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Abstract 
Autonomy involves not only the capacity to achieve the goals one is given but also to recognize 
problems and to generate new goals of one’s own that are worth achieving. The creation of goals 
starts with the recognition of a novel problem, and this recognition begins with the detection of 
anomalies represented as the difference between expectations and observations (or inferences). 
The expectation failure triggers the posing of questions; questions lead to explanations; and 
explanations form the basis for goals. I illustrate these principles with examples from a 
computational architecture called MIDCA. 

1.  Introduction 

Have patience with everything that remains unsolved in your heart. Try to love the 
questions themselves, like locked rooms and like books written in a foreign language. Do 
not now look for the answers. They cannot now be given to you because you could not 
live them. It is a question of experiencing everything. At present you need to live the 
question. Perhaps you will gradually, without even noticing it, find yourself experiencing 
the answer, some distant day. ― Letter 4 (Rilke, 1986/1903) 

Certainly one of the key elements of intelligence that separates us from the rest of the primate 
order is that we routinely question our world and ourselves. Yet some questions can take us in 
false directions and waste valuable time and effort. Other questions are rhetorical and serve quite 
different functions (e.g., speech acts). However I claim here that questions frame an inquiry that 
lies at the heart of what it means to be intelligent. Although the performance of the individual 
may benefit, it is not the efficiency of action that primarily motivates questioning and answering. 
Instead it is the agent in search of truth that operates behind the curtain. In seeking to understand 
the world and ourselves, we discover problems in our understanding of and in our world. By 
addressing these problems, we can better comprehend and independently manage the worlds 
within which we exist. Represented appropriately, these problems give rise to goals that enable 
change in our environment as well as change within ourselves.  

Goals are key computational structures that drive problem solving, comprehension, and 
learning. In humans they constitute a special category of knowledge structure that represents 
desired and attainable states of affairs and that holds some measure of value for the individual 
(Kruglanski, 1996). For Kruglanski goals possess properties attributable to all knowledge, to 
goals as a class, and to the specific goal relation identified. Hierarchical systems of goal 
structures motivate and constrain reasoning and effective behavior (Kruglanski, Köpetz, 
Bélanger, Chun, Orehek, & Fishbach, 2013; Kruglanski, Shah, Fishbach, Friedman, Young, & 
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Chun 2002). These goal systems enable efficient self-regulation and self-control. Goal orientation 
has also been shown to be an important determinant for successful learning (Dweck, 1986). 
Indeed the claim has been made that virtually all human behavior involves the pursuit of goals, 
that goals are at the center of human learning, and thus that goals constitute an effective means by 
which to organize educational curricula (Schank, 1994). 

In artificial cognitive systems, goals serve functions similar to those they do in people. In 
both cases goals provide focus, direction, and coordination for the allocation of computational 
resources during problem-solving and inference making. They also form a basis for the 
organization of and retrieval from memory (Schank & Abelson, 1977; Schank, 1982). 
Computationally goals reduce the amount of processing involved in decision-making; 
psychologically they afford attention and provide purpose. Further they also provide the means 
for explaining behavior (Malle, 2004; Ram, 1990; Schank, 1982; 1986). That is, agents do 
particular actions because they intend to achieve the states that result from such actions. Finally, 
many researchers have shown a positive relation between goal-focused behavior and deliberate, 
planful learning (Cox, 2007; Cox & Ram, 1999; Ram & Leake, 1995). 

However most computational theories of cognition assume the existence of goal structures 
and concentrate on their application and use in problem-solving, planning and execution, learning 
and other activities. Except under two conditions, these theories generally do not account for how 
goals originate. One assumption is that goals are simply input by a human. A second possibility is 
that goals arise due to subgoaling. When action preconditions are unsatisfied in the environment, 
a sub-goal is spawned to achieve blocked preconditions. Here I will examine in detail an 
alternative cognitive process that creates novel goals for an autonomous agent. 

Autonomy involves not only the capacity to achieve given goals, but it also concerns the 
ability to recognize new problems and to propose goals that are worth achieving. An independent 
cognitive system is autonomous to the extent that it understands the world and its relation to it 
and can act accordingly. Both opportunities and threats in the world require an agent to anticipate 
events within the context of its interests. Given an understanding of these opportunities and 
threats, an autonomous agent manages the goals and plans it has by adapting either its plans or 
goals and by abandoning old goals or by generating new ones.  

