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Abstract 

The Cognitive Reasoning and Representation Architecture (CORA) is a flexible hybrid approach 

and toolset that enables human-like reasoning across a variety of problem domains. It combines 

multiple existing reasoning techniques and implementations along with a framework to facilitate 

sharing of knowledge among reasoning modules, including (but not limited to) case-based reasoning 

(CBR), Bayesian networks, and fuzzy reasoning. CORA enables the exchange of various knowledge 

types across reasoning modules via point-to-point, point-to-multipoint, and shared-memory 

communications mechanisms. Three problem domains are demonstrated: cognitive wireless 

communications, electronic sensing for novel radar waveforms, and intelligence surveillance and 

reconnaissance (ISR) sensor retasking. CORA’s multi-platform implementation supports a variety 

of software languages to enable reasoning processes to take place using the best tools for each 

reasoning process, including the integration of several well-known open-source reasoning tools. 

1.  Introduction 

The objective of Georgia Tech Research Institute’s (GTRI’s) Cognitive Reasoning and 

Representation Architecture (CORA) project is to explore hybrid cognitive reasoning and 

representation approaches with a primary focus on the spectrum reasoning and electronic warfare 

(EW) domains (and unrelated domains with a set of similar characteristics), and to prototype a 

framework that will enable the support of multiple scenarios in these domains. The framework will 

enable flexible configuration of case-based reasoning, Bayesian networks, fuzzy reasoning 

approaches and reasoning under uncertainty to support spectrum and EW problems. The 

exploration of these reasoning techniques includes learning and meta-reasoning to enable 

improvement of reasoning over time. This framework will address the need of these domains to 

respond and adapt to unexpected inputs and to include contextual information from multiple 

sources to support decision-making in this domain. We have chosen specific tools and 

programming languages for the prototypes, but our intent is to enable the use of different 

implementations tailored to the needs of the problem and allowing for integration with 

heterogeneous modules.  The strength of the architecture is providing representations that translate 

between the causal models, case-based models and fuzzy models allowing each component to 

provide a different type of inference to the solution. 
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GTRI customers require the capability to respond to unexpected situations or threats that have 

not been previously seen and to adapt their solutions in the spectrum operations and electronic 

warfare domains to respond in near-real-time to these situations. We have done work on a DARPA 

project called Behavioral Learning for Electronic Warfare, supplying case-based learning to 

categorize threats and to supply countermeasure parameters, and we are collaborating with other 

groups at GTRI to supply cognitive reasoning (starting with Case-based Reasoning) to support their 

electronic warfare applications. When compared to homogeneous reasoning techniques, hybrid 

reasoning techniques tend to be more robust and able to respond to a wider range of unexpected 

threats or situations in more intelligent and adaptive ways. We have chosen case-based reasoning 

and learning, Bayesian network learning and reasoning, fuzzy reasoning and reasoning about 

uncertainty as the approaches to explore and develop because they possess a wide variety of 

problem-solving characteristics that will have a large effect on the ability to respond to unexpected 

situations in these domains. We are experimenting with and prototyping a configurable framework 

that allows the cognitive reasoning and representation components to integrate with other spectrum 

or EW systems and allows different cognitive reasoning paradigms to operate in a selected sequence 

or opportunistically to solve a given problem type. We are using a cognitive architecture that 

includes reflexive, deliberative and reactive components. 

1.1  Abstract Representation of the Cognitive Components of CORA 

Figure 1 shows a model of cognitive architectures. Representations similar to this are widely 

accepted in the intelligent systems field and have been used by DARPA and other research 

organizations to describe this technical approach to designing and building cognitive-adaptive 

systems. The figure shows three layers of reasoning processes: reactive, deliberative and reflective. 

 

Figure 1. Abstract model of a horizontally layered cognitive system. 
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Reactive processes are simple, quick decisions that once learned are automatically performed. 

Examples of reactive responses are the basic moves of a robot to avoid collisions or falls, or a 

wireless system retransmitting a message that was lost due to a collision with another transmission. 

