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Abstract
Concept blending — a cognitive process which allows for the combination of certain elements
(and their relations) from originally distinct conceptual spaces into a new unified space combining
these previously separate elements, and enables reasoning and inference over the combination —
is taken as a key element of creative thought and combinatorial creativity. In this paper, we provide
an intermediate report on work towards the development of a computational-level and algorithmic-
level account of concept blending. We present the theoretical background as well as an algorithmic
proposal combining techniques from computational analogy-making and case-based reasoning, and
exemplify the feasibility of the approach in two case studies.

1. Introduction: Computational Creativity and Concept Blending

Boden (2003) identifies three forms of creativity: exploratory, transformational, and combinatorial.
The label exploratory refers to creativity which arises from a thorough and persistent search of a
well-understood domain (i.e., within an already established conceptual space), whilst transforma-
tional creativity either involves the removal of constraints and limitations from the initial domain
definition, or the rejection of characteristic assumptions forming part of the specification of the cre-
ative problem (or both). Combinatorial creativity shares traits of both other forms in that it arises
from a combinatorial process joining familiar ideas (in the form of, for instance, concepts, theories,
or artworks) in an unfamiliar way, by this producing novel ideas.

Computationally modeling the latter form of creativity turns out to be surprisingly complicated:
although the overall idea of combining preexisting ideas into new ones seems fairly intuitive and
straightforward, when looking at it from a more formal perspective at the current stage neither can a
precise algorithmic characterization be given, nor are at least the details of a possible computational-
level theory describing the process(es) at work well understood. Still, in recent years a proposal by
Fauconnier and Turner (1998) called concept blending (or conceptual integration) has influenced
and reinvigorated studies trying to unravel the general cognitive principles operating during creative
thought. In their theory, concept blending constitutes a cognitive process which allows for the
combination of certain elements (and their relations) from originally distinct conceptual spaces into
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a new unified space combining these previously separate elements, and then enables reasoning and
inference over the combination.

Unfortunately, Fauconnier and Turner (1998) (also in their later works) remain mostly silent
concerning details needed for a proper computational modeling of concept blending as cognitive
capacity — neither do they provide a fully worked out and formalized theory themselves, nor does
their informal account capture key properties and functionalities as, for example, the retrieval of
input spaces, the selection and transfer of elements from the input into the blend space, or the
further combination of possibly mutually contradictory elements in the blend. In short: Up until
today, the theory does not specify how the blending process is supposed to work.

These shortcomings notwithstanding, several researchers in AI and computational cognitive
modeling have used the provided conceptual descriptions as starting point for suggesting possible
refinements and implementations: (Goguen & Harrell, 2010) propose a concept blending-based
approach to the analysis of the style of multimedia content in terms of blending principles and
also provide an experimental implementation, (Pereira, 2007) tries to develop a computationally
plausible model of several hypothesized sub-parts of concept blending, (Thagard & Stewart, 2011)
exemplify how creative thinking could arise from using convolution to combine neural patterns
into ones which are potentially novel and useful, and (Veale & O’Donoghue, 2000) present their
computational model of conceptual integration and propose several extensions to the at the time
actual view on concept blending.

Since 2013, another attempt at developing a computationally feasible, cognitively-inspired for-
mal model of concept creation, grounded on a sound mathematical theory of concepts and imple-
mented in a generic, creative computational system is undertaken by a European research consor-
tium in the so called Concept Invention Theory (COINVENT) project.1 One of the main goals of the
COINVENT research program is the development of a computational-level and algorithmic-level
account of concept blending based on insights from psychology, AI, and cognitive modeling, the
heart of which are made up by results from cognitive systems studies on computational analogy-
making and knowledge transfer and combination (i.e., the computation of so called “amalgams”)
from case-based reasoning. In the following we present an analogy-inspired perspective on the
COINVENT core model for concept blending and show how the respective mechanisms and sys-
tems interact.

2. Computational Models of Analogy and Amalgams

As analogy seems to play a crucial role in human cognition (Gentner & Smith, 2013), researchers on
the computational side of cognitive science and in AI also very quickly got interested in the topic and
have been creating computational models of analogy-making basically since the advent of computer
systems, among others giving rise to Winston (1980)’s work on analogy and learning, Hofstadter and
Mitchell (1994)’s Copycat system, or Falkenhainer et al. (1989)’s well-known Structure-Mapping
Engine. One of the latest entries in the long series of computational analogy engines, and the system
applied in COINVENT, is the Heuristic-Driven Theory Projection (HDTP) framework (Schmidt
et al., 2014), a generalization-based symbolic analogy engine discussed in detail in Sect. 2.1.

1. Also see http://www.coinvent-project.eu for details on the consortium and the project.
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Figure 1. A schematic overview of HDTP’s generalization-based approach to analogy.

In a conceptually related, but mostly independently conducted line of work researchers in case-
based reasoning (CBR) have been trying to develop problem solving methodologies based on the
principle that similar problems likely tend to have similar solutions. CBR tries to solve problems by
retrieving one or several relevant cases for the current issue at hand from a case-base with already
solved previous problems, and then reusing the knowledge to also tackle the new task (Aamodt &
Plaza, 1994). While the retrieval stage has received significant attention over the last two decades,
the transfer and combination of knowledge from the retrieved case to the current problem has been
studied only to a lesser extent, with (Ontañón & Plaza, 2012) being a recent attempt at also gaining
insights on this part of the CBR cycle by suggesting the framework of amalgams (Ontañón & Plaza,
2010) as a formal model. Sect. 2.2 gives an overview of amalgams as used in COINVENT.