This paper will examine these issues in the context of computational theories and will 
illustrate parts of our theory with various examples. The following section discusses what it 
means for a cognitive system to be autonomous, and it will challenge the current models. Here 
autonomy means being able to generate new goals rather than just following the goals of others. 
The subsequent section expands upon this model and proposes that new goals come from the 
recognition of problems in the environment and within one’s knowledge and experience. The key 
is to identify when observations violate expectations, to ask why such an anomaly occurred, to 
answer by explaining the causes of the anomaly, and to generate a goal to remove the primary 
cause. This process either points to a deficiency of knowledge or a deficiency in the world. Next 
we examine an architecture called MIDCA that implements many of these ideas and processes 
and that provides a direction for our research. I close with summary and concluding remarks. 

2.  Autonomy 
A common model of autonomy assumes an intelligent agent that can perform tasks given to it by 
a user and/or can automatically improve its performance in some environment over time (Maes, 
1994; Wooldridge, 2002). The consensus asserts that agents exist within some environment 
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(either real or virtual) and can both sense and act within that environment (Franklin & Graesser, 
1997; Weiss, 1999). Weiss (1999) distinguishes autonomous agents from mere programs, since 
agents decide whether or not to perform a request; whereas called functional programs have no 
say in the matter. Many researchers attempt to restrict autonomous agents to those that have their 
own agenda or otherwise do not need human intervention to perform some task (e.g., Franklin & 
Graesser, 1997). However this transfers the uncertainty from the question of “what is autonomy?” 
to “what is having an agenda?” In general, an autonomous agent is one that makes many of its 
own decisions but that has an explicit mechanism of control. Control is provided by human 
assigned tasks or goals or by programming and design specifications. Autonomy is provided 
procedurally by automated planning and learning mechanisms. 

2.1  Goal-Following Autonomy 
Consistent with these characterizations, I define goal-following autonomy as either hardware or 
software agents that can accept a goal from a user (or another agent) and can automatically 
achieve the goal by performing a sequence of actions in its environment.1 The goal is simply 
some state configuration of the environment in terms of what needs to be satisfied. Functionally 
the agent implements the following characteristics. 

• A means to accept a goal request for some environment; 
• A decision whether to pursue the goal given its current situation and any prior requests; 
• A capacity to plan for goal achievement; 
• A capability to interact with the environment by executing a plan and perceiving results.  

If the world does not cooperate, a flexible agent may even change its plan at execution time 
to accomplish the goal as specified. But once the goal is achieved, does the agent wait to be told 
what to do next? Does it halt? In either case, this does not appear to constitute full autonomy in 
the more substantial sense.  

Practical problems also exist with the goal-following model. Most autonomous unmanned 
vehicles (AUVs) control their behaviors through preprogrammed mission plans that specify a set 
of waypoints, vehicle parameters, and tasks to perform at particular waypoints (Hagen, 
Midtgaard, & Hasvold, 2007). Complex tasks that cannot be fully specified in advance rely upon 
sporadic human intervention and communication. A large portion of the existing research effort 
into physical platforms revolves around motion planning and obstacle avoidance (e.g., see Berry, 
Howitt, Gu, & Postlethwaite, 2012; Minguez, Lamiraux, & Laumond, 2008). However an 
unrealistic burden on the user exists if a human must continuously monitor the behavior of an 
AUV. Furthermore in situations of low bandwidth or stealth, continuous human to machine 
communications cannot be assumed. Yet in many complex, dynamic environments, unusual 
situations arise on a regular basis as the world changes in unexpected ways. This quandary has 
been called the brittleness problem (Duda, & Shortliffe, 1983; Lenat & Guha, 1989). That is, 
agents and virtually all cognitive systems in complex environments are brittle except in narrow 
situations that have been foreseen and verified previously by the system designers. But problems 
will occur, and a truly autonomous system should be robust in the face of surprise. 