Deliberative processes require more knowledge and more processing. This is often the central 

piece of a cognitive system. Deliberative processes are used to make complex decisions that may 

require complex algorithms, sets of rules or cases, more intelligence and knowledge. These include 

reasoning about missions, the handling of constraints, business rules, rules of engagement or 

resource management decisions. Responding to unexpected situations or dynamically adapting 

responses to new information requires deliberative reasoning. 

Reflective processes are metacognition components that reason about the decisions or solutions 

provided by the system. These processes attempt to identify the strengths and weakness of the 

solutions provided by the system. They are used to guide learning or self-improvement, that is, the 

updating of the deliberative or reactive reasoning processes or the long term memory so that the 

cognitive system performs better on future problems. Adaptive EW requires a system that can learn 

and improve its performance. It should work toward being able to capture, in real-time, the 

classification, identification, and countermeasure techniques and evaluate the success and accuracy 

of those results, storing successful solutions and updating approaches so that the most successful 

approaches and lessons learned from them are reused. 

Short-term memory in a cognitive systems is information about the current situation and current 

problem being solved. Examples include communications currently taking place, receivers, online 

emitters, external sensor feeds ISR assets, or situational awareness. These all describe the system’s 

memory of recent events. 

Long-term memory in a cognitive system is the domain and contextual knowledge that the system 

uses to reason. This includes human-like knowledge available to and used by a domain expert when 

making decisions. This long-term memory includes knowledge about the spectrum and how it 

works or how it is typically used, knowledge of the context or the environment in which a system 

exists, geographic maps, military mission descriptions and priorities, societal communication 

norms, human behavior, and seasonal and calendar activities. Long term memory will also include 

any ontologies that the system uses to reason with other system components about shared concepts 

and vocabulary. 

1.2  Related Work 

In Intelligent Behavior in Humans and Machines (2012), Langley presents a characterization of the 

cognitive systems paradigm that, in addition to highlighting the importance of connections to 

psychology and human cognition, also notes the tendency for the paradigm to incorporate high-

level processing, structured representations, and heuristic methods. Further, he identifies a subfield 

of cognitive systems work that attempts to develop a unified theory of the human mind, typically 

through memory processes involving the careful construction and use of multiple types of memory, 

reasoning processes that use those memories, and learning processes that effect the memory and 

reasoning processes. 

Our work on CORA is motivated by the desire to achieve autonomous reactive and proactive 

human-level performance in both familiar and novel situations that unfold in problem areas 

common to GTRI customers. The solicitation and effective use of knowledge from human experts, 
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compliance with standard operating procedure, and use of contextual information from multiple 

sources to support decision-making is a common requirement in these problem areas. To do so, we 

adopt an approach that brings together logical, case-based, and probabilistic approaches in a 

configurable framework. 

This approach is driven by our experience that has shown hybrid reasoning techniques to be more 

robust and able to respond to a wider range of unexpected threats or situations in more intelligent 

and adaptive ways, rather than being driven by a desire to attempt to create a unified theory of the 

mind. We therefore do not adopt a unified theory approach (e.g. symbolic), make no claim about 

what human cognition is nor how it can be implemented in a general framework computationally 

(c.f. the ACT-R architecture in Anderson et al., 2004; the SOAR architecture in Laird, 2012; the 

ICARUS architecture in Choi, 2010), nor does our framework use a specialized language for its 

control. We do, nevertheless, rely heavily on well-understood artificial intelligence (AI) techniques. 

In CORA we make use of a hybrid approach that incorporates both high and low level processing, 

a variety of structured representations, and domain-specific heuristic methods. In this respect, 

CORA is more similar to the approaches presented by GILA (Zhang et al. 2009). Our team supplied 

case-based learning and reasoning as part of the GILA project for the DARPA Integrated Learning 

Project. CORA also shares similarities with Model Docking as in (Trewhitt, Whitaker, Briscoe, & 

Weiss, 2011), TouringMachines (Fergurson, 1992), and Polyscheme (Cassimatis, 2001). In CORA, 

in order to manage the complexity of multiple interacting heterogeneous expert systems, we adopt 

a variety of the design principles, insights and techniques espoused by the multi-agent systems 

community (for an introduction, see Wooldridge, 2009). 

