
An Architecture for Flexibly Interleaving Planning and Execution

Yu Bai YBAI181@AUCKLANDUNI.AC.NZ

Chris Pearce CPEA144@AUCKLANDUNI.AC.NZ

Pat Langley PATRICK.W.LANGLEY@GMAIL.COM

Mike Barley MBAR098@CS.AUCKLAND.AC.NZ

Charlotte Worsfold CWOR015@AUCKLANDUNI.AC.NZ

Department of Computer Science, University of Auckland, Private Bag 92019, Auckland 1142 NZ

Abstract
In this paper, we present a theory that aims to reproduce behavioral abilities that humans use to
generate and execute their plans. We begin by highlighting the phenomena we are interested in,
and then present several theoretical assumptions that account for them. Next, we introduce FPE,
a five-stage system that supports strategies for flexible execution, including open-loop and closed-
loop control. We then turn to the extensions we have made both to this system and to FPS, a flexible
problem solver, in order to reproduce a range of interleaving strategies. We report runs with the
architecture that support our assumptions for its coverage and flexibility. We also analyze how
these different techniques perform in response to variations in domain characteristics. In closing,
we discuss related work in these areas and consider avenues for future research.

1. Introduction

Humans exhibit great flexibility in how they carry out complex activities. In some cases, they pay
close attention to the environment and their actions, engaging in ‘closed-loop’ behavior. In other
cases, they act in a more automated manner, not bothering to check whether their actions’ conditions
are met or their effects are produced, relying on ‘open-loop’ control. These two methods represent
opposite ends of a behavioral continuum; strategies towards the ‘closed-loop’ end of the spectrum
prioritize the cost of error over the cost of sensing, while those towards the other end do the reverse.

We observe similar variability in how humans interleave planning and execution. In some cases,
they generate an extended plan before they begin to carry it out; in others, they behave more reac-
tively, putting little thought into the future before they act. Many factors appear to influence such
choices, from availability of information to environmental predictability, but the flexible character
of planning and execution is an important feature of human cognition.

The AI planning community has reported various strategies for interleaving planning with exe-
cution, but those systems have been optimized for certain contexts, rather than designed to support
flexible strategies. We desire a theory that can support a range of strategies both for executing com-
plete plans and for interleaving the planning and execution processes; to this end, we have adopted
five theoretical assumptions. In this paper, we describe these high-level assumptions and introduce
a combined system that instantiates them. We begin by describing our execution module, FPE, in

c© 2015 Cognitive Systems Foundation. All rights reserved.

Proceedings of the Third Annual Conference on Advances in Cognitive Systems Poster Collection (2015) Article 25

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

terms of the hierarchical plans it carries out, its five-stage process, and the strategic knowledge that
produces its behavior. Then we briefly review FPS (Langley et al., 2013), an architecture for flex-
ible problem solving that we use to generate our plans. Next, we introduce the additional strategic
knowledge we have devised for both FPE and FPS to support flexible interleaving. Having de-
scribed the combined system in its entirety, we present a set of experimental results for a number of
domains and discuss our findings. We conclude by reviewing related work and discussing our plans
for future research.

2. Behavioral Abilities and Theoretical Assumptions

The overall purpose of this work is to account for the variety of ways that one can carry out their
plans. We have identified two key abilities on which to focus:

• One can utilize different strategies to execute complex plans. For instance, in some situations
an agent pays close attention to the effects of their actions, but in others, he simply assumes
that they are successful.

• An agent might have at his disposal a diverse range of techniques for moving back and forth
between plan generation and execution. He can generate a complete plan and then carry it out,
move frequently between the two process, or adopt an approach that falls somewhere between
these two extremes.

Although we are especially interested in the second phenomenon, we believe that a truly flexible
theory of planning and execution should reproduce both of these abilities. To this end, we adopt five
high-level theoretical assumptions:

• Plans are represented by trees, in which each node is a problem, and every child denotes a
subproblem of its parent.

• The process that enacts these plans operates in a loop of five discrete stages: intention selection,
condition checking, intention enaction, perceptual inspection, and effects checking.

• A separate cycle is responsible for producing these plans. This too involves five stages: prob-
lem selection, intention generation, subproblem generation, failure checking, and termination
checking.

• Strategic knowledge — in the form of domain-independent control rules — governs decisions
at several stages of each cycle to produce a range of execution and planning strategies.

• In addition to influencing how complete plans are generated and executed, strategic knowledge
also determines when the planner transfers control to the executor, and vice versa.

In the sections that follow, we introduce FPE, an architecture for flexible execution that carries out
hierarchical plans, such as those produced by FPS. This system incorporates the first two assump-
tions described above, as they both deal exclusively with the execution of plans. The final postulate
relates to interleaving the execution and planning processes. To support this ability, we have ex-
tended both FPS and FPE so that they can interact with one another in a flexible manner. Together,
the integrated system incorporates all of the assumptions described above.

We believe that reproducing the flexible execution and interleaving behaviors exhibited by hu-
mans is a valuable goal in its own right. However, an additional benefit of our combined system is

2

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

that it lets us evaluate hypotheses about interactions between strategies and domain characteristics
— such as the reliability of the agent or the environment — in a common infrastructure. We will
return to this functionality in Section 5, where we present experiments that test these interactions.

3. A Framework for Plan Execution

We will focus first on the execution of complex plans. For the purposes of this paper, we will assume
these plans are produced by FPS, but this approach should apply equally well to the outputs of other
planning systems. After reviewing the structure of plans, we discuss FPE, our system for flexible
plan execution, in terms of both the control architecture and the knowledge it employs.

