Second Annual Conference on Advances in Cognitive Systems Poster Collection (2013) 47-58

LUIGi: A Goal-Driven Autonomy Agent Reasoning with Ontologies

Dustin Dannenhauer DTD212 @LEHIGH.EDU
Héctor Muiioz-Avila HEM4 @LEHIGH.EDU

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015 USA

Abstract

In this paper we present LUIGI, a goal-driven autonomy (GDA) agent that uses ontological rep-
resentations. Like other GDA agents, LUIGi reasons about (1) its own expectations when fol-
lowing a course of action, (2) the discrepancies between these expectations and actual situations
encountered, (3) explanations for those discrepancies and (4) new goals based on the explanations.
Unlike other GDA agents, LUIGi uses ontologies to reason about these four GDA elements en-
abling inference capabilities relating high-level concepts with low-level chunks of information. We
demonstrate LUIGi’s capabilities in the context of a real-time strategy game.

1. Introduction

Many cognitive scientists believe that humans learn and reason with skills of different levels of
abstraction (Langley & Choi, 2006). Perhaps as a result, stratified goal reasoning, the study of
agents that can reason about what goals at different levels of abstraction they should dynamically
pursue, has been a central topic of cognitive architectures. SOAR (Laird, 2012), Companion (Forbus
& Hinrichs, 2006) and ICARUS (Langley & Choi, 2006) uses HTN planning techniques for subgoal
generation: goals are recursively decomposed from high-level goals into simpler ones. Goals are
not only generated as subgoals for a goal to be achieved; for example, if an impasse on the use of
knowledge occurs, SOAR will generate a goal to solve this impasse.

Goal-driven autonomy (GDA) (Mufoz-Avila et al., 2010b; Molineaux, Klenk, & Aha, 2010)
is a model of goal reasoning in which an agent revises its goals by reasoning about discrepancies
(i.e., when its expectations are not met) it encounters during plan execution monitoring and their ex-
planations. Discrepancies arise when solving tasks in environments where either there are multiple
possible outcomes for the agent’s actions or changes in the environment may take place independent
of the agent’s actions. GDA agents continuously monitor the current plan’s execution and assess
whether the actual states visited during the current plan’s execution match expectations. When dis-
crepancies occur, a GDA monitor will suggest alternative goals that, if accomplished, would fulfill
its overarching objectives.

A shortcoming in the current state of the art on GDA research is the lack of structured, high-
level representations in their formalisms. Most rely on STRIPS representations. For example, the
agent’s expectations are defined as either specific states (i.e., collection of atoms) or specific atoms
in the state (e.g., after executing the action move(x,y) the agent expects the atom location(y) to be

(© 2013 Cognitive Systems Foundation. All rights reserved.

D. DANNENHAUER AND H. MUNOZ-AVILA

in the state) expected to be true. Goals are desired states to be reached or desired atoms in the state
(e.g., the agent is at a certain location).

In this paper we present LUIGI, a GDA agent that uses ontologies to enhance its representation
of GDA elements whereby high-level concepts can be directly related, and defined in terms of low-
level chunks of information. Another motivation for using ontologies is that STRIPS representations
are known to be too limited to represent certain events that happen in the real world (Gil & Blythe,
2000), more structured representations are needed in order to capture more complex constraints.
Drawbacks to using ontologies include the knowledge engineering effort required for construction
and maintenance of the ontology as well as the running time performance during reasoning. In
past years, taking an ontological approach may have seemed intractable for systems acting in real-
time domains with large state spaces. With the growth of the semantic web, description logics,
and fast reasoners, ontologies may begin to become viable. As demonstrated in this work, we are
reaching a point where ontologies are useful for fast-acting systems such as agents that play Real-
Time Strategy games. This work investigates the use of ontologies for a GDA agent playing the
Real-Time Strategy game Starcraft.

2. Related Work

Cognitive architectures researchers have long pointed to the importance of using ontological knowl-
edge. The Disciple cognitive architecture uses isa and subclass ontological relations to represent
complex relations between concepts (Tecuci et al., 1999). This enables Disciple to generalize cat-
egories of objects by looking at their isa relations. The Companions cognitive architecture maps
two structured representations (the base and the target) as part of its analogical reasoning process
(Forbus & Hinrichs, 2006). It uses an analogy ontology to formalize the kinds of relations that
occur during its analogical reasoning process. This ontology enables Companions to combine reuse
knowledge (akin to case-based reasoning) with first-principles reasoning (akin to planning). The
SOAR cognitive architecture uses ontologies to facilitate representing structured declarative infor-
mation. It also defines types of impasses that are shared across domains. Our work borrows from
these experiences by introducing ontologies into GDA.