2.  Learning, Inference, and Problem Solving in CORA 

There are many approaches to addressing cognitive adaptive reasoning in the spectrum reasoning, 

electronic warfare (EW) and related areas. There are a few AI techniques of particular interest 

because they provide a portfolio of reasoning approaches that address different aspects of these 

problems for a number of use cases in this domain. For hybrid reasoning, each approach can provide 

support for the others, allowing for flexible configuration moving toward collaborative, distributed 

multi-agent problem solving. This section contains a brief description of each of the approaches 

that we employ in CORA, starting with case-based reasoning, which plays a central role. 

2.1  Case-Based Reasoning 

Case-based reasoning (CBR) consists of solving new problems by reasoning about past 

experiences (Kolodner, 1993). An advantage of case-based reasoning over other machine learning 

approaches is that it can be successfully applied to problems that are ill-defined and for which the 

number of training examples may be insufficient for other types of reasoning. CBR allows us to 

deal with minimal training examples, missing data, ill-defined feature spaces and uncertainty. CBR 

relies on the assumption that if two problems are “close” in the problem space then their solutions 

are likely to be “close” in the solution space. Experiences are captured and stored as a collection of 

cases stored in a case library. Each of these cases contains a past problem and the associated 

solution and is indexed by a set of features that characterize the case. 
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Solving new problems involves (a) structuring the new problem into a format compatible with 

the case structure by a Feature Extractor, which takes the information from the problem state and 

formats them into a target case, (b) retrieving one or more relevant cases from the case library 

using a similarity metric, (c) reusing or adapting one or more of the solutions contained in the 

retrieved cases, using specialized adaptation knowledge, to form a new solution applicable to the 

target case which may then be used to solve the current problem instance, and (d) optionally 

retaining the target case along with the new solution as new knowledge in the case library. Offline 

learning involves cases that are trained explicitly (sometimes using a specialized case learner) prior 

to performance and have a specific solution associated with known training data from an existing 

problem, human expert trace, or simulation results. Online learning refers to the process of creating 

and retaining new cases in the case library during performance, whenever attempts to classify an 

incoming set of threat features yield retrieved cases that are sufficiently dissimilar to the target case. 

Cases learned through online learning can then be retrieved during future classification efforts, 

increasing the likelihood that similar new cases will be recognized without being explicitly trained. 

These cases can later be updated with a more well-defined solution. 

A similarity metric is based on the distance between a case in the case library and the target case. 

This distance is an abstract distance in the feature space, not a geographical distance. A weighted 

Euclidean feature distance is a common approach. In general, similarityi = 1 – normalized distancei. 

The simplest approach is to compare the target case with every case in the case library and select 

one or more “nearest neighbors.” Weights may be recommended by a domain expert, but are often 

refined through experimentation. 

There are some situations in which a Euclidean similarity metric will not provide good results. 

While many systems employ a normalized Euclidean similarity metric, the CBR module in CORA 

is extensible and has the ability to use multiple similarity metrics. For example, if the similarity of 

retrieved cases is frequently insufficient to allow for a definitive match, a taxonomy may be used 

to provide further knowledge to inform retrieval. Taxonomy-based retrieval uses the associated 

confidence levels to determine whether it is possible to say with a greater certainty what common 

ancestor is shared by the best case matches. Testing real-world cases and comparing their outcomes 

can identify potential variants in feature specifications in order to select the most accurate similarity 

metric for a particular case library. 

The function of the Adaptation module in a CBR system is dependent on domain knowledge of 

the problem space. Its purpose is to modify, if necessary, the old solution to fit the new problem. 

This is a type of analogical reasoning in which the old and new problems are compared so that the 

old solution may be translated to create the new solution. Many approaches are used in adaptation 

modules and often hybrid reasoning techniques are required. We have successfully applied rule-

based approaches and problem domain-specific algorithms from domain experts. 