                                                 
1 The goal-following model of autonomy also includes those agents that can accept tasks to perform rather 

than states to achieve. In either case, the agent takes some high-level description of the desired behavior 
and automatically computes how to instantiate the directive in a particular environment.  
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One widespread solution to the brittleness problem is machine learning technology (Maes, 
1994; Holland, 1986; Stone & Veloso, 2000). Instead of explicitly programming an agent to 
select the optimal choice among large numbers of candidates across all possible situations, 
machine learning attempts to create generalizations for those conditions that apply to the largest 
set of possible contingencies. For example a classifier maps from a state of the world to some 
choice or decision outcome. In the case of AUVs, this choice could be in terms of a particular 
action to perform given the current state. Learning from experience then would develop new 
responses for unexpected situations. Much success has of course been reported in the machine 
learning and agent literature and also in the cognitive systems community (e.g., see Li, Stracuzzi, 
& Langley, 2012 and Laird, Derbinsky, & Tinkerhess, 2012 for the latter). 

I do not dispute that autonomy is about choosing good actions given a goal and about flexibly 
learning to improve these choices. But the goal-following model is not complete, and it misses an 
important distinction when the environment is extremely uncooperative and complex. 
Interestingly DARPA (2012, p. 8) has pointed to this missing component of autonomy in its 
capabilities description for its latest X-ship project called the ASW Continuous Trail Unmanned 
Vessel or ACTUV. Among the many autonomous capabilities, they identified that ACTUV 
needed to be “capable of autonomous arbitration between competing mission and operating 
objectives based on strategic context, mission phase, internal state, and external conditions.” That 
is, autonomy implies the need to balance its own condition in relation to what is happening in the 
world with the strategic context of what it is trying to accomplish.  

2.2  Goal-Driven Autonomy (GDA) 

Broadly construed, the topic of goal reasoning concerns cognitive systems that can self-manage 
their goals (Vattam, Klenk, Molineaux, & Aha, in press). The topic is about high-level 
management of goals, plans, knowledge, and activities, not simply goal pursuit. In particular we 
focus on managing goals in the midst of failure. Failure is important for any cognitive system if it 
is to improve its performance in complex environments. First no programming no matter how 
extensive will guarantee success in non-trivial domains. Second failure points to those aspects of 
the system that are no longer relevant or contain some gap that needs filling in the new context. In 
particular cognitive systems (especially humans) generate expectations about what will or should 
occur in the world. Expectation failures drive much of cognition and a number of researchers 
have recognized this relationship (Anderson & Perlis, 2005; Birnbaum, Collins, Freed, & 
Krulwich, 1990; Cox & Ram, 1999; Perlis, 2011; Schank, 82; Schank & Owens, 1987).  

The alternative model of autonomy I advocate here consists of self-motivated processes of 
generating and managing an agent’s own goals in addition to goal pursuit. This model - called 
goal-driven autonomy (GDA) (Cox, 2007; Klenk, Molineaux, & Aha, 2013; Munoz-Avila, Jaidee, 
Aha, & Carter, 2010) - casts agents as independent actors that can recognize problems on their 
own and act accordingly. Furthermore in this goal-reasoning model, goals are dynamic and 
malleable and as such arise in three cases: (1) goals can be subject to transformation and 
abandonment (Cox & Veloso, 1998; Talamadupula, et al., 2010); (2) they can arise from 
subgoaling on unsatisfied preconditions (e.g., see Veloso, 1994) or in response to impasses 
(Laird, 2012; Laird, Rosenbloom, & Newell, 1986) during problem-solving and planning; and (3) 
they can be generated from scratch during interpretation (Cox, 2007; see also Norman, 1995). 

For our purposes here, the most important of the above three cases is the third one. The idea 
is that given a problem in the world, an autonomous cognitive system must distinguish between 
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perturbations that require a change in plans for the old goal and those that require a new goal 
altogether. What is missing in the planning and agent communities is a recognition that autonomy 
is not just planning, acting and perceiving. It also must incorporate a first-class reasoning 
mechanism that interprets and comprehends the world as plans are executed (Cox, 2011). It is this 
comprehension process that not only perceives actions and events in the world, but can recognize 
threats to current plans, goals, and intentions. I claim that a balanced integration between 
planning and comprehension leads to agents that are more sensitive to surprise in the environment 
and more flexible in their responses. 

In my approach, flexibility is realized through a technique I call goal insertion, where an 
agent inserts a goal into its planning process. In general goals are produced through goal 
formulation (c.f., Hanheide et al., 2010; Wilson, Molineaux, & Aha, 2013; Weber, Mateas, & 
Jhala, 2010), the process that includes the creation and deployment of autonomous goals where 
the agent takes initiative to establish new concerns and to pursue new opportunities. First an agent 
detects discrepancies between its observations and its expectations. The agent then explains what 
causes such discrepancies and subsequently generates a new goal to remove or mitigate the cause 
(Cox, 2007). 