3.1 The Hierarchical Structure of Plans

Plans generated by FPS are hierarchical and comprise two key elements. The first of these is the
problem, which has an associated state description and goal description; these descriptions have
unique identifiers so they can be used elsewhere in the plan. If a problem’s goal description is
satisfied by its state description, then we say that it is trivial, which means that the problem is
solved. The second key element is the intention, which denotes a specific instance of a domain
operator, including its instantiated conditions and effects. An intention’s conditions describe a set
of elements that must be true for that intention to be applicable. These elements take the same
form as the predicates in a problem’s state description — for instance, on(blockA, blockB)
indicates that block A must be on top of block B. An intention’s effects specify the changes that it
will make to the current state if it is enacted.

If a problem, P, is nontrivial, it can be associated with one or more intentions, I, each of which
breaks it into two ordered subproblems: a down subproblem that shares P’s state but has goals based
on I’s conditions, and a right subproblem that has the same goals as P but a state that results from
applying I to P’s state. A decomposition of P is a solution to P if each subproblem is either trivial
or has its own pair of solved subproblems.

Figure 1 illustrates a simple plan that should clarify this organization. This example is from the
Blocks World domain (Fikes & Nilsson, 1972), in which an agent must rearrange a collection of
blocks on a table so that they match a particular configuration. The state description of the initial
problem specifies that blocks A and C are on the table and block B is stacked on top of C. The goal
description simply stipulates that C should be on top of A. The plan shown in the figure is just one
of many possible decomposition trees that will solve this task.

The initial problem, P1, is nontrivial, so it can be broken into a down subproblem, P2, and a
right subproblem, P3, by the intention to “put down block”. P2 takes the intention’s single condition
— that the gripper is holding block B — as its goal. Since this element is not included in its state
description, P2 is nontrivial like its parent. Therefore, it is attached to two subproblems via an
intention. These subproblems, which result from the “unstack block B from C” intention, are both
trivial, so they do not have decompositions of their own and represent a solution to P2.

P3’s state description results from the effects of both “unstack block B from C” and “put down
block” on P2’s state. Like its parent, P3 has a solution that consists of two intentions: “pick up
block C” and “stack block C on A”. All of the terminal nodes in the tree are trivial, which means

3

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

S2:

S4:

S1:

S3:

S5: P7

P8
P6

P9

P3

P4

P1

P2

P5

G1S1

G2S1

G1S3
G1S5

G4S3

G3S1
G5S3

G4S4
G2S2

pick_up(c)

stack(c, a)

unstack(b, c)

put_down(b)

on(blockC, blockA)

holding(blockB)

on(blockB, blockC)
neg(holding(_))
neg(on(_, blockB))

holding(blockC)
neg(on(_, blockA))

on(blockC, table)
neg(holding(_))
neg(on(_, blockC))

G2:

G4:

G1:

G3:

G5:

Figure 1. An example plan from the Blocks World domain. Each nontrivial problem decomposes into two
subproblems with an intermediate intention, specifying a hierarchical solution that involves four actions:
unstack block B and put it on the table, then pick up block C and stack it on A.

that it is a solution for P1. Figure 1 clarifies the hierarchical nature of FPS’s plans. This organization
incorporates our first theoretical postulate: that plans are stored as problem trees, in which every
node (except the root) is a subproblem of its parent. This has implications for the plan execution
module, to which we now turn our attention.

3.2 The Execution Process

To carry out the hierarchical plans described above, we have developed FPE, a flexible execution
module that operates in discrete cycles. This system incorporates our second claim from Section 2,
which states that execution should be distinct from planning and involve five discrete stages: inten-
tion selection, condition checking, intention enaction, perceptual inspection, and effects checking.
To clarify this procedure, we consider each stage in turn and describe how it might carry out the
initial intention of our example plan.

In the first stage, intention selection, FPE chooses which intention in the plan to carry out next.
This stage typically involves little choice. However, if an intention was not successfully executed in
the previous cycle, then the system may choose to reselect it. For example, suppose that we want it
to execute the solution shown in Figure 1. Before the execution process begins, we simply pass the
module the entire tree. Upon entering the first stage of its cycle, the system finds the first intention
in that plan, namely, “unstack block B from C”.

Once FPE has made this selection, the next stage, condition checking, involves deciding whether
the intention is applicable in the current state of the world. The system may choose to analyse the
current world description, an internal state description that encodes the system’s beliefs about the
world (as opposed to the real external environment in which the system acts). When the system
reaches this step in our Blocks World plan, it follows its default behavior and matches each condition
against the state elements in its current world description. In doing so, the module makes two

4

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

assumptions: that its environment is fully observable and that the intention is only applicable if all
conditions are met. Nothing has altered the environment between plan generation and condition
checking, so the module determines that the intention is still applicable and marks it as such.

If the conditions are satisfied, or if the module makes that assumption, then it enters the intention
enaction stage and carries out the associated action.1 As in problem selection, this stage involves
little choice. At this point in its execution of our Blocks World example, the module attempts to
carry out its intention to “unstack block B from C”. This may occur in either the physical world or
a simulated environment. Let us assume that, in this case, FPE is unsuccessful and that the effects
of the action are not applied to the simulated environment.

The system will then begin perceptual inspection, which involves acquiring information about
the new environmental state and updating FPS’s current world description. This ensures that the
current world description does not fall out of step with FPE if an action fails, or if an agent or
unexpected event alters the external environment. Since the gripper failed in its task at the previous
stage, the current world description remains the same: block B is still on C and the gripper is empty.