The process of case-based learning is performed by observing events and their associated 

solutions, extracting the problem descriptions, features, and solutions, then storing them as cases 

in a case library. This might require several specialized case libraries, one for each type of problem. 

For each of those libraries, we propose two learning modules: one capable of learning cases, and 

one for adaptation knowledge. Adaptation knowledge is expressed as a set of transformation rules 

and a set of constraints. Adaptation rules capture how to transform the solution from the retrieved 
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case to solve the problem at hand, and the constraints specify the combinations of values that are 

permitted in the solutions being generated. 

2.2  Fuzzy Reasoning 

Fuzzy Logic is an AI technique developed to support the modeling of imprecise concepts and 

modeling with imprecise dependencies among the entities about which a system is reasoning 

(Zadeh, Yuan, & Klir, 1996). It is a superset of classical logic that introduces the concept of “degree 

of membership” in a set. For example, the frequency of an amplitude of a radio signal can be 

described as “high” to a certain degree rather than by a specific power level in decibels. Not simply 

“high” or “not high”, the value is considered to have a “high”ness value between zero and one. 

Fuzzy reasoning is often used because it provides an efficient way to represent linguistic and 

subjective attributes of the real world in a computational representation that can be used to reason 

in an intelligent system. It is a natural representation for acquiring and representing knowledge of 

human experts who do not always reason in precise quantitative algorithms. A fuzzy reasoner is 

particularly useful in multi-parameter decisions and situations, at providing non-linear controls for 

a system, capturing and representing expert knowledge, modeling human behavior and providing 

approximate reasoning when precise information is not available. 

Creating a fuzzy reasoning system requires the definition of fuzzy variables and fuzzy sets along 

with a set of fuzzy rules to reason on these variables. A Fuzzy Control Language or FCL is used to 

define and invoke the fuzzy inference operations. In our hybrid experiments we apply fuzzy 

reasoning to the adaptation of cases in CBR, and to knowledge acquisition from experts. 

2.3  Reasoning with Bayesian Networks 

A Bayesian Network (BN) is a directed graph where each node represents a random variable and 

each directed edge represents probabilistic dependence between nodes. Modelling with BNs is an 

attempt to capture the complete joint probability distribution of the modeled problem (Pearl, 2014). 

A BN gives the ability to infer the probability of unobserved events based on evidence known about 

related events and prior probabilities; this enables diagnostic inference (observe effects, infer 

causes), causal inference (observe causes, infer effect likelihoods), and targeted information 

gathering using value of information calculations. 

As a simple example, consider the dependence between the day of the week and the travel time 

between two points in a city (disregarding other variables like time of day). It is natural to think of 

the day of the week as influencing the driving time; for example Fridays may statistically have the 

longest driving time. A BN model of the problem would have two nodes, one called “day of the 

week” and the other “driving time”, and a directed edge from the former to the latter. 

The arrow from “Day of Week” to “Driving Time” shows that the day of the week influences the 

time that it takes to drive between the points. Suppose that we are given the driving time for a 

particular commute and we want to know the likelihood that this particular commute was performed 

on a Sunday. We write this question mathematically as 

Pr[ d = “Sunday” | t = τ ] 
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where d is the day in question, t is the time variable, and τ is the given time assigned to t in this 

particular circumstance. The equation asks, “What is the probability that the day, d, is Sunday, 

conditioned on the knowledge that the time to drive, t, is τ?” For the simple BN above this equation, 

along with the prior and conditional probabilities, completely describes the problem. 

3.  Generalized, Integrated Domain-Configurable Architecture of CORA 

In this section, we briefly present the software design of CORA’s configurable framework that 

enables the flexible hybrid use of the reasoning approaches described earlier. The focus is primarily 

on the modular CORA components. This framework allows the CORA components to integrate 

with other spectrum or EW systems, and allows different cognitive reasoning paradigms to operate 

in a selected sequence or opportunistically to solve a given problem type. Figure 2 depicts the 

conceptual layers that support these requirements. On the left of the figure, we identify the high 

level elements that are a part of each of CORA’s pluggable modules; on the right we highlight 

example functions associated with those layers. 