Robotics research is seeing an increase in the use of ontologies. The work of (Tenorth & Beetz,
2009) presents a knowledge processing system, KnowRob, that uses ontologies to better enable an
autonomous robot to perform everyday manipulation tasks and perception. Our work differs in that
we use ontologies to provide richer expectations and explanations to improve the goal reasoning
process. (Hawes et al., 2011) use ontologies in a conceptual layer of map knowledge. The ontology
allows the robot to identify areas as either Rooms or Passages. This is similar to our work, where
the ontology allows labeling regions in Starcraft maps as Controlled, Contested, or Unknown, but
the task of the agent and use of the labels are different. Their robot is using the ontologies to ac-
complish navigation tasks in a partially-observable environment whereas LUIGi is using ontologies
to perform GDA exemplified in strategy game-playing tasks.

GDA research has garnered a lot of attention in recent years. (Cox, 2007) introduces the notions
of expectation and explanation, which are two of the main components of GDA. When an anomaly
happens, an agent generates an explanation; this process involves finding the culprit of the anomaly.

48

LUIGI: A GOAL-DRIVEN AUTONOMY AGENT REASONING WITH ONTOLOGIES

| Planner I l

Planp Y
Expectations X | M. s, g
Controller

Detector Generator

le
Goal g_ Goal
Manager Formulator

Action al State s

State Transition System £ Current
State

(Execution Environment)

[Dis:rep ancy Explanation J

Figure 1: The GDA Cycle

The culprit may stem from a defect in the agent’s cognitive process (including its knowledge). An
intelligent agent may need to blame itself and its own cognitive process in order to improve: this
can be done by generating a Learning Goal. Learning Goals are used in pursuit of improving the
agent’s cognitive process (i.e. filling a gap in knowledge), which are different from Achievement
Goals: the goals the agent pursues to accomplish its task.

GDA models can be seen as consisting of four steps, as shown within the Controller component
in Figure 1. This particular GDA model, with some small variations, has been used in a number
of publications (Mufioz-Avila et al., 2010a; Molineaux, Klenk, & Aha, 2010; Mufioz-Avila et al.,
2010b; Jaidee, Muiioz-Avila, & Aha, 2011; Powell, Molineaux, & Aha, 2011; Aha, 2011)

The DiscoverHistory GDA agent (Molineaux, Aha, & Kuter, 2011) uses a Hierarchical Task
Network planner to generate a plan. Since the planner cannot account for every plausible event in
the domain; it makes assumptions that the conditions of the environment are static to generate its
plan. The system then uses the DiscoverHistory algorithm whenever one of these assumptions fails.
The way DiscoverHistory works is by modifying the generated plan, introducing new elements
that solve discrepancies, or by modifying the initial assumptions. Often, this process introduces
new contradictions, which are then recursively solved until the whole plan is consistent, or until a
maximum number of modifications have been made.

More recently, Klenk et al. (2012) presented ARTUE, which uses a direct application of expla-
nations in a strategy simulation. ARTUE is based on a modified version of the SHOP2 planner, and
it explains discrepancies similarly to DiscoverHistory. When ARTUE cannot create an explanation,
it discards the discrepancy entirely.

None of these GDA agents use ontological information to reason about the GDA steps. To the
best of our knowledge, LUIGi is the first GDA agent to use ontological information to reason about
the GDA elements at varied levels of abstraction.

49

D. DANNENHAUER AND H. MUNOZ-AVILA

Description logics used by semantic web languages, and as we adopted in our work, follow
principles established by early work on knowledge representation. For example, Classic (Patel-
Schneider et al., 1991) is a framed-based knowledge representation language that belongs to the
family of description logics and is a descendant of KL-ONE (Brachman & Schmolze, 1985). De-
scription logics focus on the definition of terms in order to provide precise semantics. Description
logics can automatically classify a concept (i.e., automatically insert the concept at the appropriate
place in the ontology). Classic allows the description of objects in such a way that it is possible (and
tractable) to determine automatically whether one object is subsumed by another. In the parlance of
Classic, information can be told or derived. Told information is the one that is described explicitly
in the ontology. For example, a UNIX symbolic link can be defined to be a subclass of file. Derived
information is information that is derived through various mechanisms. Classic uses open world
assumption. That is, Classic doesn’t assume that all information is known. Hence, the absence of a
fact doesn’t imply its negation.