2.1 Generalization-Based Analogy-Making Using Heuristic-Driven Theory Projection

Heuristic-Driven Theory Projection has been conceived as a mathematically sound theoretical model
and implemented engine for computational analogy-making, computing analogical relations and in-
ferences for domains which are presented in (possibly different) many-sorted first-order logic lan-
guages: Source and target of the analogy-making process are defined in terms of axiomatizations,
i.e., given by a finite set of formulae. HDTP follows a generalization-based approach to analogy-
making: Given both domains, a common generalization encompassing structurally shared elements
common to both input domains is computed (mapping phase) and this generalization then guides the
analogical alignment and knowledge transfer process of unmatched knowledge from the source to
the target domain used for establishing new hypotheses (transfer phase). See Fig. 1 for a conceptual
overview of the entire analogy mechanism.

More precisely, HDTP uses many-sorted term algebras to define the input conceptual domains
(i.e., one source and one target domain for the later analogy). A term algebra requires two ingredi-
ents: a signature and a set of variables.

Definition 1 A many-sorted signature Σ = 〈Sort, Func〉 is a tuple containing a finite set Sort of
sorts, and a finite set Func of function symbols. An n-ary function symbol f ∈ Func is specified
by f : s1 × s2 × · · · × sn → s, where s, s1, . . . , sn ∈ Sort. We will consider function symbols of
any non-negative arity, and we will use 0-ary function symbols to represent constants.

Definition 2 Let Σ = 〈Sort, Func〉 be a many-sorted signature, and let V = {x1 : s1, x2 : s2, . . .}
be an infinite set of sorted variables, where the sorts are chosen from Sort. Associated with each
variable xi : si is an arity, analogous to the arity of function symbols above. For any i ≥ 0, we let
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Vi be the variables of arity i. The set Term(Σ,V) and the function sort : Term(Σ,V) → Sort
are defined inductively as follows:

1. If x : s ∈ V , then x ∈ Term(Σ,V) and sort(x) = s.

2. If f : s1 × s2 × · · · × sn → s is a function symbol in Σ, and t1, . . . , tn ∈ Term(Σ,V) with
sort(ti) = si for each i, then f(t1, . . . , tn) ∈ Term(Σ,V) with sort(f(t1, . . . , tn)) = s.

We refer to the structure 〈Term(Σ,V), sort〉 as a term algebra, often suppressing sort.

As an example for a domain representation using HDTP’s language, Table 1 reproduces a possi-
ble formalization of the concept of “horse” using some of a horse’s key characteristics (this formal-
ization reoccurs below as part of a bigger example demonstrating the conceptual blending capacities
of the framework combining analogy and amalgams in Sect. 3.4):

Table 1. Example formalization of a stereotypical characterization of a horse.

Sorts:
clade, entity, bodypart, ability

Entities:
mammal : clade horse : entity torso, legs : bodypart walk : ability

Predicates:
is_of_clade : entity× clade, has_bodypart : entity× bodypart, has_ability : entity× ability

Laws of the horse characterization:
is_of_clade(horse,mammal) has_bodypart(horse, legs) has_bodypart(horse, torso)
has_ability(horse,walk)

Given two input domains, HDTP uses anti-unification to compute a generalization of both do-
mains. In this process, terms are generalized resulting in an anti-instance, where differing subterms
are replaced by variables; the original terms can be restored by inverting the procedure, i.e., by
replacing the new variables by appropriate subterms (also see Fig. 2 below). These “replacements”
can be formalized as substitutions:

Definition 3 Given term algebra Term(Σ,V). A term substitution is a partial function σ : V →
Term(Σ,V) mapping variables to terms, formally represented by σ = {x1 → t1, . . . , xn → tn}
provided each of the xi is unique and the sorts of the variables and terms match. An application of
a substitution σ on a term is defined inductively by:

1. apply(x, σ) =

{
t x→ t ∈ σ
x otherwise.

2. apply(f(t1, . . . , tn), σ) = f(apply(t1, σ), . . . , apply(tn, σ)).

Given two terms t, t′ and a substitution σ such that apply(t, σ) = t′, then we call t′ an instance of
t and t an anti-instance of t′. We will often shorten apply(t, σ) = t′ to t σ−→ t′, or t → t′ if the
substitution is clear from context.

Using substitutions, also generalizations can formally be characterized, with the least general
generalization playing a special role as most specific anti-unifier (i.e., as minimal with respect to
the instantiation order):
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Figure 2. Examples for all four types of unit substitutions admissible in HDTP’s restricted form of higher-
order anti-unification: (a) shows the variable renamingsX/Y andX/Z, (b) exemplifies fixations of argument
variables and (c) gives the corresponding counterparts for function variables, (d) represents two argument
insertions, and (e) illustrates an argument permutation.