The Connectivity layer is the base of the modular, distributable architecture. It is the set of 

channels through which modules can communicate. For maximum flexibility we use a free, high-

speed, language and platform independent tool that improves on socket based communication by 

providing a single interface that supports communication within a single process, communication 

between processes on a single computer, and communication between processes on multiple 

computers. It has built in support for patterns like request-reply, publish-subscribe, push-pull, and 

router-dealer, and is data-agnostic, working directly in bytes. We add to this a common logging 

subsystem to ease tracing the flow of information in the cognitive system (for development, 

demonstration and debugging). While each module may use its own process-native logging 

facilities, the common logging subsystem acts as a distributed logging facility with a web frontend. 

 

Figure 2. Abstract presentation of the components in CORA’s configurable framework. 
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The Messaging Pattern layer provides a common configuration subsystem that captures the way 

in which individual CORA modules interact with one-another (often problem domain dependent). 

It is built on top of the connectivity layer’s communication patterns and extends them by supporting 

both manually configured endpoints and protocols as well as by providing a simple service-

discovery approach. The former is a unified means of statically configuring the locations and 

services of the modules in a cognitive system; the latter is a dynamic approach to discovering 

modules and their services, which eases task allocation and decomposition. 

The Data Representation layer provides a common messaging subsystem (interchange format) 

that simplifies the exchange of information between modules by presenting a unified, shared 

vocabulary for the data. Heterogeneous and distributed systems naturally run into a “what language 

do you speak?” problem. Because the highly efficient transfer of data is critical to success in certain 

domains (e.g. radar countermeasures), we use a lightweight solution for data exchange in CORA 

to alleviate latency and ensure solution relevancy. While we chose an extensible mechanism that 

quickly and compactly encodes structured data while documenting its type, more heavyweight and 

human readable approaches may also be used. 

The Control Logic layer is where the domain-specific “glue code” resides, exploiting the lower 

layers for information exchange and the higher layers for higher level reasoning processes and task 

autonomy. It uniquely specializes the CORA module to coordinate the deliberative and reactive 

processes, and translate data between the lower and higher levels. 

The Task Autonomy layer is where (optional) agent-based problem solving paradigms fit in the 

CORA modules. Task decomposition and allocation functions are enabled by service discovery 

(messaging pattern layer), while goals, state information, and requests for problem solving help 

may exploit the data representation layer. A purely reactive agent is unlikely to make use of the 

(optional) knowledge layer, while a belief-desire-intention agent may make use of one or more 

reasoners (e.g. case-based and fuzzy) to support sophisticated autonomy in goal-based problem 

solving. 

Finally, the Knowledge Layer is where one or more AI reasoning and representation techniques 

reside in a CORA module (see Section 2). Each module in an instantiated cognitive system making 

use of the CORA framework may employ none, one, or multiple of the reasoning approaches 

available in this layer. Hybrid reasoning is manifested by the use of multiple techniques both within 

and between individual CORA modules, as necessitated by the problem domain.  

4.  Application Examples 

Part of the motivation for the CORA project comes from our participation on several projects which 

required multiple learning and reasoning paradigms working together, each supplying a part of the 

solution. In this section, we present three examples of such projects. 

4.1  Cognitive Wireless Communications – BLADE 

One example of work that demanded a hybrid approach is the DARPA BLADE project (Behavioral 

Learning for Adaptive Electronic warfare). GTRI participated on the DARPA BLADE project as 

part of a team with a number of subcontractors together providing multiple reasoning approaches 

integrated to address the larger problem. The DARPA BLADE project involved the detection, 
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characterization, classification, and countermeasure generation of known and unknown wireless 

communication systems. Described below is the cognitive engine developed for BLADE, focusing 

on the Case-Based Learner and Reasoner (CBLR) which was supplied by GTRI. The CBLR 

consists of a two-phased approach: classification of the incoming signal, and selection and 

configuration of an appropriate countermeasure. Both phases use a case library built from a set of 

past examples in order to emulate the behavior of an expert performing similar tasks. 