Consider a baby that is crying in public. Given that it normally is quite calm, the crying 
observation violates the mother’s expectation and represents an anomaly. The baby’s behavior 
could be explained in a couple of simple ways. If the baby is hungry then it cries, and if the 
baby’s diapers are dirty then it cries. The mother may check the diapers to eliminate that 
explanation and conclude that it is hungry. The resulting goal for the mother is to eliminate the 
hunger. A reasonable plan would be to get a bottle from her bag and feed the baby. Table 1 shows 
the distinct stages of the GDA process in an overly simplified manner. 

Steps Representations 

Anomaly detection Expect: calm (baby) 
Observe: cry (baby) 

Anomaly explanation hungry (baby) → cry (baby) 

Goal formulation ¬ hungry(baby) 

Plan get (bottle) 
feed (baby, bottle) 

In this example, the explanation is a basic rule, but in general it may be an arbitrary lattice or 
explanatory graph structure. Here the goal is just the negation of the rule antecedent (see Cox, 
2007 for an accompanying algorithm), but for realistic situations, goal formulation must choose 
some salient prior state or set of states as the cause that requires attention for the problem to be 
solved. The next section will take a closer look at this issue. 

3.  Question-Based Problem Recognition 
Years ago Getzels (Getzels & Csikszentmihalyi, 1975) described the early stages of problem 
solving as including a cognitive process they called problem finding (see also Runco & Chand, 
1994). Problem finding involves the identification of the problem and precedes problem-

Table 1. Crying baby example 
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representation. Getzels classified problem finding into three distinct classes: problem presentation 
involves tasks given to the subject; problem discovery is the detection or recognition of the 
problem; and problem creation is a creative act that designs new problems.2 This paper focuses 
on the second class and uses the more common term problem recognition (Pretz, Naples, & 
Sternberg, 2003).3  

In a brief Cognitive Science article, Getzels (1979) notes that, despite the journal’s broad 
coverage of cognitive processes and the eminent role that problems play in such processes, little 
research examines how problems are found or formulated. Surprisingly this negative condition is 
still true today. Despite the acknowledgement that goal formulation constitutes an initial stage of 
computation for agents (e.g., Russell & Norvig, 1995, p. 56), authors and AI researchers still fail 
to investigate its operation. Instead the technical focus is on high quality problem-representation 
(by researchers) and optimal problem-solving algorithms (by machines). Computational problems 
and goal states are typically assumed as given (presumably by an intelligent human). But our 
claim here is that the recognition of the problem and the generation of a goal are the hard 
problems rather than the generation of solutions.  

The GDA approach starts with an expectation failure as an initial condition for anomaly 
detection. However not all anomalies are problems and not all problems are relevant to the agent. 
Furthermore the representation for problems is often overly simplified in the literature. For 
example the automated planning community represents problems as an initial state, a goal state, 
and a set of operators (i.e., action models) (see Ghallab, Nau, & Traverso, 2004). But the real 
issue with how problem instances are represented is that in general they are arbitrary. Consider 
the blocksworld domain. The initial states in this domain are random configurations of blocks, but 
so too are the goals states. For example in the first panel of Figure 1, the initial state is the 
arrangement of three blocks on the table and the goal state is to have block A on top of block B. 
The planner is given no reason for why this should be the case, unlike the second panel in the 
figure. In this situation the planner wishes to have the triangle D on the block A to keep water out. 
Here D represents the roof of the house composed of A, B, and C. Water getting into a person’s 
living space is a problem; stacking random blocks is not. 

 

          
Figure 1. Blocksworld state sequences that distinguish justified problems from arbitrary problems 

                                                 
2 Although none of these researchers take a computational approach, Hawkins, Best, & Coney (1989) 

actually come closest to our conception of the processes of problem recognition, but they do so from the 
perspective of a business analysis of consumer behavior. Their process starts with a discrepancy between 
what the consumer expects and what they perceive. Such problem recognition then leads to a solution in 
terms of a product to purchase. As an aside, it is interesting to note that it is in the interest of businesses 
and marketing firms to manufacture a consumer need by giving the consumer specific expectations. In 
this sense product marketing may be viewed as problem creation in Getzels classification. 