Effects checking, final stage of execution, is the point at which FPE determines whether the
applied intention produced its intended effects. If they have been produced, or if the system assumes
that they have, then it updates its current world description to reflect this. By default, unsuccessful
effects will lead FPE to reselect the intention and try it again in the next cycle, unless the number
of attempts has already exceeded a limit. At this point in our example, the system matches the
expected effects of its current intention against the current world description. It expects to find that
the gripper is holding block B, but this is not the case. It does not mark the intention as successful
and, thus, may reselect it and try again at the next intention selection stage.

In summary, FPE’s execution process involves five discrete stages. The module may select an
intention, check whether the current state satisfies the intention’s conditions, carry out the selected
action, perceive the new state of the world, and ascertain whether the appropriate effects occurred.
To produce flexible execution, our system supports alternative behavior at three of these stages. We
shall now describe this functionality in detail.

3.3 Flexible Plan Execution

Humans exhibit considerable variability when executing complex plans and procedures. Recall that
this is the first behavioral ability that we noted in Section 2. When errors are expensive, people can
be very careful; a pilot, for example, pays close attention to conditions and effects during takeoff
and landing. In contrast, people carry out many procedures, like taking a shower, on autopilot,
devoting their attention to other matters. These extremes are sometimes referred to as closed-loop
and open-loop control, respectively, and research on human motor behavior has found evidence for
both modes (Schmidt, 1982; Stelmach, 1982).

However, these are just two of the execution strategies at our disposal. One might imagine situa-
tions in which humans only infrequently perceive their environment; for example, drivers generally
only check their rear mirrors at long intervals or when they are about to change lanes. In other
situations, people may only check either the conditions or the effects of their actions, but not both.

1. In our current work on FPE, we assume that actions are discrete and that the system knows when it has completed an
intention (regardless of whether it was successful or not).

5

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

Intention
Selection

Condition
Checking

Intention
Enaction

Effects
Checking

Perceptual
Inspection

Figure 2. The five stages of FPE’s execution cycle.

When making decisions about which strategy to use, a major consideration is the trade-off between
speed and accuracy — that is, the faster a person carries out their action, then the less accurate
they are likely to be (Fitts & Peterson, 1964; Meyer et al., 1982). Additional factors, such as the
consequences of error, and the cost and speed of perception and action, are also relevant.

To support such flexibility, FPE utilizes strategic knowledge to determine what choices it makes
and which elements it checks in working memory. This domain-independent content takes the form
of control rules that refer to meta-level predicates like problem , state, goal, intention, condition ,
and effect. These strategic control rules can influence the architecture’s behavior at three different
stages:

• At the second stage, the module might check the intention’s conditions against the current
world description, or it may simply assume that the conditions are satisfied without bothering
to check that this is the case;

• Strategic control rules for the fourth stage determine whether FPE senses the environment to
collect information about its state, or if it moves on to the next stage without doing anything;

• In the final stage, the module can either ensure that the intention’s effects have been applied to
the world, or it can simply assume that it was successful and move on.

Although the control schemes described above are individually simple, they can interact to alter
behavior substantially. In the previous section, we described how the module might begin to execute
the blocks world plan from Figure 1. In that example, the system checked that the state of the
environment met the current intention’s conditions, perceived the state of the external environment,
and checked that the effects of the intention have occurred. Now, imagine that it is executing the
same plan, but strategic knowledge specifies that it should do nothing at these three stages.

In this scenario, FPE begins as it did before and selects the first intention in the plan. During the
second stage, it does not check the conditions of this intention; instead, it simply updates working
memory to indicate that the intention’s conditions are satisfied. The module then moves straight
to the intention enaction stage and attempts to “unstack block B from C”. As before, it fails in its
task. However, since it does not perceive the environment or check that the expected effects have
occurred, the system remains oblivious. It simply assumes that the intention was successful, and

6

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

Problem
Selection

Intention
Generation

Subproblem
Generation

Termination
Checking

Failure
Checking

Figure 3. The five stages of FPS’s problem-solving cycle.

marks it as such. Therefore, when the system reaches the next intention selection stage, it moves
on to the “put block B down” intention. It fails to carry out the action again because, this time, the
intention’s conditions are not met. FPE continues in this way until it reaches the end of its fourth
cycle, at which point it ends the execution process having not enacted any intentions successfully.

As these two examples demonstrate, alternative strategies may exert considerable influence on
both the efficiency and efficacy of the execution process. FPE could ‘complete’ its second run in less
time than its first because it needed to perform fewer operations per cycle. Furthermore, checking
conditions, acquiring information about the environment, or validating effects may in some cases
consume additional resources. In such situations, the second strategy might be much more cost
effective than the first.

However, in our second example, FPE’s failure to execute just one of its intentions rendered
the entire plan useless. The likelihood and cost of errors in this domain was high, and, despite its
longer execution time, the first strategy proved to be the most suitable. In this case, the system could
recover by simply reselecting the failed action and trying again, but if the environment has changed
and the action is neither applicable nor desirable, then replanning is necessary. The ability to move
from execution to planning — and vice versa — is another important facet of human behavior, and
we discuss this functionality in the following section.

4. Flexible Interleaving of Planning and Execution

A complete agent architecture should support not only execution and planning, but also their integra-
tion. In this section, we briefly review FPS’s five-stage problem-solving process and the knowledge
that modulates it. We then discuss how we have extended both the planning and the execution pro-
cess to incorporate our fifth claim, which states that strategic knowledge should govern the transfer
of control from one module to the other.

