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Abstract
The field of interactive storytelling aims to create a narrative experience that is tailored to the player.
A variety of Artificial Intelligence (AI) methods have been used to dynamically manage the narra-
tive to suit the player’s preferences. Modern approaches tend to represent the domain of narrative
discourse in a machine-readable form and then run automated planners to create a narrative that
is consistent with the player’s choices as well as the author’s goals. The resulting planning task
is frequently under-constrained and allows for many solutions. Since not every plan makes for an
engaging story, the challenge lies with selecting one that will appeal to the particular player. In this
paper, we conjecture that an engaging story is one that keeps the player in the psychological state
of flow. Thus, an experience manager should select the narrative that is predicted to maximize the
player’s state of flow. We propose to use a recent computational model of flow based on matching
cognitive abilities of the audience with the cognitive demands of the narrative. The model will then
be combined with a recent AI interactive narrative manager. This position paper is meant to solicit
comments from researchers in the field to help shape the project.

1. Introduction

When a small group of men and women sat at the fire in ancient times, the stories that they told
would likely have been interactive, with members of the audience interrupting the speaker and
influencing the structure of the narrative. While this interaction continued with small-scale theatre
productions as well as the bedside stories we tell our children, the mass media has switched to
non-interactive narrative forms such as books and motion pictures.

It is believed that feeling agency in daily life is beneficial to one’s well-being (Larson, 1989)
and that some players enjoy games primarily because games gives them such a feeling. Interac-
tivity in narrative can give the audience a sense of agency and is likely to improve the quality of
entertainment. Video games have been bringing interactivity back into mass market storytelling –
modern productions such as BioWare’s Mass Effect or Dragon Age series (BioWare Corp., 2012;
BioWare Corp., 2014) feature an impressive cast of actors, a branching storyline and a number of
side quests that allow the player to interact with and affect the narrative world around them.

Following the success of massive open-world games such as Fallout 3 (Bethesda Softworks,
2008) and Skyrim (Bethesda Softworks, 2011), modern video games are expected to give the player
a degree of narrative agency and allow them to make “their own story”. However, not every possible
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sequence of events makes for an engaging narrative (VanOrd, 2014) bringing game designers back
to the age-old question of what makes a good interactive story. Complicating the problem further
is the fact that narrative appeal is not universal, with different members of the audience preferring
different types of narrative and gameplay.

2. Related Work

In the last several decades, the problem of creating individualized narrative has been tackled with
Artificial Intelligence methods (Riedl & Bulitko, 2013). A common approach is to encode the
domain of narrative discourse in a formal, computer-readable format and then use automated plan-
ning methods to derive possible stories (Young et al., 2004). Once such story plans are computed,
the problem is reduced to selecting the best one. Early systems such as ASD (Riedl et al., 2008)
preferred the stories closest to a manually pre-authored exemplar story, regardless of player pref-
erences. Later research explicitly modelled the player by observing his/her actions throughout the
game. For instance, a system called PAST (Ramirez & Bulitko, 2014) used a player model based
on Robin Laws’ player types (Laws, 2001). It engaged an automated planner whenever the player
deviated from the current story plan. New narratives consistent with the player’s previous choices
as well as the author’s goals would be automatically generated, and the narrative most matching the
player’s type would then be presented to the player. The most recent system in this line of work,
PACE, uses the player type model to infer the player’s desires over a certain set of goals (Hernandez,
Bulitko, & St. Hilaire, 2014). The desires are then used with an appraisal model of emotions (Bu-
litko et al., 2008; Marsella & Gratch, 2009) to estimate the player’s emotions for different possible
narratives. The narrative which is estimated to keep the player on a pre-authored emotion arc is then
selected. This approach can be viewed as a narrative extension of the AI zombie modulator within
the commercial video game Left 4 Dead (Valve Corporation, 2008; Booth, 2009).