Definition 4 Let f, g be terms from a term algebra Term(Σ,V). A generalization of f and g
is a triple 〈G, σ, τ〉 where G ∈ Term(Σ,V) and σ, τ are substitutions such that G σ−→ f and
G

τ−→ g. The generalization 〈G, σ, τ〉 is called the least general generalization (LGG) if for any

generalization 〈G′, σ′, τ ′〉 of f, g, there exists a substitution φ such that G′
φ−→ G.

As shown by Plotkin (1970), the LGG is unique when considering only first-order anti-unification
between terms.

Against this background, Schwering et al. (2009) describe a restricted form of higher-order
anti-unification applied in HDTP, defined as using the composition of a number of unit substitutions
operating on higher-order terms.

Definition 5 The following are the types of unit substitutions allowed in restricted higher-order
anti-unification.

1. A renaming ρ(F, F ′) replaces a variable F ∈ Vn with another variable F ′ ∈ Vn:

F (t1, . . . , tn)
ρ(F,F ′)−−−−−→ F ′(t1, . . . , tn).

2. A fixation φ(F, f) replaces a variable F ∈ Vn with a function symbol f ∈ Cn:

F (t1, . . . , tn)
φ(F,f)−−−−→ f(t1, . . . , tn).

3. An argument insertion ι(F, F ′, V, i) is defined as follows, for F ∈ Vn, F ′ ∈ Vn−k+1, V ∈ Vk, i ∈ [n]:

F (t1, . . . , tn)
ι(F,F ′,V,i)−−−−−−−→ F ′(t1, . . . , ti−1, V (ti, . . . , ti+k), ti+k+1, . . . , tn).

It “wraps” k of the subterms in a term using a k-ary variable, or can be used to insert a 0-ary variable.

4. A permutation π(F, τ) rearranges the arguments of a term, with F ∈ Vn, τ : [n]→ [n] a bijection:

F (t1, . . . , tn)
π(F,τ)−−−−→ F (tπ(1), . . . , tπ(n)).

A restricted substitution is a substitution t→ t′ which results from the composition of any sequence
of unit substitutions transforming t into t′.

Fig. 2 gives generic examples for the different types of unit substitutions in HDTP’s version of
restricted higher-order anti-unification.

Clearly, restricted substitutions are strictly more general than mere (first-order) term substitu-
tions. While for a given term t there are (up to renaming) still only finitely many anti-instances (i.e.,
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terms s with s → t), this generality unfortunately, among others, causes the LGG to be no longer
necessarily unique. Therefore, HDTP ranks generalizations according to a complexity order on the
complexity of generalization (based on a complexity measure for substitutions), and finally chooses
the least complex generalizations as preferred ones.

From a practical point of view, it is also necessary to anti-unify not only terms, but formulae:
HDTP extends the notion of generalization also to formulae by basically treating formulae in clause
form and terms alike (as positive literals are structurally equal to function expressions, and complex
clauses in normal form may be treated component wise).

Furthermore, analogies in general not only rely on an isolated pair of formulae from source
and target, but on two sets of formulae, making it necessary to extend the notion of anti-unification
accordingly:

Definition 6 Let Th(Ax) denote the set of all formulas that can be syntactically derived from a set
of axioms Ax, i.e., Th(Ax) = {φ|Ax ` φ}, and let G be a finite set of formulae.

G is an anti-instance of a set of formulae F if and only if there exists a substitution σ such that
Th(apply(G, σ)) ⊆ Th(F ). Given substitutions σ and τ , 〈G, σ, τ〉 is a generalization of two sets
of formulae S and T if and only if G σ−→ S and G τ−→ T .

As a simple example, we take the “horse” formalization from Table 1 and the stereotypical
characterization of a dog given in Table 2, and generalize them into the shared generalization in
Table 3.

Table 2. Example formalization of a stereotypical characterization of a dog.

Sorts:
clade, entity, bodypart, ability

Entities:
mammal : clade dog : entity tail : bodypart drool : ability

Predicates:
is_of_clade : entity× clade, has_bodypart : entity× bodypart, has_ability : entity× ability

Laws of the dog characterization:
is_of_clade(dog,mammal) has_bodypart(dog, tail)
has_ability(dog, drool)

Table 3. Shared generalization of the “horse” and “dog” formalizations from Tables 1 and 2, respectively.

Sorts:
clade, entity, bodypart, ability

Entities:
mammal : clade E : entity B : bodypart A : ability

Predicates:
is_of_clade : entity× clade, has_bodypart : entity× bodypart, has_ability : entity× ability

Laws of the horse characterization:
is_of_clade(E,mammal) has_bodypart(E,B) has_ability(E,A)

When processing sets of formulae, a heuristic is applied for iteratively selecting pairs of for-
mulae to be generalized: Coherent mappings outmatch incoherent ones, i.e., mappings in which
substitutions can be reused are preferred over isolated substitutions, as they are assumed to be better
suited to induce the analogical relation.
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Finally, HDTP in its heuristics also aims to maximize the coverage of generalizations:

Definition 7 Given a generalization 〈G, σ, τ〉 of two sets of axioms S and T , Th(apply(G, σ)) ⊆
Th(S) is said to be covered by G, and for T accordingly.

The degree to whichG covers Th(S) is called the coverage ofG, with a generalization 〈G, σ, τ〉
having at least the same coverage as 〈G′, σ′, τ ′〉 if there exists a substitution θ for which it holds

that G′ θ−→ G, σ′ = σ ◦ θ, and τ ′ = τ ◦ θ (inducing a partial order over generalizations).