4.1 FPS’s Planning Process

Any discussion of our combined framework’s interleaving process necessitates an understanding of
FPS’s problem-solving cycle. Therefore, we will provide a brief overview of how it generates the

7

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

hierarchical plans described earlier. As in the execution module, this system loops through a set of
five stages, in accordance with our third assumption from Section 2. Figure 3 depicts the names of
these stages and the order in which they occur. Strategic control rules, similar to those in FPE, let
the system solve problems in different ways. Although the examples that we discuss in this paper all
refer to planning domains, the FPS system may also perform different varieties of problem solving,
such as design and theorem proving.

In the first stage, problem selection, the system picks a problem to focus on. At the outset, only
one alternative is available, but as the initial problem is decomposed recursively into subproblems,
FPS has more options. Next, during intention generation, the system finds operator instances rele-
vant to the current problem. The third stage, subproblem generation, involves selecting an intention
and using it to decompose the current task into subproblems. After this, failure checking detects
issues that may lead FPS to abandon the current problem, then termination checking determines
whether any more work is required to solve it. If it finds at this final stage that it has not satisfied its
initial goals, then FPS continues for another cycle of problem solving.

FPS can call upon strategic knowledge at each stage to produce behavior. Rules for problem se-
lection determine whether it uses depth-first search, iterative sampling, breadth-first search, or some
other search regimen. Those for intention selection govern whether FPS carries out forward search
or means-ends analysis. During subproblem generation, strategic knowledge provides domain- in-
dependent heuristics to evaluate intentions based on the number of their conditions that are not met,
the goals they achieve if applied, or some other control scheme. Finally, strategic control rules for
failure checking specify various criteria, such as loop-triggered failure or a depth limit.

Taken together, strategic control rules let FPS reproduce a broad range of problem-solving
strategies that have appeared in the cognitive science literature. For instance, to reproduce depth-first
means-ends analysis, the system adopts depth-first search to select problems, backwards chaining
during intention generation and loop- triggered failure. Pearce et al. (2013) present evidence of this
coverage by using a variety of strategies to solve problems across a range of domains.

4.2 Strategic Knowledge for Interleaving Planning and Execution

Just as agents can exhibit different strategies for execution, so too can they employ different strate-
gies for interleaving execution with planning. Although few psychological studies have focussed
on this ability, an observation of human problem solvers makes it clear that they have a variety of
techniques at their disposal and that these various strategies are suited to different situations. In
some settings, one can generate a complete plan before executing it in an open-loop manner. In
others, the problem is so complex, as in some difficult puzzles, or the environment is sufficiently
unpredictable, as in playing chess, that one must alternate between extending and executing a plan.

Execution can occur under different conditions, for example, whenever one solves a down sub-
problem, or after completing N-step lookahead. The same holds for planning, which can occur
frequently (e.g., whenever one makes a move) or rarely (e.g., only when an executed plan does not
go as intended). These different approaches relate to the last behavioral ability we discussed in
Section 2. Recall that this relates to the broad range of strategies that humans employ to move from
planning to execution and vice versa. We will not attempt to enumerate all possibilities here, but we
will return to this concept later.

8

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

enacts pick_up(mail, roomC)

 ROBOT DROPS MAIL

enacts exit(roomC, corr3, door6)
enacts enter(roomA, corr3, door2)

!

exit(roomC, corr2, door5)

enter(roomA, corr2, door1)

put_down(mail, roomA)

pick_up(mail, roomC)

exit(roomC, corr3, door6)

enter(roomA, corr3, door2)

put_down(mail, roomA)

enter(roomA, corr3, door2)

put_down(mail, roomA) enacts pick_up(mail, roomC)

 ROBOT DROPS MAILenter(roomA, corr3, door2)

enacts pick_up(mail, roomC)

 ROBOT DROPS MAIL!enter(roomA, corr3, door2)enter(roomA, corr3, door2)

put_down(mail, roomA) enacts pick_up(mail, roomC)

 ROBOT DROPS MAIL! ROBOT DROPS MAIL! ROBOT DROPS MAILenter(roomA, corr3, door2)

put_down(mail, roomA) enacts pick_up(mail, roomC)
P11P11

enacts pick_up(mail, roomC)

P10

P11
enacts pick_up(mail, roomC)

Figure 4. An unexpected event occurs as FPE is executing its plan. When it regains control, FPS must replan
from a new state.

Both FPS and FPE play central roles in our account of these variations and, as before, differences
in domain-independent strategic knowledge are responsible for producing different behaviors. The
primary loci of control reside in the fifth stage of problem solving — termination checking —
and the second stage of execution — condition checking. This functionality incorporates our fifth
theoretical claim: that domain-independent strategic control rules determine whether the system
proceeds to the next stage of the current process or transfers control to the other module.

Strategic knowledge for the termination checking stage of the planning process encodes four al-
ternative stopping criteria. The first and simplest criterion, full solution, passes control to execution
when FPS finds a complete plan for the initial problem. The remaining criteria let FPE take over
as soon as the planner has found a partial solution: solved subplan requires FPS to solve a single
executable subproblem; long enough plan generates a sequence of N intentions that the agent can
carry out in the current world state; and enough goals satisfied produces a subplan that achieves
N percent of the initial goals. As soon as FPS discovers that it has satisfied its stopping criteria, it
sends the solved problem and its associated plan to the execution module. FPE then immediately
enters the intention selection stage of its cycle, and attempts to carry out the first step.