These approaches have progressively distanced authors from writing the static structure of a
traditional book. Instead of writing the entire narrative, interactive story designers can create a world
of characters, equip them with possible actions, specify a few authorial goals (e.g., the grandmother
gets eaten in “Little Red Riding Hood” (Perrault, 1697)) and let the player-controlled character
loose in the world. The difficulty with these approaches lies with the assumptions that underlie their
operation. For instance, ASD assumes that stories closer to the original exemplar story are most
fitting for any player. How do we know if the exemplar story is fitting for a wide range of players?
PAST assumes that matching the Laws-style player type at all times makes for a good narrative.
Is it really so? Are these player types informative enough to tailor the narrative to the player? To
which extent are they applicable across various narrative genres? PACE requires the designer to
pre-author a static trajectory through the emotional space that all players will be kept on. Is there a
single emotional trajectory that fits all players? If so, how can it be identified?

3. The Proposed Approach

The approaches discussed in the previous section attempted to answer the fundamental question
“What makes a good interactive story?” by making a number of assumptions. While the resulting
implementations have frequently been positively evaluated in practice, we feel unsatisfied by the
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answers and unsure of how widely applicable these assumptions are. Thus, in the rest of the paper
we describe an alternative approach based on a single psychological concept: flow. We start by
giving the intuition of our proposal and then follow with algorithmic details.

3.1 An Intuitive Overview

The psychological state of flow has been linked to optimal performance in humans (Csikszentmi-
halyi, 1990). People in the state of flow appear not only to perform better but also to feel engaged,
motivated and happy. To achieve that state, several conditions are thought to be important, includ-
ing a balance of the person’s skills and the problem’s complexity, well defined goals and rules,
and timely and clear feedback. In this paper, we will focus on the first condition: a good match
between the person’s cognitive skills (e.g., short term memory, vocabulary, social awareness, em-
pathy) and the cognitive complexity/challenge of following a particular narrative (i.e., the cognitive
skills required of the audience).

Our primary conjecture and the answer to the question “What makes a good interactive story?”
is that good interactive narratives are the ones that maximize the player’s degree of flow1 while the
story is underway. Given that interactive stories are often presented in a video-game-like setting,
there is a connection between our conjecture and the use of flow in video game design. In fact, the
concept of flow originated from psychological studies of game playing (Csikszentmihalyi, 1975)
and connections between flow and games have been discussed extensively (Csikszentmihalyi, 1990;
Green & Brock, 2000; Sweetser & Wyeth, 2005; Chen, 2007; Cowley et al., 2008; Baron, 2012;
Koster, 2013). That being said, the innovation of our approach is twofold.

First, we propose to keep the player in the state of flow by shaping the narrative using an es-
timate of the player’s flow as an objective function. This stands in contrast to the common case of
dynamically adjusting gameplay difficulty (e.g., by modulating zombie influx in Left 4 Dead (Booth,
2009)) which does not substantially alter the story being told. Consequently, while both commer-
cial video games (Ritual Entertainment, 2006; Pagulayan et al., 2012) and academic research in
dynamic difficulty adjustment (Hunicke & Chapman, 2004; Zook & Riedl, 2014; Chen, 2007)
have focused on gameplay skills, we focus on the player’s cognitive skills that are specifically re-
lated to comprehending narrative (e.g., remembering minute details of a crime scene, or suspending
one’s disbelief in a forest with magic fairies). This focus is supported by work that found that
reading can commonly induce flow (Csikszentmihalyi, 1990), where the skills involved include nar-
rative comprehension and visualization, empathizing with its characters, and anticipating twists in
its plot (Sweetser & Wyeth, 2005; Nell, 1988). This is also supported by research on flow in games
that focused on the cognitive processing involved in playing a game (Cowley et al., 2008).

Second, we propose that an AI-based experience manager should perform flow-maximizing ad-
justments to the narrative automatically on-line, as the narrative is being experienced by the player.
Specifically, whenever an AI-based experience manager decides among several possible narrative
segments to run next, it should estimate the degree of flow that each segment will induce in the
player and then select the segment with the maximum estimated flow. We propose to employ an

1. In this paper the degree of flow refers to the frequency and/or duration and/or the depth of flow states experienced by
the audience of the narrative.
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explicit computational model of flow to estimate the degree of flow of a specific player given a
candidate narrative segment.