3 See also Klein, Pliske, Crandall, & Woods (2005) for problem detection. Their perspective is similar to 
ours (although still not computational), but they insist that the detection is not solely about expectation 
violations. 
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In our earlier work on symbolic anomaly detection (Cox, Oates, Paisner, & Perlis, 2012), we 
simulated an anomaly by removing an operator from the set of action models for the logistics 
domain. The logistics problems were to transport packages from one location to another using 
planes and trucks. When the unload-airplane action was removed and the original problem set 
was presented to the planner, only a subset of problems could be solved. The new set of solutions 
then provided an anomalous series of observations relative to the normal set of solutions. Now 
consider how a GDA-based cognitive system might actually explain the planes not being 
unloaded at a particular airport.  

Figure 2 shows a possible explanation. The airplanes are not unloaded, because no workers 
are at the airport. This is the case because the stevedores are on strike. The strike is caused by bad 
working conditions and low pay. For the management of the logistics company, this represents a 
serious and relevant problem. If it continues, profits will plummet and investor confidence will 
wane. Both are thus threatened. The question remains as to the management’s goal however. 

Negating the pay predicate leads to higher 
wages; whereas negating the belief in poor 
conditions possibly leads to misinformation. An 
alternative is to negate ¬at-airport(workers) which 
is to imply workers should be present. This could be 
achieved by bringing in scabs. Finally the 
management might address the actual working 
conditions. In this last case, the goal would be 
¬bad-working-conds. The choice of which cause 
of the problem to attack is unclear. A cost benefit 
analysis might be used to differentiate between 
choices, but one must be sure not to require a cost 
or benefit of the resulting plan or solution, only the 
goal. Otherwise one would need to perform 
planning before goal formulation – a clear case of 
the cart before the horse. 

Instead an intelligent agent should ask the right question in the first place. It observes no 
planes unloading when it expects normal activity at the airport and experiences an expectation 
failure and hence an anomaly. If it asks why the planes were not unloaded it would get an 
explanation of how this was not the case. But if it asks why the workers chose not to perform 
their duty, it would not get an explanation that focused on their wages. They have unloaded 
planes in the past at these same wages. The answer would focus on the working conditions. The 
agent would then recursively question whether it was the perception of the conditions that 
changed (i.e., the belief) or the conditions themselves that changed. This secondary question 
would get to the core cause of the problem. Given an answer to the question and an appropriate 
explanation, the goal would be simple. Removing the cause of the grievance would be the goal 
that the autonomous agent should prefer. Planning and hence action would follow directly and 
effectively.  

In the next section I will examine a cognitive architecture that integrates problem-solving as 
planning and comprehension as goal-driven autonomy. The architecture includes a cognitive 
cycle for action and perception and an analogous metacognitive cycle for meta-level control and 
introspective monitoring. I will concentrate on the former cycle to illustrate the concepts 
presented above. 

Figure 2. Explanation for why airplanes are 
not unloaded 
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4.  MIDCA 
The Metacognitive, Integrated, Dual-Cycle Architecture (MIDCA) (Cox, Maynord, Paisner, 
Perlis, & Oates, 2013; Cox, Oates, & Perlis, 2011) consists of “action-perception” cycles at both 
the cognitive (i.e., object) level and the metacognitive (i.e., meta-) level (see Figure 3). The 
output side of each cycle consists of intention, planning, and action execution, whereas the input 
side consists of perception, interpretation, and goal evaluation. A cycle selects a goal and 
commits to achieving it. The agent then creates a plan to achieve the goal and subsequently 
executes the planned actions to make the domain match the goal state. The agent perceives 

Figure 3. The MIDCA architecture 
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changes to the environment resulting from the actions, interprets the percepts with respect to the 
plan, and evaluates the interpretation with respect to the goal. At the object level, the cycle 
achieves goals that change the environment (i.e., ground level). At the meta-level, the cycle 
achieves goals that change the object level. That is, the metacognitive “perception” components 
introspectively monitor the processes and mental state changes at the cognitive level. The 
“action” component consists of a meta-level controller that mediates reasoning over an abstract 
representation of the object level cognition. 