4.1.1  Cognitive Engine Architecture 

Figure 3 (top portion) below shows a high-level view of the wireless cognition architecture. 

Optionally, Battle Damage Assessment (BDA) information can be used as feedback to inform the 

CBLR of the success or failure of a selected countermeasure. This can then allow updating feature 

weights or modifications to the case library. In instances where an adapted case is successful, the 

new case may be stored via online learning as a new case for reuse in future situations. 

 

 

Figure 3. High level architecture depicting two stage reasoning for BLADE (top). Signal classification 

reasoner in BLADE (bottom). 
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Figure 3 (bottom portion) diagrams the knowledge containers, data flow, and reasoning processes 

used by the signal classification reasoner. The countermeasure reasoner uses a similar process. The 

model layer performs detection and characterization through four primary types of data objects that 

are stored in cases: Transmissions, Transmitters (transceivers), Channels, and Links. These objects 

contain attributes for parameterized threat models at four levels of a classification hierarchy. 

This categorization scheme imposes a useful hierarchical structure on the classification and 

clustering of new feature data with respect to the generality and the computational effort required 

that serves as a guide for developing detection and classification (D&C strategies as well as 

countermeasures). Thus the case library is organized with similar hierarchies. 

Most attributes entered into the objects are paired with intervals representing their observed 

range, i.e., their minimum and maximum values, which are supplied a priori from threat models. 

When comparing a target case against a historical case, the model layer compares the pairwise 

interval overlap of each feature to determine a feature-level distance metric. An interval A is defined 

as A = [Astart, Aend]. Once each feature’s distance has been computed, an overall case similarity can 

be calculated. 

The broader BLADE system (the integrated system with components from multiple team 

members) creates Transmission, Transmitter, Channel, and Link objects through a shared memory 

space called the Cognitive Map. These objects represent the individual components of an incoming 

signal at various levels, along with their relationships in time and frequency, among other features. 

As soon as a set of related objects is available, the CBLR uses a set of weighted similarity functions 

to compare attribute and parameter interval information (using a normalized Euclidian distance 

metric) of the newly-published objects to previous threat models stored in the case library in order 

to classify known threats. The set of feature weights are collected through subject matter expert 

interviews and refined through experimentation. A threshold parameter, when compared to the 

similarity of an existing case, indicates when to create a new case representing a new threat. This 

online learning is described in a later section. Once classification is complete, the CBR creates a 

classification report that summarizes the list of recognized threats along with any relevant metadata. 

4.1.2  Solution Aggregation 

The solutions of BLADE classification problems may contain multiple components. For example, 

a single Threat classification within a Classification Report may include both a Threat Class and a 

Threat ID, where “class” is a broader category applied to each known case and “ID” indicates an 

instance of a class. While the CBLR within the Model Layer supports training cases that define 

both of these solution parts together, it also supports training cases that have incomplete solutions. 

To use these partial cases, CBLR aggregates the solutions of multiple source cases when attempting 

to classify a target case. Aggregate solutions are created by executing multiple case retrieval cycles, 

storing any new solution components that are discovered as a result of each cycle. This process 

works as follows: 

1. Perform kNN retrieval based on the target case 

2. Execute the Taxonomy Reasoner to produce the best solution 

3. Add any new solution components to the output solution. 
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4. If any components of the solution are missing, go back to step 1 with one distinction: 

retrieve only neighbors that contain new solution components. 

5. Once all solution components have been populated, or kNN retrieval returns an empty 

set, return the output solution. 

Solution aggregation allows the Model Layer to provide the most information for a given query. It 

is possible, however, that this process yields an output solution that is internally inconsistent, i.e. 

the components of the output solution are contradictory. This can be mitigated by providing the 

reasoner with more complete training case definitions prior to performance, since this will ensure 

that consistent solution components are retrieved together. 