This on-line closed loop approach is in contrast to the common practice of manually tun-
ing a game’s difficulty curve during the development process so that ideally an average player’s
gameplay skills would approximately match the game’s complexity/challenge throughout the game
(known as pacing (Schreiber, 2009)). For instance, many first-person shooters and role-playing
games gradually ramp up the difficulty of the enemies either by introducing more difficult enemy
types as the player progresses through the story (e.g., Fallout: New Vegas (Bethesda Softworks,
2010)) or by increasing the difficulty of the existing enemy types (e.g., The Elder Scrolls IV: Obliv-
ion (Bethesda Softworks, 2006)). Alas, creating a difficulty ramp to match every player’s skill ramp
is generally impossible because different people have substantially different skill ramps (Koster,
2013). Similarly, narrative difficulty ramps are common in traditional novels where the author at-
tempts to tune the pacing of the story to avoid overwhelming the reader or making them bored. Just
like with video games, different people may have different narrative skill ramps, and this limits the
appeal of a static, pre-authored narrative.

3.2 Algorithmic Details

We propose to extend the narrative management framework of PACE (Hernandez, Bulitko, & St.
Hilaire, 2014) with a computational model of flow that is based on the balance between the player’s
skills and the problem’s complexity (Bulitko, 2014).

As with PACE, our proposed AI experience manager takes the narrative space expressed as the
set S of narrative states, the set A of narrative actions that the player may perform and the world
dynamics p which links the narrative state and the narrative actions. It also takes a set S† of terminal
narrative states and a complexity function c̄. The complexity function maps any narrative state to
a vector of m numbers: c̄ : S → [0, 1]m, where each number indicates the degree of cognitive
skill that is required from the audience to engage with that narrative state. For instance, a story
with many related characters may have a narrative state with the complexity of (0.8, 0.1), where
the values indicate that a high skill (0.8) in mapping people’s names and relations is required from
the player, but that their ability to solve logical puzzles would not be taxed (0.1). The same m
dimensions are also used to represent the player/audience’s cognitive skills σ̄ as modelled by the AI
experience manager. The model is initialized to some prior in line 2 of Algorithm 1. We discuss
ways to define the complexity function in Section 3.3.

As long as the player has not reached a terminal state (line 3) the AI manager presents the
current narrative state st to the player (e.g., the player controlling Red encounters a wolf in the
forest) and collects the player’s action at (e.g., the player chooses to shoot the wolf). The player’s
cognitive skill model is then updated (e.g., friend/foe identification skill is raised) in line 6. We
discuss mappings from the player’s action to their skills in Section 3.3. In line 7, the AI manager
computes candidate narrative continuations in the same way as ASD, PAST and PACE: by invoking
an automated planner with the current world dynamics given by p. Each of the narrative candidates
nj produced by the planner is consistent with the narrative formed so far and satisfies the authorial
goals. In our running example, there may be two narrative alternatives computed by the planner: n1
brings in a brother of the murdered wolf while n2 employs a magic fairy to resurrect the wolf. Both
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Algorithm 1: Flow-maximizing Narrative Management

inputs : narrative space (S,A, p), narrative start state s1, narrative final states S† ⊂ S,
complexity function c̄

1 t← 1
2 initialize player’s skill model σ̄1
3 while st /∈ S† do
4 present narrative state st to the player
5 collect the player’s narrative action at
6 update the player’s skills σ̄t+1 from at
7 compute narrative candidates {nj} from st, at, p
8 for each nj do
9 estimate the resulting flow fj from σ̄t+1, c̄(nj)