3. Goal-Driven Autonomy

The GDA model, shown in Figure 1, extends the conceptual model of online planning (Nau, 2007).
The components include a Planner, a Controller, and a State Transition System o = (S, A, E,)
with states S, actions A, exogenous events E, and state transition function v: S x (AU E) — 25.
In the GDA model, the Controller is centric. It receives as input a planning problem (M, s, g.),
where M, is a model of o, s, is the current state (e.g., initially the starting state), and g. € G is
a goal that can be satisfied by some set of states S, € S. It passes this problem to the Planner

I1, which generates a sequence of actions A, = (ac, ..., ac+n) and a corresponding sequence of
expectations X. = (¢, ..., Tcqn), Where each z; € Xc is a set of constraints that are predicted
to hold in the corresponding sequence of states (Sci1, .. ., Sc+n+1) When executing A, in s. using

M. The Controller sends a, to o for execution and retrieves the resulting state s.1, at which time
it performs the following knowledge-intensive (and GDA-specific) tasks:

1. Discrepancy detection: GDA detects unexpected states before deciding how to respond to
them. This task compares observations s.1 with expectation z.. If one or more discrepan-
cies (i.e., unexpected observations) d € D are found in s.1, then explanation generation is
performed to explain them.

2. Explanation generation: This module explains a detected discrepancy d. Given also state s,
this task hypothesizes one or more explanations ex € E'x of their cause.

3. Goal formulation: Resolving a discrepancy may warrant a change in the current goal(s). This
task generates goal g € G given a discrepancy d, its explanation ex, and current state s..

4. Goal management: New goals are added to the set of pending goals GP C (, which may
also warrant other changes (e.g., removal of other goals). The Goal Manager will select the
next goal g € GP to be given to the Planner. (It is possible that g = g.)

Common to most current GDA systems in the literature, the GDA elements are defined using
STRIPS planning conventions:

50

LUIGI: A GOAL-DRIVEN AUTONOMY AGENT REASONING WITH ONTOLOGIES

State: a collection of atoms

Goal: a desired atom in the state

Goal state: any state that contains the goal(s)

Expectation: predicted state following an action

e Discrepancy: Whenever the expected state X is different from the actual S obtained (i.e.,
X # S). The discrepancy are the atoms in X \ S

Explanation: any ex € Ex that caused the discrepancy

4. Example: Exploiting Ontologies in GDA

We now walk through an example that uses ontological knowledge to reason at a high-level in a real-
time strategy game. Real-Time Strategy (RTS) games involve two or more players whose goal is
defeat their opponent’s armies, and commonly require the construction of army units (i.e. soldiers)
while managing economic resources. RTS games require managing different tasks concurrently,
including managing an economy, developing an army, and attacking the enemy. Some RTS games
have achieved worldwide popularity, such as Starcraft and Warcraft. Starcraft has become so popu-
lar that a professional competitive league televises and awards considerable prize money to expert
players. We use Starcraft as a testbed for GDA research because the environment is complex, real-
time, dynamic, has partial visibility, and a vast state space with size on the order of 1019000 with
map sizes of up to 256x256 tiles (Weber, 2012). An important aspect of Starcraft is “fog of war’:
each player’s visibility of the map is determined from the radius of its units. From the player’s
perspective a region is unknown if it is enveloped in the fog of war.

LUIGi maintains an ontology that contains low-level facts of the environment (such as the x and
y coordinates of each unit) as well as high-level concepts that can be inferred from low-level facts.
One such high-level concept is the notion of controlling a region (a bounded area of the map). A
player controls a region provided two conditions hold. First, the player must have at least one unit
in that region. Second, the player must own all units in that region. Regions in which both players
have units are considered contested. A region can only be one of unknown, contested, or controlled.