We also implemented three stopping criteria for the second stage of the execution cycle. These
control schemes are responsible for transferring control from execution back to problem solving,
and, thus, determine how much of the current plan to execute. The strategic knowledge for the first
stopping criterion, execute as much as possible, shifts processing back to FPS when FPE has either
carried out its entire plan or that plan has failed. Alternatively, strategic control rules might specify
the enough execution scheme that returns control to planning if FPE has carried out N intentions; or
the enough goals achieved criterion that does so if it has produced a state that satisfies a particular
percent of the initial problem’s goals. Once it regains control, the planner begins in the problem
selection stage and creates a new plan that is applicable in the current state.

We can clarify these criteria with an example from a domain we call Robot Messenger, which
was inspired by the work of Haigh and Veloso (1998). In this domain, K different rooms are con-
nected by K hallways, and they are arranged so that a robot can travel from one room to any other

9

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

through a single hallway. Suppose that the robot starts in one of three rooms, B (which is also the
location of the key to room C), and that the mail is in the locked room C. The only goal specifies
that the mail must be delivered to room A.

For this example, assume that the problem solver adopts the strategy of means-ends analysis
with the long enough plan stopping criterion (with N set to three), and FPE utilizes the execute
as much as possible criterion and closed-loop control. The planner uses means-ends analysis to
recursively generate decompositions that satisfy at least one of their parent problem’s goals. After
decomposing a number of problems, FPS discovers that it has found a solution that involves three
intentions. Recognizing that it has satisfied the long enough plan criterion, it gives control to the
execution module during the success checking stage. FPE then uses closed-loop control to carry
out the three actions. Upon reaching the success checking stage, FPE realizes that it has satisfied its
execution stopping criterion, so it returns control to the planner.

The joint framework continues unimpeded until the robot unlocks the door to room C. FPS
creates a three-step plan that involves entering room C, picking up the mail, and moving from room
C to hallway 3. However, once FPE has carried out the first two actions, the robot accidentally drops
the letter before leaving the room for the hallway. After transferring control back to the planning
module, it creates a new plan that involves returning to room C to pick up the mail, and then taking
a different hallway to reach room A. Figure 4 depicts this process. The next planning and execution
cycles proceed as intended and the robot successfully deposits the mail in room A.

This is just one of the many approaches to interleaving execution and planning that FPE and FPS
jointly support. However, it should, clarify how the two modules interact and suggest how other
strategies could modify processing in different situations. For example, if the combined system
had adopted a strategy that involved creating and then executing a full plan, then it would not have
recognized its error until it reached the final step in its plan. Alternatively, any strategy that used
FPE’s one-step lookahead or solved subplan stopping criteria would have led the system to return
to planning after the robot dropped the mail; it could have immediately generated a new plan and
would not have needed to backtrack later. It seems clear that certain strategies are more suited to
particular domain characteristics than others and, in the following section, we present experiments
that address such interactions.

5. Experience with the Combined System

Now that we have described our combined system for generating and executing plans, we can report
our experience with it. In Section 2, we discussed the abilities that we wish to support. These
high-level aims suggest two hypotheses about our system’s behavior: that it supports a variety of
strategies for plan execution and that it reproduces a range of techniques for interleaving execution
with planning. In this section, we present empirical evidence for each hypothesis in turn.

5.1 Flexible Plan Execution

Recall that our first behavioral target is the ability to support a range of execution strategies. Before
we could evaluate this functionality, we needed to encode knowledge for the five domains listed
in Table 1. These domains include two classic puzzles — Blocks World and Tower of Hanoi — a

10

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

planning domain — DockWorker — and two transport domains — Logistics and Robot Messenger.
For each one, we created ten problems of varying complexity.

Next, we produced four distinct strategies by altering the strategic knowledge available to the
system’s second, fourth and fifth stages:

• The first execution strategy we have supported is purely open-loop control, which does not
acquire or use any external feedback to determine whether the environment meets its expecta-
tions. In FPE, this strategy results from doing nothing at the second, fourth, and fifth stages of
the execution cycle; the module simply selects an intention and then immediately executes it.

• At the other end of the spectrum is closed-loop control , which uses information from the
environment to ascertain whether an intention’s conditions are satisfied and whether it has had
the expected effects. This schemes lets the module adjust its execution process, for example,
by reselecting and enacting a failed intention. This strategy involves active processing at the
stages for condition checking, perceptual inspection, and effects checking.

• In addition to these two established approaches to execution control, we also used FPE to
implement two hybrid strategies. The first utilizes condition checking and perception, but does
not check an action’s effects. This strategy should do well in domains where the actions are
very likely to succeed, but where the environment may be disturbed by external events.

• The final strategy utilizes perception and effects checking, but does not check conditions. This
combination seems appropriate for domains that would involve a stable environment that is
unlikely to be affected by external events, but in which the agent’s actions are not reliable.

To test these strategies, we used FPS to create fifty complete plans: one for each domain/problem
pair. We then connected FPE to a simulated environment and set the likelihood of action failure at 20
percent. We expected that closed-loop and the effects-checking hybrid strategy would both perform
well, while open- loop and the condition-checking hybrid strategy would be equally ineffective.

We then gave FPE our complete plans and ran it four times for every plan — once for each
execution strategy. If the system did not achieve all of its top-level goals, or if it failed to enact the
same action too many times, then the run was marked as a failure. For each strategy we calculated
the percentage of correctly executed plans across all domains and problems.

Closed-loop execution was the most successful strategy, as it correctly executed 92 percent of its
plans. The fourth strategy — which involved checking effects but not conditions — also performed
well, completing its plans in 90 percent of its runs. In comparison, Open-loop execution only
completed its plans in 18 percent of its runs, whereas the third strategy — which involved checking
conditions but not effects — successfully executed its plans in 30 percent of its runs.