10 select the highest flow: j∗ ← arg maxj fj
11 select the next desired narrative state: st+1 ← nj∗ |1
12 update the world dynamics p so that st

at−→ st+1

13 t← t+ 1

of them satisfy the authorial goal of Red’s grandmother being eaten and Red subsequently deceived.
For each of the computed narrative candidates, line 9 estimates the degree of the player’s flow if they
were to experience that continuation. We describe a way compute this estimate in Section 3.3. Once
the flow is estimated for each narrative candidate, the index j∗ of the flow-maximizing candidate is
determined in line 10, the next narrative state is set to the first state of the narrative nj∗ in line 11,
and the dynamics of the world p are updated so that the player’s action at indeed leads to that
state in line 12 (Thue & Bulitko, 2012). For example, to select between narratives n1 and n2, the
AI manager will first compute the complexity of each. Suppose that the cognitive complexity of
the wolf’s brother narrative n1 is c̄(n1) = (0.7, 0.7, 0.1), where the three dimensions are friend/foe
identification skill, fighting ability, and the ability to suspend disbelief. Meanwhile, suppose that the
resurrecting fairy narrative n2 has a complexity of c̄(n2) = (0.1, 0.1, 0.7) (since the player might
have to suspend their disbelief in the existence of fairies). Next, the AI manager will examine the
model of the player’s skills that it has constructed thus far (say, σ̄t+1 = (0.8, 0.9, 0.5)), and then
use it to estimate the player’s flow for each candidate narrative. The flow induced by the narrative
n1 will be f1 ≈ 1/(0.4583 + ξ), whereas f2 ≈ 1/(1.0817 + ξ). Thus narrative n1 is estimated to
give the player a higher degree of flow and so will be selected by the AI manager.

3.3 Defining Flow, Complexity, and Skill

Selecting narrative to maximize the player’s estimated degree of flow critically depends on the
definition of flow and, more specifically, on the definitions of the skill and complexity functions
related to narrative comprehension.
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Several models of flow have been suggested (Weber et al., 2009; Bulitko & Brown, 2012; Mon-
eta, 2012; Klasen et al., 2012; Bulitko, 2014). As a first step, we propose to use a simple flow model
based solely on the balance of the player’s skills σ̄t+1 and the complexity of the narrative candidate
c̄(nj). The model was previously evaluated in a synthetic domain (Bulitko & Brown, 2012; Bulitko,
2014) and, in our context, becomes:

fj =
1

‖σ̄t+1 − c̄(nj)‖+ ξ

where ‖‖ is the 2-norm distance: ‖x̄− ȳ‖ =
√∑m

i=1(xi − yi)2 and ξ is a small positive constant to
keep fj finite when the player’s skills exactly match the narrative complexity (i.e., σ̄t+1 = c̄(nj)).
Note that nj is a sequence of narrative states computed by the automated planner. In the formula
above we assume that c̄(nj) returns the complexity of the first narrative state of nj and ignores the
remainder of the sequence. More generally, the degree of flow can be computed along a multi-state
narrative trajectory with a possible discounting of the flow estimated for more distant future states.

A basic approach to modeling the player’s narrative skills is to manually annotate each action
available to the player with a vector of deltas to the player’s skill vector, similarly to the approach
taken in our previous work on modeling player preferences (Thue et al., 2007; Thue et al., 2011;
Ramirez & Bulitko, 2014; Hernandez, Bulitko, & St. Hilaire, 2014). To validate such annotations,
one could run a user study in which the narrative experience is occasionally interrupted and the
player’s narrative comprehension skills are measured with questionnaires or tests.

There are several ways to define the cognitive complexity of a narrative segment. A basic
approach is to manually annotate all narrative events with a complexity vector. This is similar
to manually annotating narrative encounters with player type suitability in PaSSAGE (Thue et al.,
2007; Thue et al., 2011) and PAST (Ramirez & Bulitko, 2014). A more advanced approach would be
to present possible narrative events to a variety of players whose narrative-comprehension skills had
been measured ahead of time. Then, for each such player, one could measure his/her comprehension
of the specific event that was presented to them. The cognitive complexity of the narrative event
could then be data-mined from the collected measurements. For instance, adopting the unimodal
assumption of Bulitko (2014), we can form a corpus of narrative-comprehension skills for all test
players who sufficiently comprehended a narrative event and then take per-dimension minimum.
To illustrate, suppose we had three test players whose narrative skills were pre-measured as σ̄1 =
(0.1, 0.2, 0.3), σ̄2 = (0.4, 0.5, 0.6), σ̄3 = (0.9, 0.2, 0.7) where the three dimensions are friend/foe
identification skill, fighting ability, and the ability to suspend disbelief. Suppose the first player did
not demonstrate a sufficient comprehension of a narrative event n whereas the other two players
did. Then the complexity of n is the per-dimension minimum of σ̄2 and σ̄3: c̄(n) = (0.4, 0.2, 0.6).