Once we have these concepts of unknown, controlled, and contested regions, we can use rich
expectations. For example, in the beginning of the game when we are constructing the buildings and
producing our first army, LUIGi expects that to control the region where his starting base and units
are located. If this expectation is violated (producing a discrepancy), it means that the enemy is
attacking Luigi’s starting base early in the game When this happens LUIGi explains the discrepancy
and pursues a goal focused on defending its base region instead of building a considerable army.
In real-time strategy games the order in which you construct buildings and produce fighting units
is crucial in the beginning of a match. There is a trade-off between constructing the buildings and
harvesting the resources that are needed to build more powerful units in the future versus building
weaker units more quickly. A rush attack is when one player builds many cheap units to attack
the enemy, before he has produced any defensive capabilities. It is important to note that if a rush

51

D. DANNENHAUER AND H. MUNOZ-AVILA

fails, the player who rushed may then be at a disadvantage, having less resources then the defending
player who was planning for the long term.

When the expectation “I control my starting region” fails during an enemy rush attack, the agent
can choose a new goal to quickly defend their region. This is a higher reasoning level than many RTS
bots who simply focus on optimizing micro-unit attacks. While micro-management is important,
without high-level reasoning, bots are still at a disadvantage to humans. One reason for this that has
been pointed out by domain experts is that the automated players are still weak in reasoning with
high-level strategies (Churchill, 2013).

5. Ontologies for Expectations and Explanations

One of the main benefits of using an ontology with GDA is the ability to provide formal definitions
of the different elements of a GDA system. The ontology used here chooses facts as its represen-
tation of atoms, where facts are represented as triples (subject, predicate, object). A fact can be
an initial fact (e.g. (unit5, hasPosition, (5,6)) which is directly observable) or an inferred fact (e.g.
(playerl, hasPresenceln, region3)). In the previous example we use an ontology to represent the
high-level concept of controlling a region. By using a semantic web ontology, that abides by the
open-world assumption, it is technically not possible to infer that a region is controlled by a player,
unless full knowledge of the game is available. Starcraft is one such domain that intuitively seems
natural to abide by the open world assumption because of fog of war. However, we can assume local
closed world for the areas that are within visual range of our own units. For example, if a region is
under visibility of our units and there are no enemy units in that region, we can infer the region is
not contested, and therefore we can label the region as controlled. Similarly, if none of our units are
in a region, then we can infer the label of unknown for that region.
The following are formal definitions for a GDA agent using a semantic web ontology:

e State S: collection of facts
o Inferred State S°: S U { facts inferred from reasoning over the state with the ontology }
e Goal g: a desired fact g € S*

o Expectation x: one or more facts contained within the S? associated with some action. We
distinguish between primitive expectations, x,, and compound expectations, x.. x is a prim-
itive expectation if z, € S and z. is a compound expectation if z. € (S* — S). (S* — 5)
denotes the set difference of S? and S, which is the collection of facts that are strictly inferred.

e Discrepancy d: Given an inferred state S? and an expectation, x, a discrepancy d is defined
as:

l.d==x ifx & St or
2. d={x}uU s’ if {z} U S% is inconsistent with the ontology

e Explanation e: Explanations are directly linked to an expectation. For primitive expecta-
tions, such as z, = (playerl, hasUnit, unit5) the explanation is simply the negation of

52

LUIGI: A GOAL-DRIVEN AUTONOMY AGENT REASONING WITH ONTOLOGIES

the expectation when that expectation is not met: —x,. For compound expectations, x. (e.g.
expectations that are the consequences of rules or facts that are inferred from description
logic axioms), the explanation is the trace of the facts that lead up to the relevant rules and/or
axioms that cause the inconsistency.

Example of Explanation

Assume we have the following description logic axiom (1) and semantic web rules (2) and (3):

KnownRegion = DisjointUnionO f(Contested Region, Controlled Region) (1)

The class KnownRegion is equivalent to the disjoint union of the classes ContestedRe-
gion and ControlledRegion. This axiom allows the ontology to infer that if an indi-
vidual is an instance of ContestedRegion it cannot be an instance of ControlledRegion,
and vice-versa. This also encodes the relationship that ContestedRegion and Controlle-
dRegion are subclasses of KnownRegion.

Player(?p) A Region(?r) A Unit(?u) A isOwnedBy(?u, ?p) A isInRegion(?u, 1)
— hasPresenceIn(?p,?r) (2)

With this rule, the ontology reasoner can infer that a player has a presence in a region
if that player owns a unit that is located in that region.

