dec

t1 v = 0/std, θf = θcrit/std, posx = maxpxt/std, posy = 0/std,
posfx = xle/std, posbx = x0/std, θb = 0/std, θfb = −π2 ..0/std

t1,2 v = vmax/std, θf = θcrit/std, posx = maxpxt..xle/inc, posy = 0..yle/inc,
posfx = xle..xgoal/inc, posbx = x0..xle/inc, θb = θcrit..0/dec, θfb = −π2 ..0/dec

t2 v = vmax/std, θf = θcrit/std, posx = xle/inc, posy = yle/inc,
posfx = xgoal/inc, posbx = x0..xle/inc, θb = θcrit..0/dec, θfb = −π2 ..0/dec

t2,3 v = vmax/std, θf = θcrit/std, posx = xle..xfall/inc, posy = yle..∞/inc,
posfx = xgoal..∞/inc, posbx = x0..xle/inc, θb = θcrit..0/dec, θfb = −π2 ..0/dec

t3 v = 0/std, θf = θcrit/std, posx = xfall/std, posy = yle..∞/std,
posfx = xgoal..∞/std, posbx = x0..xle/std, θb = θcrit/std, θfb = −π2 ..0/std

t3,4 v = vmax/std, θf = θcrit/std, posx = xfall..xgoal/inc, posy = yle..∞/dec,
posfx = xgoal..∞/inc, posbx = x0..xle/dec, θb = θcrit..0/inc, θfb = −π2 ..0/inc

t4 v = 0/std, θf = θcrit/std, posx = xgoal/std, posy = yle/std,
posfx = xgoal..∞/std, posbx = x0/std, θb = 0/std, θfb = −π2 ..0/std

Table 6: The plan of action for Experiment 1, as a result of merging repeated actions. Time point
are provided for reference.

Plan Stage Time Action (Control variable values)

1 t0 v = vmax/std, θf = θcrit..0/dec
2 t1 v = vmax/std, θf = θcrit/std
3 t4 v = 0/std, θf = θcrit/std

positive velocity in order to reach the goal. MaxQMD does not suffer from this, as velocity rarely
influences the heuristic. It is almost always the case that the QMD for another variable is at least
one. Thus, MaxQMD can expand states more likely to lead to the goal earlier than TotalQMD, re-
ducing the runtime. Secondly, the variables posx, posfx and posbx tend to reduce their QMD values
in parallel, and at worst one decreases while the other remains the same. Thus specifying two out
of the three variables only has a small impact on the performance of TotalQMD. It is not until the
three variables are specified that TotalQMD performs significantly better than MaxQMD. There-
fore, MaxQMD performs better when fewer variables are specified in the goal state, and TotalQMD
performs better with more variables.

The heuristics further contribute to poor performances of the planers as large numbers of states
have the same cost. For example, in Experiment 7 with MaxQMD, the planner visits 14,681 states
during the search. Of these states, 10.3% have a cost of 8, 28.1% have a cost of 9 and 61.6% have a

263



T. WILEY, C. SAMMUT AND I. BRATKO

cost of 10. The reason this occurs for MaxQMD, it that typically, the cost of performing an action
is one, which is equal to the reduction in the value of the heuristic. Thus the total cost for the
successor state is frequently the same as the cost of its parent. In in a similar way, in Experiment 2
with TotalQMD, the planner visits 410 states, where 16.3% have a cost of 8 and 83.4% have a cost
of 9. This is again because the key variable contributing to the heuristic is posx, which reduces it’s
QMD value by at most 1 for each action.

A significant decrease in performance in the planner is observed in Experiments 5 to 7. The
cause is the final state of the plan. In these experiments the value of posbx, remains unchanged from
the initial state and finishes with the value posbx = x0/std. In almost all practical situations for
climbing a ledge, it is physically impossible for the x-position of the base of the robot to finish at
this location. However, due to the nature of using qualitative reasoning, QSIM cannot determine
these states are physically impossible and allows such a goal state to be reached. Thus when posbx is
specified in the goal, the planner cannot terminate early when it reaches these physically impossible
states. This contributes to the longer running time of the planner, as more states must be searched,
and a longer plan to reach the goal is required.

Investigating techniques to address these performances issues is left for future work. However,
another performance issue to investigate other than the planner is the efficiency of QSIM.

7.3 Improving the Efficiency of QSIM

The performance of QSIM also has a significant impact on the performance of the planner, namely
in the time taken to calculate all successors to the seeding state. Consider a qualitative state, with
n variables. Each variable can potentially transition to up to three different values, creating a maxi-
mum of 3n possible successor states. However in practice, only a handful of these states are allowed
by the qualitative model. For example, there are only 22 possible states that can be reached from
the initial state in the above experiments, compared to the almost 60,000 potential successor states.
Bandelj et al. (2002), investigated this. By implementing QSIM as a constraint logic program over
a finite domain, they demonstrated, depending on the application, at least an order of magnitude
improvement over standard implementations of QSIM. The disadvantage to Bandelj’s approach is
that the landmarks were encoded numerically. This causes problems, since a viable approach to
improving the efficiency of the planner is introduce limited quantitative information similar to the
work of Berleant and Kuipers (1997) which also requires numerical landmarks. The two systems
are not compatible.