In general, while there are some constraining factors which have to be taken into account (Schwering
et al., 2009), maximizing the coverage of an analogy seems meaningful as this also automatically
increases the domain support for the corresponding analogy.

Once obtained, the generalized theory and the substitutions specify the analogical relation, and
formulae of the source for which no correspondence in the target domain can be found may, by
means of the already established substitutions, be transferred to the target, constituting a process of
analogical transfer between the domains.

Concerning applications of HDTP, for instance Guhe et al. (2010) apply the framework in
modeling a potential inductive analogy-based process for establishing the fundamental concepts of
arithmetics, Schwering et al. (2009) use HDTP for solving geometric analogies, and Besold (2014)
summarizes a series of studies applying the framework to modeling analogy use in education and
teaching situations.

2.2 Combining Conceptual Theories Using Amalgams

The notion of amalgams was developed in the context of Case-based Reasoning (CBR) (Ontañón
& Plaza, 2010), where new problems are solved based on previously solved problems (or cases,
residing on a case base). Solving a new problem often requires more than one case from the case
base, so their content has to be combined in some way to solve the new problem. The notion of
amalgam of two cases (two descriptions of problems and their solutions) is a proposal to formalize
the ways in which cases can be combined to produce a new, coherent case.

Formally, the notion of amalgams can be defined in any representation language L for which a
subsumption relation v between the formulas (or descriptions) of L can be defined. We say that a
description I1 subsumes another description I2 (I1 v I2) when I1 is more general (or equal) than
I2. Additionally, we assume that L contains the infimum element ⊥ (or ‘any’), and the supremum
element > (or ‘none’) with respect to the subsumption order.

Next, for any two descriptions I1 and I2 in L we can define their unification, (I1 t I2), which is
the most general specialization of two given descriptions, and their anti-unification, (I1uI2), defined
as the least general generalization of two descriptions, representing the most specific description
that subsumes both. Intuitively, a unifier is a description that has all the information in both the
original descriptions; when joining this information yields to inconsistency this is equivalent to say
that I1 t I2 = >, they have no common specialization except ‘none’. The anti-unification I1 u I2
contains all that is common to both I1 and I2 ; when they have nothing in common then I1uI2 = ⊥.
Depending on L anti-unification and unification might be unique or not.

The notion of amalgam can be conceived of as a generalization of the notion of unification: as
‘partial unification’ (Ontañón & Plaza, 2010). Unification means that what is true for I1 or I2 is also
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Figure 3. A diagram of an amalgam A from inputs I1 and I2 where A = Ī1 t Ī2.

true for I1 t I2; e.g. if I1 describes ‘a red vehicle’ and I2 describes ‘a German minivan’ then their
unification yields a common specialization like ‘a red German minivan.’ Two descriptions may pos-
sess information that yields an inconsistency when unified; for instance ‘a red French sedan’ and ‘a
blue German minivan’ have no common specialization except >. An amalgam of two descriptions
is a new description that contains parts from these two descriptions. For instance, an amalgam of ‘a
red French sedan’ and ‘a blue German minivan’ is ‘a red German sedan’; clearly there are always
multiple possibilities for amalgams, like ‘a blue French minivan’.

For the purposes of this paper we can define an amalgam of two input descriptions as follows:

Definition 8 (Amalgam) A description A ∈ L is an amalgam of two inputs I1 and I2 (with anti-
unification G = I1 u I2) if there exist two generalizations Ī1 and Ī2 such that (1) G v Ī1 v I1, (2)
G v Ī2 v I2, and (3) A = Ī1 t Ī2
When the Ī1 and Ī2 have no common specialization then trivially A = >, since their only unifier is
“none”. For our purpose we will be only interested in non-trivial amalgams.

This definition is illustrated in Fig. 3, where the anti-unification of the inputs is indicated as G,
and the amalgam A is the unification of two concrete generalizations Ī1 and Ī2 of the inputs. Equal-
ity here should be understood as v-equivalence: X = Y iff X v Y and Y v X . Conventionally,
we call the space of amalgams of I1 and I2 the set of all amalgams A that satisfy the definition
above.

Usually we are interested only on maximal amalgams of two input descriptions, i.e., those amal-
gams that contain maximal parts of their inputs that can be unified into a new coherent description.
Formally, an amalgam A of inputs I1 and I2 is maximal if there is no other non-trivial amalgam
A′ of inputs I1 and I2 such that A @ A′. The reason why we are interested in maximal amalgams
is very simple: a non-maximal amalgam Ā @ A preserves less compatible information from the
inputs than the maximal amalgam A; conversely, any non-maximal amalgam Ā can be obtained by
generalizing a maximal amalgam A, since Ā @ A.

There is a special case of particular interest that is called asymmetric amalgam, in which the two
inputs play different roles. The inputs are called source and target, and while the source is allowed
to be generalized, the target is not.

Definition 9 (Asymmetric Amalgam) An asymmetric amalgam A ∈ L of two inputs S (source)
and T (target) satisfies that A = S′ t T for some generalization of the source S′ v S.
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Figure 4. A diagram that transfers content from source S to a target T via an asymmetric amalgam A.