Player(?pl) A Player(?p2) A Dif ferentFrom(?pl,7p2) A Region(?r) A
hasPresenceIn(?pl, ?r) A hasPresenceln(?p2,?r) — ContestedRegion(?r) (3)

This rule allows the inference of a region to be an instance of ContestedRegion if two
different players each have a presence in that region.

Figure 2 shows an example where the unsatisfied expectation is (player0, controlsRegion, regionA)
in which the explanation is that regionA is contested. The explanation trace begins with the prim-
itive facts of each player owning one or more units and those units’ being located in regionA.
Using rule (2), the next level of the tree is the inferred facts: (player0,hasPresenceln,regionA) and
(playerl,hasPresenceln,regionA). Now using rule (3) with the second level inferred facts, we infer
that (regionA,instanceOf,ContestedRegion). From this level, the expectation (player(, controlsRe-
gion, regionA), of which the fact (regionA, instanceOf,ControlledRegion) is inferred, and combined

53

D. DANNENHAUER AND H. MUNOZ-AVILA

Inconsistent \‘ Ontology

Axiom (1)

<regionA,
instanceOf,

[<player0,controls,regionA>]
ContestedRegion>

Expectation

Rule (3)

g r

<player0,hasPresenceln,regionA>] <p|ayerl,hasPresenceIn,regionA>]

/Rule(z) /Rule (2)

g {
; ; <playerl,hasUnit,soldier2>
<player0,hasUnlt,soIdler1>] play] PriffItvaS
>

<soldierl,isInRegion,regionA>| <soldierl,isInRegion,regionA:
N 2

Figure 2: Inconsistency Explanation Trace

with the (regionA,instanceOf,ContestedRegion), axiom (1) produces an inconsistency because a re-
gion can not be both a contested region and a controlled region (disjointUnionOf).

In this example, the explanation was that the region was contested, and the trace both provides
an explanation and shows how the ontology reasoner is able to produce an inconsistency. An in-
consistency is the result of the unmet compound expectation (player0, controlsRegion, regionA).
Given the explanation, a viable goal to pursue next would be to build a stronger group of units to
attack the enemy units in regionA. As discussed before, an alternative explanation could have been
that the player does not control the region because it did not have any of its units in the region. In
that case, the inconsistency in the ontology would result from regionA being labeled as Unknown
and a viable goal would be to travel to the region along a different path or a different medium (flying
vs. ground units).

High-level concepts with an ontology provide an abstraction over low-level facts and condi-
tional relationships among the facts. For example, we can either have a group of facts such as
(playerQ, hasUnit, unitl), (player0, hasUnit, unit2), (unitl, isAtLocation, (x1,y1)), (unit2, isAt-
Location, (x2,y2)), (playerl, hasUnit, unit3), (unit3, isAtLocation, (x3,y3)) accompanied with the
conditional relationships equivalent to the description logic rule (1) and rules (2) and (3) or we can
have the high-level concept Contested Region accompanied with the ontology. The conditional re-
lationships are needed for both being able to count how many units each of the players has in the
region, and being able to infer what region each unit is located in based on its (x,y). Such numerical
conditions cannot be represented in STRIPS. The explanation trace shows how the concepts are
built from the low-level facts and the complex (often hierarchical) relationships among them (via
description logic axioms and rules). Even if such an equivalent representation would be possible
using STRIPS, representing such hierarchical knowledge in STRIPS could require a large number

54

LUIGI: A GOAL-DRIVEN AUTONOMY AGENT REASONING WITH ONTOLOGIES

of in STRIPS atoms, thereby making reasoning on these domains very inefficient (Lotem & Nau,
2000).

The explanation trace makes apparent the conditional relationship details and facts of which
the high level expectation (i.e. ContestedRegion) is composed. This allows the root causes of the
unmet expectation to be identified. The benefit is richer expectations and explanations being able to
express not only atoms (facts) but conditions and relations on those atoms as well.

6. Scenario Demonstrations

LUIGI is implemented in two components, a bot and a GDA component. The bot component
interfaces directly with the Starcraft game engine to play the game. The GDA component runs as a
separate program, and connects to the bot component via a TCP/IP connection with both the bot and
GDA component running on the same computer. The bot is responsible for building up an initial
base and executing tasks sent to it by the GDA component. The bot component contains knowledge
of how to execute individual plan steps and knowledge of when a task has finished so that it can
request the next plan step from the GDA component. During gameplay the bot dumps all of its game
state data every n frames (in these scenarios n = 20), making it available for the GDA component
to use during ontological reasoning.