4. Testbeds for Empirical Evaluation

Once we have implemented our approach, we will first evaluate it in the context of an interactive,
AI-managed narrative such as an interactive version of the “Little Red Riding Hood" story (Thue
et al., 2007; Riedl et al., 2008; Ramirez & Bulitko, 2014). The presentation can be via a text-
only format (Ramirez & Bulitko, 2014), a full 3D game world (Thue et al., 2011) or a series of
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still images (Hernandez, Bulitko, & St. Hilaire, 2014) (see Figure 1). The cognitive model of the
player’s skills will be updated from the player’s input in the game (e.g., dialogue choices or other
actions). In authoring the narrative space and the cognitive skill/complexity annotations on player
actions and narrative segments, we will use the same process that we followed when creating our
previous testbeds for PaSSAGE (Thue et al., 2007; Thue et al., 2011), PAST (Ramirez & Bulitko,
2014) and PACE (Hernandez, Bulitko, & St. Hilaire, 2014).

Figure 1. Top row: a text-based presentation of narrative in PAST and the player’s choices (reproduced
from (Ramirez & Bulitko, 2014)). Bottom row: a presentation of narrative in a 3D video game (left) or as
still images (right) (reproduced from (Riedl & Bulitko, 2013; Hernandez, Bulitko, & St. Hilaire, 2014)).

The players in the experimental condition will experience an AI-managed story with our pro-
posed flow estimate as the objective function. Their post-experience responses (e.g., enjoyment of
the story) will be compared to those in the control condition (e.g., with random narrative candidate
selection). This is a common approach for evaluating experience managers that we have used over
the last eight years (Thue et al., 2007; Ramirez & Bulitko, 2014). We will attempt to complement
questionnaire-based data about the overall experience with specific measurements of the degree of
flow that is experienced by the participants directly using either questionnaires (Moneta, 2012) or
fMRI (Klasen et al., 2012).

We will also consider evaluating this approach in intelligent training systems and on-line educa-
tional courses. For the former, we have partnered with a medical hospital and have been developing
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a virtual-reality-based training system for neonatal resuscitation. Once the testbed is completed, we
will evaluate whether keeping the trainee in a state of flow by dynamically modifying the training
scenario can lead to a higher training effect. For the latter, we are partnering with researchers in
on-line education to implement dynamic shaping of material in a massively open on-line course
(MOOC) to maximize the student’s degree of flow. Again, we will attempt to run user studies to
evaluate the training effect of this approach.

5. Future Work

We have proposed a way to use a computational model of flow within an AI experience manager to
select between automatically planned narratives. The natural next step is to actually implement this
approach. To do so, several aspects of the approach need to be instantiated. First, the m dimensions
describing the player’s skills and the narrative complexity must be defined. We expect studies of
reader engagement (Busselle & Bilandzic, 2009) to be informative for this step. Second, the player’s
actions must be mapped to updates in the player’s skill model (line 6 in the algorithm). Third, the
complexity function c̄ must be defined for all narrative states. We plan to work with reading psy-
chologists and draw from research on transportation, absorption, immersion and engagement (Green
& Brock, 2000; Green, 2004). Finally, more complex models of flow (Moneta, 2012) can be studied
in place of the simplistic model that we presented above.

6. Conclusions

We proposed to apply the concept of flow in the context of AI-managed interactive storytelling. We
conjectured that automatically shaping the player’s experience toward maximizing his or her sense
of flow can lead to a better narrative experience. We further proposed a specific computational model
of the player’s flow and a mechanism to shape the narrative towards maximizing the predicted flow.
Potential applications include video games, intelligent training systems, and online education.

As this is a position paper, we welcome any feedback on the hypothesis as well as our proposed
solution approach. We hope that such feedback will shape our implementation of the approach.
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