In general, these results matched our expectations. When the execution module recognized that
it had not enacted its action, it could reselect it in the next cycle. Therefore, strategies that adopted
effects checking fared substantially better than those that did not. However, the difference in perfor-
mance between the open-loop and the condition-checking strategies is a more interesting finding.
The plans that we gave to FPE were not always optimal and occasionally contained unnecessary
detours. In some cases, condition checking would prevent FPS from enacting actions that belonged
to such detours; the system would continue to select — but not execute — new intentions until it
found one that was applicable.

11

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

Table 1. Descriptions of five domains used in testing execution strategies.

BLOCKS WORLD. This domain contains N blocks, each of which can be located either on top of another
block or on the table. A gripper can pick up and put down blocks that do not have anything on top of
them. It cannot pick up more than one block at a time. The goal description of a problem describes a
partially specified configuration of blocks.

DOCKWORKER. Piles of containers are scattered about this domain; next to each pile is a crane, which
can load the top container onto a robot and vice versa. A single operator lets this robot transport a
single container from one location to another. Goal descriptions specify the desired locations of specific
containers.

LOGISTICS. This domain involves a number of packages, which can be transported by truck between
two locations within a city, or by plane between two cities. Goal descriptions specify the final locations
of packages.

ROBOT MESSENGER. In this domain, a robot must deliver N mail items to specific rooms. To do so,
it must navigate a system of hallways and rooms, which can be connected by one or more doors; if a
door is locked and the robot does not possess a key, or if a hallway is blocked, then the robot cannot
enter and must find another way. Goal descriptions specify the room to which each item of mail must
be delivered.

TOWER OF HANOI. In this domain, N disks of varying sizes sit on three pegs. It only takes a single
action to move a disk to a new position, but a disk can only be placed on either an empty peg or a larger
disk, and can only be moved if there is nothing on top of it. Goal descriptions describe an arrangement
of disks.

These experiments demonstrate that FPE satisfies our first behavioral target, the ability to sup-
port a range of execution strategies. Furthermore, the performance difference between the condition-
checking technique and open-loop control highlights the benefit of supporting alternative strategies.
As noted earlier, decisions regarding the use of execution strategies primarily involve analyzing
both the the consequences of errors and the cost of checking conditions, perceiving the state of the
world and checking effects. Although in this experiment we did not consider these costs, FPE could
support such tests in the future.

5.2 Interleaving Planning and Execution

We now turn to our second behavioral target, which concerns the combined system’s support for
different interleaving strategies. To test this functionality, we used the domains and problems from
our previous experiment. Recall that there ten different problems for each of the five domains. By
combining problem-solving strategies, execution strategies, and stopping criteria, we produced five
distinct interleaving strategies:

• The first strategy was simple open-loop execution of a complete plan. One can question whether
this qualifies as interleaving, since planning runs to completion before FPS transfers control to
FPE, which then carries out the plan without examining the environment. Nevertheless, this
scheme involves both planning and execution, and serves as valuable strategy for comparison

12

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

with more intricate techniques. To produce this strategy, we employed the full solution option
in FPS and the execute as much as possible stopping criterion in FPE, along with no condition
checking, perception, or effects checking.

• Our second strategy involved closed-loop execution of a complete plan with recovery. Here the
combined system generates a complete problem solution through planning, before executing as
much of that plan as possible. At any point, if FPE recognizes that it can no longer execute its
plan, the module will give control back to FPS, which then generates a revised plan based on
the environmental state. To model this strategy, we utilized full solution in FPS and execute as
much as possible, condition checking, perceptual inspection, and effects checking in FPE.

• Next, we produced a one-step forward search strategy, which involves minimal forward plan-
ning and is, therefore, at the other end of the spectrum from complete plan strategies. The
system passes control to the execution module once it has found a plan with one applicable
intention. As soon as it has executed that action, FPS takes over again to replan. In addition
to closed-loop control, this strategy adopts the long enough plan stopping criterion for FPS —
creating plans that include just one intention — and the enough execution criterion for FPE —
enacting a single intention before returning to planning.

• We also implemented closed-loop execution of subplans as soon as they have been completed.
This technique offers a compromise between focusing on the end goal and keeping search
tractable, as well as modulating the extremes of purely open-loop and purely closed-loop ex-
ecution. We implemented this strategy by invoking the solved subplan stopping criterion for
FPS and the execute as much as possible stopping criterion and closed-loop control for FPE.

• Finally, we produced three-step lookahead with single-step execution, a strategy that mimics
the behavior of many game-playing systems. This repeatedly carried out three-step forward
search followed by a single execution step. To this end, we invoked forward chaining with
three-step lookahead during FPS’s planning process, along with single-step execution, condi-
tion checking, perceptual inspection, and effects checking during FPE’s execution cycle.

As noted in Section 2, an additional benefit of our system is that it lets us study the interactions
between interleaving strategies and domain characteristics. One such characteristic is the stability
of the environment. We hypothesize that, in general, the system’s success rate will decrease as the
probability of unexpected events increases. We also expect that, within this overall trend, strategies
that turn to execution as soon as they identify applicable actions will be more successful than those
that try to plan further ahead.

We tested these hypotheses by introducing the possibility of random external events to our sim-
ulated environment. We initially set the probability at zero, and increased it by 10 percent for each
set of tests until it reached 40 percent. These external events occurred between the execution of ac-
tions. Unlike action failure, they changed the simulated environment in unexpected ways and would
often necessitate replanning. For instance, in Robot Messenger, the robot could accidentally drop
the key or letter it was carrying (as in our example in Section 4.2). For this experiment, we used the
same domains and problems as we did to test execution strategies. For every domain/problem com-
bination, we ran each strategy five times for each level of ‘instability’. We then repeated this entire
process five times. We considered an episode to be successful if the combined system achieved its
top-level goal state within 6,000 cycles.