8. Conclusions and Future Work

A qualitative planner that produces a sequence of robotic actions required to completed a task has
been presented. Qualitative actions are defined in relation to Control Variables, and the Qualitative
Simulation algorithm is used to produce successor states. The planner has been implemented and
tested using a qualitative a model of a robotic platform for Urban Search and Rescue, and the task
of climbing a ledge. The results of the preliminary experiments have been presented.

Improving the efficiency of the planner also remains an open question. This can be achieved by
developing heuristics that better discriminate between states. Additionally, using purely qualitative

264



PLANNING WITH QUALITATIVE MODELS FOR ROBOTIC DOMAINS

information allows states which are physically impossible, bloating the state space that must be
searched. This could be reduced by introducing into the planner quantitative restrictions using
techniques from the work of Berleant and Kuipers (1997).

The motivation for this work is to use the constraints associated with each qualitative action to
reduce the search space for a learning system that turns qualitative actions into quantitative com-
mands that can be sent to actuators. Integration of the planner and learner is the next stage in this
research leading to acquiring skills that include climbing a stair case and traversing uneven terrain.

References

Aichernig, B. K., Brandl, H., & Krenn, W. (2009). Qualitative Action Systems. In Formal meth-
ods and software engineering in the series lecture notes in computer science, 206–225. Springer
Berlin / Heidelberg.

Andrieu, C., DeFreitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for
machine learning. Machine Learning, 50, 5–43.

Bandelj, A., Bratko, I., & Šuc, D. (2002). Qualitative Simulation with CLP. Qualitative Reasoning
(QR), 16th International Workshop on.

Berleant, D., & Kuipers, B. J. (1997). Qualitative and quantitative simulation: bridging the gap.
Artificial Intelligence, 95, 215–255.

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, P. D., & Slack, M. G. (1997). Experi-
ences with an architecture for intelligent, reactive agents. Journal of Experimental & Theoretical
Artificial Intelligence, 9, 237–256.

Bratko, I. (2011). Prolog Programming for Artificial Intelligence. Addison-Wesley.
Brown, S., & Sammut, C. (2011). Learning Tool Use in Robots. Advances in Cognitive Systems.
Buskey, G., Roberts, J., & Wyeth, G. (2002). Online learning of autonomous helicopter control.

Australasian Conference on Robotics and Automation (ACRA), Proceedings of the (pp. 19–24).
DeJong, G. F. (1994). Learning to Plan in Continuous Domains. Artificial Intelligence, 65, 71–141.
Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learning. ICML,

118–126.
Drabble, B. (1993). EXCALIBUR: A Program for Planning and Reasoning with Process. Artificial

Intelligence, 62, 1–50.
Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine

Learning, 43, 7–52.
Forbus, K. D. (1989). Introducing Actions into Qualitative Simulation. Artificial Intelligence (IJ-

CAI), 11th International Joint Conference on, 1273–1278.
Gat, E. (1998). On Three-Layer Architectures. Artificial Intelligence and Mobile Robotics, 195–

210.
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination

of Minimum Cost Paths. Systems Science and Cybernetics, IEEE Transactions on, 4.
Hengst, B. (2002). Discovering Hierarchy in Reinforcement Learning with HEXQ. Machine Learn-

ing (ICML), 19th International Conference on (pp. 243–250). Morgan Kaufmann.

265



T. WILEY, C. SAMMUT AND I. BRATKO

Hogge, J. C. (1987). Compiling Plan Operators from Domains Expressed in Qualitative recess
Theory. Artificial Intelligence (AAAI), 6th National Conference on (pp. 229–233).

Kuipers, B. J. (1986). Qualitative Simulation. Artificial Intelligence, 29, 289–338.
Michie, D., & Chambers, R. A. (1968). BOXES: An Experiment in Adaptive Control. Machine

intelligence, 2, 137–152.
Mugan, J., & Kuipers, B. J. (2012). Autonomous Learning of High-Level States and Actions in

Continuous Environments . Autonomous Mental Development, IEEE Transactions on, 4, 70–86.
Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E. (2006).

Autonomous inverted helicopter flight via reinforcement learning. Experimental Robotics IX,
363–372.

Ryan, M. R. K. (2002). Using Abstract Models of behaviours to automatically generate reinforce-
ment learning hierarchies. Machine Learning (ICML), 19th International Conference on (pp.
522–529). Morgan Kaufmann.

Sammut, C., & Yik, T. F. (2010). Multistrategy Learning for Robot Behaviours. In J. Koronacki,
Z. Ras, S. Wierzchon, & J. Kacprzyk (Eds.), Advances in machine learning i, 457–476. Springer
Berlin / Heidelberg.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA:
MIT Press. 1st edition.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM,
38, 58–68.

Troha, M., & Bratko, I. (2011). Qualitative learning of object pushing by a robot. Qualitative
Reasoning (QR), 25th International Workshop on, 175–180.

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. Doctoral dissertation.
Wiley, T., Sammut, C., & Bratko, I. (2013). Using Planning with Qualitative Simulation for Multi-

strategy Learning of Robotic Behaviours. Qualitative Reasoning (QR), 27th International Work-
shop on (pp. 24–31).

Yik, T. F., & Sammut, C. (2007). Trial-and-Error Learning of a Biped Gait Constrained by Qualita-
tive Reasoning. Robotics and Automation (ACRA), 2007 Australasian Conference on.

266