The bot component is implemented in a C++ DLL file that is loaded into Starcraft and the GDA
component is implemented in a Java standalone application. Running the reasoner, Pellet (Sirin
et al., 2007), over the ontology takes on average between 1-2 seconds. Such an amount of time
would normally be unacceptable for micro-management strategies controlling individual units in
battle, but for more general strategies, such as what units to produce next and how to attack the
enemy, the following scenarios demonstrated that this amount of time is acceptable when played at
the speed setting used in human vs. human tournaments. This is because executing a strategy takes
anywhere from 20 seconds to minutes in these scenarios. We now describe three scenarios where
LUIGi was able to successfully detect a discrepancy and choose a new goal using the ontology.

Scenario 1: Early rush attack

In this scenario LUIGI gets rushed by the enemy early in the game. A discrepancy is detected
soon after enemy units enter LUIGi’s starting region. The discrepancy was that LUIGi does not
control its base region because the region is contested and an explanation trace similar to Figure 2
is generated. LUIGI sends the explanation to the goal formulator component which chooses a new
goal to defend the region. As part of the new goal, LUIGi recalls all units (including those in other
regions) and uses them to attack the enemy forces in its base region. Figure 3a shows LUIGi in the
process of producing troops while controlling the region. Figure 3b shows LUIGi pursuing a newly
generated goal to defend the region after detecting and explaining the discrepancy of not controlling
the region (i.e., the blue units are enemy units).

55

D. DANNENHAUER AND H. MUNOZ-AVILA

(a) No Discrepancy (b) Discrepancy due to enemy Rush Attack

Figure 3: Screenshots of LUIGi building an initial army

Scenario 2: Units do not reach destination

In a second scenario, LUIGi successfully builds ground units and sends them to attack the enemy
base. However, the enemy has set up a defense force at its base region’s perimeter, which destroys
LUIGI’s ground units before they make it to the enemy region. The expectation that is violated
is a primitive expectation (e.g. (unit5, isInRegion, region8)) and the discrepancy is that LUIGi
expects unit5 to be in the region region8. The explanation is simply the negation of the expectation.
LUIGi chooses a new goal to build units that fly in order to bypass the units defending the enemy’s
base. However, there are multiple valid goals worth pursuing in this situation, such as building
different units capable of defeating the enemy units defending the enemy base’s perimeter, or taking
a different route leading into the enemy base.

Scenario 3: Units reach destination but do not defeat enemy

In a third scenario, LUIGi’s units were produced and moved to the enemy region successfully, but
were not able to defeat the enemy in its base region. The expectation that LUIGi controlled the
enemy base region was unmet after LUIGi’s units finished executing the plan step to attack the
enemy units in the base and LUIGi’s units were killed. The corresponding explanation, informally,
was that LUIGi had no units in the region when the plan step of attacking had finished. While
the expectation is the same as scenario 1, the explanation is different (i.e. the traces are different).
As a result LUIGI chooses a different goal than in Scenario 1. In this case, LUIGi chooses a goal
that does not involve directly attacking the enemy but instead to secure and defend other locations
that contain valuable resources. This type of strategy gives LUIGi an economic advantage over its
opponent yielding a more substantial army later in the match.

56

LUIGI: A GOAL-DRIVEN AUTONOMY AGENT REASONING WITH ONTOLOGIES

7. Discussion and Future Work

There is a big gap in the performance of the best automated players compared to the best human
players for real-time strategy games such as Starcraft. Part of the reason for this gap is the inability
of automated players to reason about high-level strategies. We believe that GDA combined with
high-level reasoning as enabled by inferencing capabilities over ontologies could pave the way to
mimic the kinds of strategic decisions that humans make. While restricted to play particular scenar-
ios instead of complete games, LUIGI exhibits some of the needed high-level reasoning capabilities
relating high-level concepts with low-level chunks of information that none of the current Starcraft
automated players possess.