13

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 0.1	 0.2	 0.3	 0.4	

Su
cc
es
sf
ul
	 P
ro
bl
em

s	

Probability	 of	 Event	 Occurrence	

Open-‐loop	 complete	 plan	

Closed-‐loop	 one-‐step	 lookahead	

Closed-‐loop	 complete	 plan	

Closed-‐loop	 subplans	

Closed-‐loop	 three-‐step	 lookahead	

Figure 5. The success rate of our five interleaving strategies as the probability of random events increases.
This graph represents the performance of the system on all of the Tower of Hanoi problems.

Figure 5 shows the results of runs that were performed within the Tower of Hanoi domain. For
each interleaving strategy, points are plotted for rate of external events to show the number of prob-
lems the system successfully solved. These results are representative of the system’s performance
across all of the implemented domains. In accordance with our first hypothesis, as the rate of events
increased, the combined system generally found it more difficult to complete problems within the
allocated cycle limit. The only exception was one-step lookahead; its performance did not vary
greatly. This is because, even with no events, only one action was ever executed before control
returned to FPS.

Also, as we expected, there is a clear performance difference between the strategies that created
full plans before passing control to execution and those that produced short plans. A decrease in
the environment’s stability had more of an effect on their performance than it did on strategies
that moved to execution before finding complete solutions. Open-loop execution of complete plans
struggled to solve problems when presented with any unexpected events and, predictably, did not
perform as well as the other strategies. The closed-loop variant benefited from the ability to replan
when it encountered problems; however, finding full plans often expended enough cycles to prevent
the system from solving problems when re- planning was required. The remaining interleaving
strategies were all more successful. They could recover from the occurrence of unexpected events,
and did not waste as much time planning actions that would be clobbered by unexpected events.

14

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

Although these results are not surprising, they do demonstrate that the combined system sup-
ports a range of interleaving strategies (our second behavioral target). The results also empirically
support the hypothesis that different interleaving strategies respond differently to domain charac-
teristics and in future studies, we intend to examine other important characteristics. For instance,
we are interested in how strategies respond to differences in the branching factors in the forward or
backward directions and to the possibility of actions’ having irreversible effects.

6. Related Research

In this section, we review previous work in the area, highlighting studies that are related to our
own efforts. There has been remarkably little attention to variations in execution. Langley, Iba, and
Shrager (1994) analyzed the continuum of execution strategies from reactive to automatic control
and concluded there is a tradeoff between the cost of sensing and the cost of errors. This leads
strategies to perform differently in differing environments. For example, automatic control will
often outperform reactive control in domains that have a high cost of sensing and a low probability
of error. Our work builds on their idea, but our studies to date focus on discrete strategies rather
than a continuum.

A more substantial body of research deals with interleaving planning and execution. But de-
spite considerable variety in these strategies, the great majority of systems adopt a single approach.
At one extreme is the combination of the STRIPS planner (Fikes, Hart, & Nilsson, 1972) and the
PLANEX execution system (Nilsson, 1984), which together controlled the early SHAKEY robot. The
combined system monitored changes in the environment and had limited ability to recover from un-
expected events, but, if it could not recover, returned control to STRIPS to produce a new plan. Thus,
this embodied a strategy similar to our implementation of open-loop execution of a complete plan.

A later system was IPEM (Ambros-Ingerson & Steel, 1988), which took a repair-based approach
to interleaving planning and execution, treating both execution failures and unexpected events as
flaws to to be remedied. However, it did not attempt to fix execution errors until it had corrected all
of those that related to planning. Therefore, it generated a complete plan, executed as much of it as
possible, recovered from unanticipated changes it could handle, and fell back on the planner to han-
dle those it could not. This approach corresponds to the second strategy that we have implemented
with the combined system: the closed-loop execution of a complete plan with recovery.

In even more recent work, the ICARUS cognitive architecture (Langley, Choi, & Rogers, 2009)
took another approach to interleaving planning with execution in physical environments. The frame-
work used means-ends analysis to decompose problems into subproblems and, as soon as it had
solved a subproblem, it sent the associated intentions to an execution module. ICARUS could also
fall back on planning if execution encountered difficulty. The interleaving strategy that this system
employed is similar to our joint system’s execution of subplans as soon as the problem solver has
completed them.

Naturally, interleaving planning and execution is crucial for almost all game-playing systems.
These programs generally execute just one action at a time before returning to planning, but they
often plan many steps ahead before carrying out their single step. The approach that these game-

15

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

playing systems utilize is therefore similar in spirit to our fourth strategy, repeatedly carrying out
N-step forward search followed by a single execution step.

Perhaps the most relevant system in this area is Soar (Laird et al., 2012). This architecture orga-
nizes behavior as search through a problem space, on each cycle using knowledge to add elements
to working memory that help it select operators to carry out. Laird and Rosenbloom (1990) report
a version of Soar that senses an external environment, carries out physical actions, and interleaves
planning with execution. There is little question that Soar can support the entire range of behav-
iors that our system can handle, but it makes no architecture-level commitments about how to do
so. Thus, it exhibits the same or even greater flexibility, but it makes weaker theoretical statements
about interleaving planning with execution.