As shown in Fig. 4, the content of target T is transferred completely into the asymmetric amalgam,
while the source S is generalized. The result is a form of partial unification that preserves all the
information in T while relaxing S by generalization and then unifying one of those generalization
S′ with T itself. As before, we will usually be interested in maximal amalgams: in this case,
a maximal amalgam corresponds to transferring as much content from S to T while keeping the
resulting amalgam A consistent. For these reason, asymmetric amalgam can be seen as a model of
analogical inference, where information from the source is transferred to the target by creating a
new amalgam A that enriches the target T with the content of S′ (Ontañón & Plaza, 2012).

3. COINVENT’s Account of Analogy-Based Concept Blending

3.1 The Idea(s) Behind Concept Blending in COINVENT: An Analogy-Inspired View

One of the early formal accounts on concept blending, which is especially influential to the approach
applied in COINVENT, is the classical work by Goguen using notions from algebraic specification
and category theory (Goguen, 2006). This version of concept blending can be described by the
diagram in Fig. 5, where each node stands for a representation an agent has of some concept or
conceptual domain. We will call these representations “conceptual spaces” and in some cases abuse
terminology by using the word “concept” to really refer to its representation by the agent. The
arrows stand for morphisms, that is, functions that preserve at least part of the internal structure
of the related conceptual spaces. The idea is that, given two conceptual spaces I1 and I2 as input,
we look for a generalization G and then construct a blend space B in such a way as to preserve as
many as possible structural alignments between I1 and I2 established by the generalization. This
may involve taking the functions toB to be partial, in that not all the structure from I1 and I2 might
be mapped to B. In any case, as the blend respects (to the largest possible extent) the relationship
between I1 and I2, the diagram will commute.

Concept invention by concept blending can then be phrased as the following task: given two
axiomatizations of two domain theories I1 and I2, we need first, to compute a generalized theory
G of I1 and I2 (which codes the commonalities between I1 and I2) and second, to compute the
blend theory B in a structure preserving way such that new properties hold in B. Ideally, these
new properties in B are considered to be (moderately) interesting properties. In what follows,
for reasons of simplicity and without loss of generality we assume that the additional properties
are just provided by one of the two domains, i.e., we align the situation with a standard setting
in computational analogy-making by renaming I1 and I2: The domain providing the additional
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Figure 5. A conceptual overview of (Goguen, 2006)’s account of conceptual blending.

properties for the concept blend will be called source S, the domain providing the conceptual basis
and receiving the additional features will be called target T .

The reasoning process in COINVENT is then triggered by the computation of the generalization
G (generic space) by HDTP. For concept invention we will only need the mapping mechanism and
replace the transfer phase by a new blending algorithm. The mapping is achieved via the usual gen-
eralization process between S and T , in which pairs of formulas from the source and target spaces
are anti-unified resulting in a generalized theory that reflects common aspects of both spaces. The
generalized theory can be projected into the original spaces by substitutions which are computed
during anti-unification. In what follows, we will say that a formula is covered by the analogy,
if it is in the image of this projection (Tc and Sc, respectively), otherwise it is uncovered (also
see Sect. 2.1). While in analogy making the analogical relations are used in the transfer phase to
translate additional uncovered knowledge from the source to the target space, blending combines
additional (uncovered) facts from one or both spaces. Therefore the process of blending can build
on the generalization and substitutions provided by the analogy engine, but has to include a new
mechanism for transfer and concept combination. Here, amalgams naturally come into play: The
set of substitutions can be inverted and applied to generalize the original source theory S into a more
general version S′ (forming a superset of the shared generalization G, also including previously un-
covered knowledge from the source) which then can be combined into an asymmetric amalgam with
the target theory T , forming the (possibly underspecified) proto-blend T ′ of both. In a final step, T ′

is then completed into the blended theory and output of the process TB by applying corresponding
specialization steps stored from the generalization process between S and T (see also Fig. 6).

3.2 Implementing the Model Using HDTP and Asymmetric Amalgams

One of the project aims of COINVENT is an implementation of the general blending model sketched
in the previous section into a system producing novel and useful output theories, fully integrating
HDTP and the amalgam framework. In what follows, we present an intermediate version on the way
to this goal: A blend is taken to be novel if it is not a subset of or equal to the source or the target
domain, usefulness is defined as consistency of the resulting theory, the generalization step uses a
further constrained variant of restricted higher-order anti-unification, applying only fixations and
renamings, the amalgamation uses higher-oder unification as combination mechanism, and logical
semantic consequence serves as ordering relationship:
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Figure 6. A conceptual overview of the analogy-inspired perspective on COINVENT’s account of concept
blending as described in Sect. 3.1: The shared generalizationG from S and T is computed with φS(G) = Sc.
The relation φS is subsequently re-used in the generalization of S into S′, which is then combined in an
asymmetric amalgam with T into the proto-blend T ′ = S′ t T and finally, by application of φT , completed
into the blended output theory TB . (⊆ indicates an element-wise subset relationship between sets of axioms
and v indicates subsumption between theories in the direction of the respective arrows.)