To appreciate the distinctions in the relationship between levels, examine the finer details of 
the object level as shown in Figure 3. Here the meta-level executive function manages the goal 
set 𝒢. In this capacity, the meta-level can add initial goals (𝑔0), subgoals (𝑔𝑠) or new goals (𝑔𝑛) 
to the set, can change goal priorities, or can change a particular goal (∆𝑔). In problem solving, the 
Intend component commits to a current goal (𝑔𝑐) from those available by creating an intention to 
perform some Task that can achieve the goal (Cohen & Levesque, 1990). The Plan component 
then generates a sequence of Actions (π𝑘, e.g., a hierarchical-task-net plan, see Nau, et al., 2003) 
that instantiates that Task given the current model of the world (MΨ) and its background 
knowledge (e.g., semantic memory and ontologies). The plan is executed by the Act component 
to change the actual world (Ψ) through the effects of the planned Actions (𝑎𝑖). Problem solving 
stores the goal and plan in memory to provide the agent expectations about how the world will 
change in the future. Then given these expectations, the comprehension task is to understand the 
execution of the plan and its interaction with world with respect to the goal so that success occurs.  

Comprehension starts with perception of the world in the attentional field via the Perceive 
component. The Interpret component takes as input the resulting Percepts (i.e., 𝑝𝑗) and the 
expectations in memory (π𝑘 and 𝑔𝑐) to determine whether the agent is making sufficient progress. 
A GDA interpretation procedure implements the comprehension process. The procedure is to note 
whether an anomaly has occurred; assess potential causes of the anomaly by generating 
explanatory Hypotheses; and guide the system through a response. Responses can take various 
forms, such as (1) test a Hypothesis; (2) ignore and try again; (3) ask for help; or (4) insert 
another goal (𝑔𝑛). Otherwise given no anomaly, the Evaluate component incorporates the 
concepts inferred from the Percepts thereby changing the world model (∆𝑀𝛹), and the cycle 
continues. This cycle of problem-solving and action followed by perception and comprehension 
functions over discrete state and event representations of the environment.  

Likewise introspective monitoring starts with “perception” of the self (Ω) via the Monitor 
component. The Interpret component takes as input the resulting Trace (i.e.,𝜏𝑙) and the 
expectations in memory (π𝑚 and 𝑔𝑐) to determine whether the reasoning is making sufficient 
progress. The Interpret procedure is to detect a reasoning failure; explain potential causes of the 
failure by generating explanatory Hypotheses; and generate a learning goal or attainment goal. 
Reasoning about the self (e.g., am I knowledgeable about the domain) and the reasoning task 
enables the agent to determine the difference (i.e., learning vs. attainment goal). If MIDCA 
produces a learning goal, the meta-level control will create and execute a learning plan to change 
its knowledge. Attainment goals are passed through to the object level. Given no anomaly, the 
Evaluate component incorporates the concepts inferred from the Trace thereby changing the self-
model (∆𝑀𝛺), and the cycle continues.  
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4.1  Implementation: MIDCA_1.1 

MIDCA_1.1 (Paisner, Maynord, Cox, & Perlis, in press) is a simplified version of the complete 
MIDCA architecture shown in the schematic of Figure 3. It is currently composed of the 
cognitive (object level) cycle components shown in Figure 3. The implementation effort has 
concentrated on a simulator that generates successor states based on valid actions taken in the 
blocksworld domain; a state interpretation component; and a planner. For the planner, we used 
SHOP2 (Nau et al., 2003), a domain-independent task decomposition planner. Whereas the full 
MIDCA architecture has a meta-cognitive component, which manages goals, MIDCA_1.1 has no 
goal management, and simply passes any new goals from the interpreter directly to the planner. In 
MIDCA_1.1, the Interpret component consists of an integration of bottom up and top down 
process as explained below. The Act component is incorporated into the blocksworld simulator, 
and the Perception component is implicit in the transfer of world state representation to the 
interpreter. 

The GDA interpretation procedure at the object level has two variations that represent a 
bottom-up, data-driven track and a top-down, knowledge rich, goal-driven track (Cox, Maynord, 
Paisner, Perlis, & Oates, 2013). The data-driven track we call the D-track; whereas the knowledge 
rich track we call the K-track. The D-track is implemented by a bottom-up GDA process as 
follows. A statistical anomaly detector constitutes the first step, a neural network identifies low-
level causal attributes of the anomaly, and a machine learning goal classifier provides the goal 
formulation. The K-track is implemented as a case-based explanation process. The 
representations for expectations significantly differ between the two tracks. K-track expectations 
come from explicit knowledge structures such as action models used for planning and ontological 
conceptual categories used for interpretation. Predicted effects form the expectations in the 
former and attribute constraints constitute expectation in the latter. D-track expectations are 
implicit by contrast. Here the implied expectation is that the probabilistic distribution of 
observations will remain the same. When statistical change occurs instead, an expectation 
violation is raised.  