7. Concluding Remarks

We began this paper by discussing the behavioral abilities that humans exhibit and that we wish to
account for — namely, that they can utilize different techniques to execute complex plans as well
as to move from planning to execution and vice versa. In response, we presented five theoretical
assumptions that, together, explain these phenomena. Following this, we introduced FPE/FPS, a
combined system for flexible problem solving and execution that incorporates our postulates. This
combined system required several extensions to the original FPS: implementing a five-stage module
capable of executing FPS’s plans in a simulated environment; adding strategic knowledge to pro-
duce varying behavior at three of those stages; and creating stopping criteria for both cycles that
govern the transfer of control from the planning module to execution module and back again. After
describing these extensions, we explained how our system supports a number of interleaving strate-
gies, five of which we tested on our collection of domains. Our discussion in this section focussed
on the interactions between these techniques and domain characteristics, such as the reliability of
the agent. We concluded by reviewing previous work that is related to our efforts.

Although our work on flexible execution is promising, there are a number of directions in which
we can extend the system. First, we should extend the system so that it supports adaptive behavior;
that is, the system should be able to alter its execution or interleaving strategy according to various
factors, such as the likelihood of its actions failing or unexpected events occurring, or the cost
of errors. For example, FPE might initially adopt closed- loop execution, but, on finding that it
consistently achieves its desired effects, switch to a strategy that infrequently or never checks the
effects of its actions. Alternatively, the combined system might start by generating complete plans,
but turn to three-step lookahead when it discovers that the environment is unstable.

We should also run additional experiments that take execution time into consideration — for
instance, actions in Logistics take much longer to enact than those in the Blocks World — as this
is a domain characteristic that warrants further study. Next, we should extend the combined system
so that it supports the generation of multiple plans, as well as time constraints for both planning
and execution. These features could substantially affect the system’s accuracy and speed. A final
extension for FPS would support plan repair that lets it adapt a failed plan to the new context. This
would offer an alternative to simple replanning, making the interleaving process more tractable.
Finally, in response to Anderson (1998), who notes that some actions, once executed, can render

16

FLEXIBLY INTERLEAVING PLANNING AND EXECUTION

a problem unsolvable, we should include heuristics that reflect the degree to which an operator is
reversible. Together, these extensions should produce a more comprehensive account of interleaving
planning with execution.

Acknowledgements

This research was supported in part by Grant N00014-10-1-0487 from the Office of Naval Research.
We thank Chris MacLellan and Miranda Emery for their efforts on previous versions of the system.

References

Ambros-Ingerson, J. A., & Steel, S. (1988). Integrating planning, execution and monitoring. Pro-
ceedings of the Seventh National Conference on Artificial Intelligence (pp. 21–26). Saint Paul,
MN: AAAI Press.

Anderson, S. D. (1998). Issues in interleaved planning and execution. Planning, Scheduling and
Execution in Dynamic and Uncertain Environments, AAAI Technical Report WS-98-02. (pp. 62–
66). Madison, WI: AAAI Press.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot plans.
Artificial intelligence, 3, 251–288.

Fikes, R. E., & Nilsson, N. J. (1972). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189–208.

Fitts, P. M., and Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal
of Experimental Psychology, 67, 103–112.

Haigh, K. Z., & Veloso, M. M. (1998). Interleaving planning and robot execution for asynchronous
user requests. Autonomous Robots, 5, 79–95.

Krebsbach, K., Olawsky, D., & Gini, M. (1992). An empirical study of sensing and defaulting in
planning. Proceedings of the First Conference of AI Planning Systems (pp. 136–144). Burlington,
MA: Morgan Kaufmann.

Laird, J. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press.
Laird, J. E., & Rosenbloom, P. S. (1990). Integrating execution, planning, learning in Soar for

external environments. Proceedings of the Eighth National Conference of Artificial Intelligence
(pp. 1022–1029).

Langley, P. Choi, D., & Rogers, S. (2009). Acquisition of hierarchical reactive skills in a unified
cognitive architecture. Cognitive Systems Research, 10, 316–332.

Langley, P., Emery, M., Barley, M., & MacLellan, C. (2013). An architecture for flexible problem
solving. Poster Collection: The Second Annual Conference on Advances in Cognitive Systems
(pp. 93–110). Baltimore, MD.

Langley, P., Iba, W., & Shrager, J. (1994). Reactive and automatic behavior in plan execution. Pro-
ceedings of the Second International Conference on AI Planning Systems (pp. 299–304). Chicago,
IL: AAAI Press.

Meyer, D. E., Smith, J. E. K., & Wright, C. E. (1982). Models for the speed and accuracy of aimed
movements. Psychological Review, 89, 449–482.

Nilsson, N. J. (1984). Shakey the robot (Technical Report). SRI International, Menlo Park, CA.

17

Y. BAI, C. PEARCE, P. LANGLEY, M. BARLEY, AND C. WORSFOLD

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order planner for ADL.
Proceedings of the Third International Conference on Knowledge Representation and Reasoning
(pp. 103–114). Cambridge, MA.

Sapena, O., & Onaindia, E. (2003). An architecture to integrate planning and execution in dynamic
environments. Proceedings of the 22nd Workshop of the UK Planning and Scheduling Special
Interest Group (pp. 184–193). Glasgow, Scotland.

Schmidt, R. A. (1982). More on motor programs. In J. A. S. Kelso, (Eds.), Human motor behavior:
An introduction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Stelmach, G. E. (1982). Motor control and motor learning: The closed-loop perspective. In J. A.
S. Kelso, (Eds.), Human motor behavior: An introduction. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Washington, R. (1995). Incremental planning for truly integrated planning and reaction. Proceed-
ings of the Fifth Scandinavian Conference on Artificial Intelligence (pp. 305–316). Trondheim,
Norway: IOS Press.

18