1. Given two input domain theories S and T , the (set of) common generalization(s) G =
{G1, G2, . . . , Gn}, i.e., the anti-unified forms of sets of axioms which are structurally shared
between S and T is computed. In COINVENT, HDTP is used for this step: In the present
version of the algorithm, only renamings and fixations are used as admissible types of unit
substitutions. As the least general generalization under restricted higher-order anti-unification
is (still) not unique (also see Sect. 2.1), the anti-unification itself returns several possible least
general generalizations out of which the system choses one generalization Gx using heuris-
tics.

2. Given this generalized theory Gx, together with the associated two sets of substitutions φx,S
and φx,T respectively corresponding to the covered parts Sc ⊆ S and Tc ⊆ T of the input
domain theories, the set of higher-order anti-unifications φ−1x,S (inversely related to the substi-
tutions φx,S) is then used to generalize the previous source domain theory S as far as possible
into the generalized source theory S′ such that φx,S(S′) = S. Here, if S = Sc, i.e., all axioms
from S could be matched and anti-unified with axioms from T in the previous step (constitut-
ing a pathological case as S is supposed to provide some additional content over and above
T ), it holds that S = φx,S(Gx) and, thus, S′ = Gx; otherwise Gx ⊆ S′. Notice that, due
to the restriction to fixations and renamings in the higher-order anti-unifications, it holds that
S |= S′ |= G in both cases. (Here, ⊆ indicates an element-wise subset relationship between
sets of axioms as in Fig. 6, and |= indicates the classical semantic consequence relation in the
logical sense.)

3. Now, given S′, we can compute the asymmetric amalgam between S′ and T (with T staying
fixed) using higher-order unification and the semantic consequence relation as subsumption
relation for refinement (i.e., given two theories A and B it holds that A is more general than
B, A v B, if and only if B |= A): Axioms from S′ and T are unified pairwise as far as
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possible (i.e., a subset of S′ of maximum cardinality is unified with a similar subset of T ).
Conveniently, for the part of S′ which is contained in Sc under φx,S this is equal to Tc, so only
axioms from {a|a ∈ S′ ∧ φx,S(a) /∈ Sc} and from T \ Tc, respectively, have to be checked.2

Subsequently, the remaining axioms from both theories are added as additional elements to
the resulting unified set of axioms, resulting in an enriched target theory T ′.3

4. Remaining variables not instantiated by the unification step between S′ and T ′ (i.e., imported
in axioms from S′) in the enriched target theory (or proto-blend) T ′ are instantiated by ap-
plying the set of substitutions φx,T from the initial generalization step to T ′, resulting in the
(fully instantiated) blended theory TB . (If T ′ does not contain any variables it trivially holds
that T ′ = φx,T (T ′) = TB and this step becomes obsolete.)

5. A check for consistency of the blended theory TB is conducted (both internally as well as with
respect to potentially available world knowledge). As we are only interested in non-trivial
amalgams (i.e., consistent output theories), if an inconsistency is found, clash resolution tries
to solve the inconsistency by returning to step 1., removing one or several axioms from S
resulting in a new source theory Sclash ⊆ S, and then re-initiating the procedure.

The resulting blend theory TB is based on T , (consistently) enriched by imported “unaffected”
axioms and (via generalization from S to S′, and re-instantiation from T ′ to TB) adapted structural
elements from S. This blend forms the (in a certain concept theoretical sense) “closest” blend to T
and can presumably play an important role in different contexts: for instance it can account for the
addition of new solution elements to a solution idea at hand in problem-solving scenarios, and in
creativity tasks the addition of novel features and elements to existing concepts can be achieved.

Clearly, this is only a partial solution on the way to meeting COINVENT’s aims, requiring fur-
ther algorithmic and conceptual development: The inconsistency resolution in step 5 can probably
be made significantly more efficient by developing heuristics for efficiently selecting axioms for re-
moval, the simple identification between usefulness and consistency might not be enough for many
contexts, and methods for assessing the novelty of the resulting blend (also allowing for compar-
isons between different possible blends) have to be developed and integrated.

In the following section, we want to exemplify our approach in two application cases: A concept
blending account on Rutherford’s classical analogy between the solar system and the atom, and a
re-creation of Pegasus as concept blend between a horse and a bird in classical mythology.

3.3 Example 1: Rutherford’s Model of the Solar System as Scientific Concept Blending

Rutherford’s analogy for deriving his model of the atom from a theory of the solar system, together
with certain experimental observations and physical laws known by his time, has become a running
example in the literature on computational analogy-making —see, for instance, (Falkenhainer, For-
bus, & Gentner, 1989; Schwering et al., 2009). In what follows we will show that it can also be
understood as a concept blending process and can be modeled with the approach presented above.

2. The maximality of the outcome is rooted in HDTP’s previously mentioned coverage maximization.
3. Note that the unifications and addition of axioms conserve the |= relation between theories and, thus, the subsumption

ordering as indicated in Fig. 6.
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Table 4. Domain formalization of the solar system (S) and of Rutherford’s atom model (T ) as used by HDTP.