The D-track interpretation procedure uses a novel approach for noting anomalies. We apply 
the statistical metric called the A-distance to streams of predicate counts in the perceptual input 
(Cox, Oates, Paisner, & Perlis, 2012; 2013). This enables MIDCA to detect regions whose 
statistical distributions of predicates differ from previously observed input. These regions are 
those where change occurs and potential problems exist.  

When a change is detected, its severity and type can be determined by reference to a neural 
network in which nodes represent categories of normal and anomalous states. This network is 
generated dynamically with the growing neural gas algorithm (Paisner, Perlis, & Cox, 2013) as 
the D-track processes perceptual input. This process leverages the results of analysis with A-
distance to generate anomaly archetypes, each of which represents the typical member of a set of 
similar anomalies the system has encountered. When a new state is tagged as anomalous by A-
distance, the GNG net associates it with one of these groups and outputs the magnitude, predicate 
type, and valence of the anomaly. 

Goal generation is done through a conjunction of two machine learning algorithms both of 
which work over symbolic predicate representations of the world (Maynord, Cox, Paisner, & 
Perlis, 2013). Given a world state interpretation, the state is first classified using a decision tree 
into one of multiple state classes, where each class has an associated goal generation rule 
generated during learning. Given an interpretation and a class, different groundings of the 
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variables of the rule are permuted until either one is found which satisfies that rule (in which case 
a goal can be generated) or until all permutations of groundings have been attempted (in which 
case no goal can be generated). This approach to goal insertion is naïve in the sense that it 
constitutes a mapping between world states and goals which is static with respect to any context. 

The K-track GDA procedure is presently implemented with the Meta-AQUA system (Cox & 
Ram, 1999). In Meta-AQUA frame-based concepts in the semantic ontology provide constraints 
on expected attributes of observed input and on expected results of planned actions. When the 
system encounters states or actions that diverge from these expectations, an anomaly occurs. 
Meta-AQUA then retrieves an explanation-pattern that links the observed anomaly to the reasons 
and causal relationships associated with anomaly. A goal is then generated from salient 
antecedents of the instantiated explanation pattern (see also Cox, 2007). 

4.2  Firefighting Example: Autonomous goal formulation  

To generate goals autonomously, one might statistically train a classifier to recognize a goal 
given an arbitrary state representation.4 Maynord, Cox, Paisner, & Perlis (2013) demonstrated the 
potential of this approach using a knowledge structure called a TF-Tree. As mentioned in the 
previous section, the TF-Tree combines the results of two machine learning algorithms to detect 
those conditions that warrant the generation of a new goal. Given multiple examples of state-goal 
pairs, the classifier learns to generate appropriate goals when presented with novel states.  

For the implementation of MIDCA_1.1 we used a modified blocksworld for the domain. This 
version of blocksworld includes both rectangular and triangular blocks that compose the materials 
for simplified housing construction (see Figure 1). The initial goals for problems in this domain 
are to build houses consisting of towers of blocks with a roof on each. In addition the possibility 
exists that blocks may catch fire (set by a hidden arsonist). Furthermore there are additional 
actions added to the standard blocksworld operators. One action will put out fires, and another 
will find and capture the arsonist. In the amalgamated firefighting/house-
construction/blocksworld domain, the TF-Trees will learn to generate a goal to have a fire 
extinguished when given a state containing a block on fire.  