In future work, we will like to extend LUIGI to play complete Starcraft games. Currently
we are prevented from doing so not by conceptual difficulties with LUIGi itself but by low-level
programming details of the way automated players “hack” into the game engine to change its game-
playing code.! More interesting future work, from a research perspective, is to explore to reason
with GDA elements as the ontologies might change over time. For example, imagine a game that
allows players to change the terrain over time (e.g., constructing a bridge between two regions
previously disconnected). Such a capability to reason with these changing elements would be of
particular interest for GDA agents that interact for long-durations in an environment (e.g., an agent
interacting in a persistent world).

References

Aha, D.W., M. M. . K. M. (2011). Goal-Driven Autonomy (Technical Report). NRL Review.

Brachman, R. J., & Schmolze, J. G. (1985). An Overview of the KL.-ONE Knowledge Representa-
tion System. Cognitive science, 9, 171-216.

Churchill, D. (2013). 2013 AIIDE StarCraft AI Competition Report. http://webdocs.cs.
ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml.

Cox, M. T. (2007). Perpetual Self-Aware Cognitive Agents. Al magazine, 28, 32.
Forbus, K. D., & Hinrichs, T. R. (2006). Companion Cognitive Systems: A Step toward Human-
Level Al. AI Magazine, 27, 83.

Gil, Y., & Blythe, J. (2000). How Can a Structured Representation of Capabilities Help in Planning.
Proceedings of the AAAI-Workshop on Representational Issues for Realworld Planning Systems.

Hawes, N., Hanheide, M., Hargreaves, J., Page, B., Zender, H., & Jensfelt, P. (2011). Home Alone:
Autonomous Extension and Correction of Spatial Representations. Robotics and Automation
(ICRA), 2011 IEEE International Conference on (pp. 3907-3914).

Jaidee, U., Mufioz-Avila, H., & Aha, D. W. (2011). Integrated Learning for Goal-Driven Autonomy.
Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume
Volume Three (pp. 2450-2455).

Laird, J. E. (2012). The Soar Cognitive Architecture. The MIT Press.

1. Automated players must “inject” their code into the game engine in a manner reminiscent of how malicious software
hacks into a system

57

D. DANNENHAUER AND H. MUNOZ-AVILA

Langley, P., & Choi, D. (2006). Learning Recursive Control Programs from Problem Solving. The
Journal of Machine Learning Research, 7, 493-518.

Lotem, A., & Nau, D. S. (2000). New advances in graphhtn: Identifying independent subproblems
in large htn domains. AIPS (pp. 206-215).

Molineaux, M., Aha, D. W., & Kuter, U. (2011). Learning Event Models that Explain Anomalies
(Technical Report). DTIC Document.

Molineaux, M., Klenk, M., & Aha, D. W. (2010). Goal-Driven Autonomy in a Navy Strategy
Simulation. AAAL

Muiioz-Avila, H., Aha, D. W,, Jaidee, U., Klenk, M., & Molineaux, M. (2010a). Applying Goal
Driven Autonomy to a Team Shooter Game. FLAIRS Conference.

Muiioz-Avila, H., Jaidee, U., Aha, D. W., & Carter, E. (2010b). Goal-Driven Autonomy with Case-
Based Reasoning. In Case-based reasoning. research and development, 228-241. Springer.

Nau, D. S. (2007). Current Trends in Automated Planning. Al magazine, 28, 43.

Patel-Schneider, P. F., McGuinness, D. L., Brachman, R. J., & Resnick, L. A. (1991). The CLASSIC

Knowledge Representation System: Guiding Principles and Implementation Rationale. ACM
SIGART Bulletin, 2, 108-113.

Powell, J., Molineaux, M., & Aha, D. W. (2011). Active and Interactive Discovery of Goal Selection
Knowledge. FLAIRS Conference.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL
reasoner. Web Semantics: science, services and agents on the World Wide Web, 5, 51-53.

Tecuci, G., Boicu, M., Wright, K., Lee, S. W., Marcu, D., & Bowman, M. (1999). An Integrated
Shell and Methodology for Rapid Development of Knowledge-Based Agents. AAAI/IAAI (pp.
250-257).

Tenorth, M., & Beetz, M. (2009). KnowRob aAT Knowledge Processing for Autonomous Personal
Robots. Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on (pp. 4261-4266).

Weber, B. (2012). Integrating Learning in a Multi-Scale Agent. Doctoral dissertation, University of
California, Santa Cruz.

58