Sorts:
real, object, time

Entities:
sun, planet, nucleus, electron : object

Shared functions of both theories:
mass : object→ real× {kg} dist : object× object× time→ real× {m}

Functions of the solar system theory:
force : object× object× time→ real× {N} gravity : object× object× time→ real× {N}
centrifugal :object× object× time→ real× {m}

Predicates of the solar system theory:
revolves_around : object× object

Facts of the solar system theory:
(α1) mass(sun) > mass(planet) (α2) mass(planet) > 0 (α3) ∀t : time : gravity(planet, sun, t) > 0
(α4) ∀t : time : dist(planet, sun, t) > 0

Laws of the solar system theory:
(α5) ∀t : time, o1 : object, o2 : object : dist(o1, o2, t) > 0∧gravity(o1, o2, t) > 0→ centrifugal(o1, o2, t) = −gravity(o1, o2, t)
(α6) ∀t : time, o1 : object, o2 : object : 0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t) > 0 ∧ centrifugal(o1, o2, t) < 0
→ revolves_around(o1, o2)

Functions of the atom model theory:
coulomb : object× object× time→ real× {N}

Facts of the atom model theory:
(β1) mass(nucles) > mass(electron) (β2) mass(electron) > 0 (β3) ∀t : time : coulomb(electron, nucleus, t) > 0
(β4) ∀t : time : dist(electron, nucleus, t) > 0

Table 4 gives the initial domain formalizations, containing a governing theory of the solar system
S and an account of Rutherford’s alleged knowledge T about some aspects relating to the atom’s
structure. When provided with these inputs, HDTP is used to compute a shared generalization G
between S and T , together with the corresponding sets of substitutions φS and φT for re-obtaining
the covered domain parts Sc ⊆ S and Tc ⊆ T . Given φS , the set of anti-unifications inversely
corresponding to the respective substitutions is used for obtaining the generalized source theory S′

(given in Table 5), not only containing elements of the generalization corresponding to axioms from
Sc but also generalizing axioms from S \ Sc. Also notice that for the given formalizations of S and
T it holds that T = Tc, i.e., the target theory is entirely covered by the common generalization G.

The generalized source theory S′ is now used to compute an asymmetric amalgam with (the
unchanged) domain theory T , pairwise unifying axioms from S′ with T . Due to T being completely
covered by the common generalization, all elements from T can be directly unified with elements
from S′, leaving out only the definition of the centrifugal function, the revolves_around predicate,
and the laws γ5 and γ6 on the side of S′. These axioms are then added as additional elements to the
unified set of axioms, resulting in the proto-blend theory T ′. As γ5 and γ6 contain non-instantiated
variables obtained by generalizing S into S′, we now apply φT to T ′, resulting in the final blended
theory TB , giving an account of the atom model with the electrons revolving around the nucleus in
stable orbits due to the equality between coulomb and centrifugal force. A consistency check of T
then confirms that the resulting blend is consistent and, thus, the procedure terminates.
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Table 5. Generalized source theory S′ based on the common generalization between the solar system and the
Rutherford atom (axioms not obtained from the covered subset Sc are highlighted by *).

Sorts:
real, object, time

Entities:
X, Y : object

Functions:
mass : object→ real× {kg} dist : object× object× time→ real× {m}
F : object× object× time→ real× {N} centrifugal :object× object× time→ real× {m}

Predicates:
revolves_around : object× object

Facts:
(γ1) mass(X) > mass(Y) (γ2) mass(Y) > 0 (γ3) ∀t : time : F(X, Y, t) > 0
(γ4) ∀t : time : dist(X, Y, t) > 0

Laws:
(γ5∗) ∀t : time, o1 : object, o2 : object : dist(o1, o2, t) > 0 ∧ F(o1, o2, t) > 0→ centrifugal(o1, o2, t) = −F(o1, o2, t)
(γ6∗) ∀t : time, o1 : object, o2 : object : 0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t) > 0 ∧ centrifugal(o1, o2, t) < 0
→ revolves_around(o1, o2)

Clearly, this example stays very close to the classical analogy case. Still, we maintain that the
concept blending perspective also offers a valid view on what is going on as the combination of the
initial observations about a few aspects of the inner workings of the atom and the governing theory
of the solar system adds previously unconsidered and at first not directly connected aspects to the
the former: the axiom about stable orbits for atoms σ6 can only be meaningfully integrated due
to the presence of the (also new) axiom σ5, establishing the correspondence relationship between
centrifugal and coulomb force. Thus, we can see a qualitative change and a significant step of
contentual evolution between T and TB

3.4 Example 2: Pegasus as Mythological Concept Blend

One of the best known concept blends is Pegasus, the winged divine stallion and son of Poseidon and
the Gorgon Medusa from classical Greek mythology. From a concept blending perspective, Pegasus
constitutes a blend between a stereotypical horse and a stereotypical bird, maintaining all the horse
characteristics but adding bird-like features such as, for instance, the wings and the ability to fly. In
what follows, we will re-construct the blending process underlying Pegasus’ concept formation as
second application example for the analogy-based perspective on blending in COINVENT.

We start with the stereotypical characterizations of a horse and a bird in a many-sorted first-order
logic representation (as used by HDTP) from Table 6. Given these characterizations, HDTP can be
used for finding a common generalization of both, subsequently again using the anti-unifications
corresponding to φS for generalizing the source theory S into S′ as given in Table 7. Computing
the asymmetric amalgam of S′ with the (fixed) target theory T , we obtain the proto-blend T ′ from
Table 8. As T ′ still features axioms containing non-instantiated variables, φT is applied to the theory
resulting in the (with respect to φT ) fully instantiated blend theory TB from Table 9.