The fires are problems because of the effect on housing construction and the supposed profits 
of the housing industry, and they pose threats to life and property. The approach to understanding 
the fire problems is to ask why the fires were started and not just how. An explanation of how the 
fire started would relate the presence of sufficient heat, fuel, and oxygen with the combustion of 
the blocks. Generating the negation of the presence of the oxygen for example would result in the 
goal ¬oxygen and therefore put out the fire. But this does not get to the reason the fire started in 
the first place. To ask why the fire was started would result in possibly two hypotheses or 
explanations. Poor safety conditions can lead to fire or the actions of arsonists can result in fire. 
In this latter case, the arsonist causes the presence of the heat through some hidden lighting 
action. Given this explanation the agent can anticipate the threat of more fires and generate a goal 

                                                 
4 One might also just enumerate all possible goals and the conditions under which they are triggered. Tac-

Air Soar (Jones, Laird, Tambe, & Rosenbloom, 1994) takes such an approach. Operators exist for various 
goal types and data-driven context-sensitive rules spawn them given matching run-time observations. 
However even if one could engineer all relevant goals for a domain and all the conditions under which 
they apply, an expectation failure or surprise may occur if the domain shifts (e.g., the introduction of 
novel technology). The recognition of new problems and the explanation of their causes would enable the 
formulation of a goal from first principles, even under conditions not envisioned by the agent designer. 
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to remove the threat by finding the arsonist. Apprehending the arsonist then removes the potential 
of fires in the future rather than just reacting to fires that started in the past. 

Empirical results show that the GDA approach to goal formulation significantly outperforms 
the statistical approach with fewer actions required for the same amount of housing construction. 
In brief the housing domain goes through a cycle of three state classes in building new “houses.” 
Figure 4 shows three instantiated states classified by the TF-Trees and the grounded goals that 
each tree recognizes.  

Using the GDA method, over 1000 
time steps results in an average 
improvement of 245.4% relative to a 
baseline method that lacks goal 
generation altogether; whereas the 
statistical method results in a 54.2% 
improvement over the baseline (see 
Paisner, Maynord, Cox, & Perlis, in 
press for technical details). The specific 
results are less important, however, 
than the conceptual framing of the 
problem. Many methods exist to 
implement a GDA approach to planning 

and action (e.g., see Aha, Klenk, Muñoz-Avila, Ram, & Shapiro, 2010; Aha, Cox, & Munoz-
Avila, in press). The crucial point for autonomous cognitive systems is to consider how they can 
be made to understand and represent the problem not just optimize a solution.  

5.  Conclusion 
This paper is not a technical analysis of autonomy, nor is it an empirical investigation of specific 
algorithms and data structures; rather it makes a sometimes intuitive case for a different approach 
to autonomy and intelligent agency. The proposal is that autonomy is chiefly about recognizing 
problems independently and generating goals to solve them. The specific technical details as they 
exist now are to be found in the references cited throughout this article. In lieu of these details 
here, I have tried instead to explore an alternative that lies relatively unexamined and to shed 
some light on the issues. For the most part, my proposition is novel, because few have thought 
much about it computationally; the research that does exists is found mainly in the social 
psychology literature. Also it is still unclear how many of the propositions and claims herein can 
be implemented fully, although further examples exist, especially in some of the earlier AI 
literature (e.g., Schank, 1986; Ram, 1991). A few new researchers have done work under the 
GDA topic, but much of the focus has been on goal formulation, explanation, and case learning 
rather than problem recognition and question posing. So as it stands now, much research remains, 
not the least of which is to clarify the role of question asking and experience in problem 
recognition.  

No current theory explains precisely why humans question the world and themselves. What is 
the exact relationship between question posing, problem recognition, and motivation in an 
intelligent agent? Why does an agent actively look for problems to begin with? That is why are 
we so motivated (sometimes compelled) to solve problems? Certainly a benefit accrues or some 
personal utility exists in the cost-benefit calculations that percolate in our mind, but this may not 

Figure 4. Three classifiers exist that recognize goals to get 
to the next state 
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constitute the whole story. Perhaps at least part of the answer can be seen in the explanations 
provided by Higgins (2012).  

Higgins proposes that human intelligence is motivated by three things: value, truth, and fit. 
Value corresponds to the utility (i.e., value) we experience in things (e.g., objects, events, or 
states). Truth corresponds to the capability to accurately interpret the world with respect to one’s 
own experience and memory. Fit refers to the appropriateness of strategy. The AI community 
focusses on the first factor; whereas this paper has focused on the second. The motivation of truth 
impels us to look clearly at the world. We seek to discern where our observations agree with and 
where they differ from our knowledge of the world with the aim of improving our understanding. 
As I see it, value and truth correspond to the problem solving and problem comprehension 
divisions within the MIDCA architecture. An autonomous agent values effective performance and 
finds “truth” in effective interpretation. One is as a complement to the other.  
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