In a final step, a consistency check of the blended theory TB is performed. Taking into account
world knowledge about mammals causes a clash with axiom δ7 as mammals generally do not lay
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Table 6. Example formalizations of stereotypical characterizations for a bird S and a horse T .

Sorts:
clade, entity, bodypart, ability

Entities:
mammal, avialae : clade horse, bird : entity torso, legs, wings : bodypart walk, fly, lay_eggs : ability

Predicates:
is_of_clade : entity× clade, has_bodypart : entity× bodypart, has_ability : entity× ability

Laws of the bird characterization:
(α1) is_of_clade(bird, avialae) (α2) has_bodypart(bird, legs) (α3) has_bodypart(bird, torso)
(α4) has_bodypart(bird,wings) (α5) has_ability(bird,walk) (α6) has_ability(bird, fly)
(α7) has_ability(bird, lay_eggs)

Laws of the horse characterization:
(β1) is_of_clade(horse,mammal) (β2) has_bodypart(horse, legs) (β3) has_bodypart(horse, torso)
(β4) has_ability(horse,walk)

Table 7. Abbreviated representation of the generalized source theory S′ based on the stereotypical character-
izations for a horse and a bird (axioms not obtained from the covered subset Sc are highlighted by *).

Entities:
C : clade, E : entity

Laws:
(γ1) is_of_clade(E,C) (γ2) has_bodypart(E, legs) (γ3) has_bodypart(E, torso) (γ4) has_ability(E,walk)
(γ5∗) has_bodypart(E,wings) (γ6∗) has_ability(E, fly) (γ7∗) has_ability(E, lay_eggs)

Table 8. Abbreviated representation of the proto-blend T ′ obtained from computing the asymmetric amalgam
between S′ and T (axioms from S′ which had not been obtained from Sc are highlighted by *).

Entities:
E : entity

Laws:
(δ1) is_of_clade(horse,mammal) (δ2) has_bodypart(horse, legs) (δ3) has_bodypart(horse, torso)
(δ4) has_ability(horse,walk) (δ5∗) has_bodypart(E,wings) (δ6∗) has_ability(E, fly) (δ7∗) has_ability(E, lay_eggs)

Table 9. Abbreviated representation of TB = φT (T ′) (axioms which have been instantiated from axioms that
had originally not been obtained from Sc are highlighted by *).

Laws:
(δ1) is_of_clade(horse,mammal) (δ2) has_bodypart(horse, legs) (δ3) has_bodypart(horse, torso)
(δ4) has_ability(horse,walk) (δ5∗) has_bodypart(horse,wings) (δ6∗) has_ability(horse, fly)
(δ7∗) has_ability(horse, lay_eggs)

eggs. Thus, returning to the start of the procedure, we can re-initiate the algorithm, for example,
with Sclash = S \ {α7}, and finally obtain the (with respect to φT fully instantiated and consistent)
version of TB given in Table 10 as output.
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Table 10. Abbreviated representation of the final blended theory TB after inconsistency check and repair (i.e.,
based on Sclash = S \ {α7}).
Laws:
(δ1) is_of_clade(horse,mammal) (δ2) has_bodypart(horse, legs) (δ3) has_bodypart(horse, torso)
(δ4) has_ability(horse,walk) (δ5) has_bodypart(horse,wings) (δ6) has_ability(horse, fly)

4. Conclusions

In the previous sections we presented an analogy-inspired perspective on and a working algorithm
for the blending of concept theories taken from ongoing research within the COINVENT project.
The main contributions are the combination of generalization-based analogy and (a restricted ver-
sion of) the HDTP system with a well-founded formal model and mechanism for knowledge transfer
and concept combination in form of the amalgam framework: Building upon HDTP’s approach to
generalization and domain matching asymmetric amalgams allow to soundly compute the concept
blend of two input theories in a controlled fashion.

The next step on the formal side in the development of our concept blending framework (other
than the aspects already mentioned in Sect. 3.2) will be to remove the restriction on the substitutions
used in HDTP, allowing for applications of all four types of substitutions admissible in restricted
higher-order anti-unification. If this constraint is lifted, a replacement for the semantic consequence
relationship |= as basis for the subsumption ordering will have to be found. Here, we hope that
providing a semantics to the syntax-based operations in HDTP and restricted higher-order anti-
unification via derived signature morphisms (Krumnack, Mossakowski, & Maibaum, 2014) will
allow us to subsequently construct a suitable substitute.

Clearly, ours is by far not the only attempt at the computational modeling of concept blending,
nor is it the only point of view represented within COINVENT: For instance Martinez et al. (2014)
recently presented an approach for algorithmic blending of mathematical theories also building upon
Goguen (2006)’s ideas, Kutz et al. (2015) give an account and a system model of computer-based
blending of ontologies, and Li et al. (2012) report on case studies of systems taking into account
goals and contexts in the blending-based production of creative artifacts. Still, in combining the
generality of modeling introduced by HDTP’s use of first-order logic languages with the formal
soundness and solid theoretical foundations of the underlying generalization model and the amal-
gam framework, the envisioned COINVENT system should constitute a valuable contribution to the
ongoing discourse and a big step towards a computationally feasible model of concept blending.
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