4.2  Electronic Sensing and Countermeasures for Novel Radar Waveforms 

Another example of a project which required multiple learning and reasoning paradigms working 

together was a radar intelligence project. This project was similar to BLADE, except rather than 

spectral information representing communication waveforms, the spectral data involved radar. We 

used simulated radar data for our prototypes. Like the DARPA BLADE project, the novel radar 

waveforms project involved detection, characterization, classification, and countermeasure 

generation for known and unknown systems. By tailoring BLADE’s case structure, CBLR system, 

and adding additional reasoning modules, we were able to apply our CORA architecture to reason 

in the new problem domain. 

Figure 4 shows a diagram of our cognitive architecture, conceptually a two-stage process 

involving signal classification and characterization in the first, and countermeasure synthesis in the 

second. A radar signal (a time-varying sequence of electric “pulses”) is received by an external 

clustering module, shown in green. This module generates “pulse descriptor words” (PDWs) to 

represent each pulse along with useful features, and then clusters them into groups representing 

sequences from distinct radar emitters. The clustered results flow into our PDW Feature Extractor, 

which creates statistical features that describe the entire cluster of PDWs; these extracted features 

are used by all other cognitive components, shown in blue, to determine a countermeasure based 

on mission parameters. The cluster results and extracted features are then passed to the CBR emitter 

classifier and the Bayesian Network modules. CBR is used to classify the set of PDWs by 

comparison to the emitter case library. The CBR emitter class is used by the Bayesian module for 

further classification of emitter type, mode, and intent. With classification complete, 

countermeasure synthesis begins. 

The CBR and Bayes derived emitter classification results are used to perform countermeasure 

selection by CBR from the countermeasure case library. Adaptation techniques are used to 

transform the parameters of the retrieved countermeasure class to those that are applicable to the 

target case. Fuzzy reasoning is then used to perform additional countermeasure specialization. The 

countermeasure identifier and adapted parameters are delivered to the external countermeasure 

system for immediate activation in hardware. An explanation of the reasoning done to produce the 

countermeasure is provided for human consumption. 
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Figure 4. A cognitive architecture for performing ES and EW on novel radar waveforms. 
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case is passed to a fuzzy reasoner to adapt the countermeasure. The adaptation module is initially 

built to use knowledge from experts. As we test the system with simulated data we will evaluate 

the results and update the adaptation rules based on experimental results. 

4.2.2  Use of Bayesian Networks for inference of emitter type, mode, and intent 

The Bayesian Network (BN) module receives messages from the CBR Subsystem and the PDW 

Feature Extractor via the common messaging subsystem. When messages for a particular PDW 

cluster are received from both subsystems, the BN module uses a third-party Bayesian Inference 

Library to calculate probabilities for the radar type, objective and mode based on the supplied 

evidence. The inferred mode and objective are then published using the messaging subsystem. 

The BN that we use to model this portion of the radar problem and perform inference is shown 

in Figure 5. The arrows in a BN represent the flow of influence in a model, not the flow of data. 

For example, the radar’s mode determines the frequency, power and waveform emitted. We include 

nine variables. The domain of the emitter (e.g. air, ground) exerts probabilistic influence on the 

emitter type. The emitter type influences the radar’s objective (e.g. scan, target, track), which in 

turn influences the emitter’s current and previous mode. The mode of the emitter influences the 

carrier frequency, effective radiated power, the waveform class, and the CBR-determined mode. 

The inclusion of the radar’s current and previous mode captures a Markovian relationship in emitter 

modes. 
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Figure 5. The Bayesian Network used to characterize emitters. 

The inclusion of the CBR-determined mode in the model warrants further explanation. The CBR 

engine has a certain probability of correctly determining the mode of the emitter, which we capture 

as a directed edge from emitter mode to the CBR-determined mode. Once CBR has determined the 

mode of the emitter, the Bayesian network uses this input from CBR as a “strong hint” as to the 

correct mode of the emitter, but the Bayesian network may override the CBR-determined mode if 

other indicators are strong enough. This captures the idea that CBR may sometimes be confused by 

certain emitter parameters and may output the incorrect mode in these cases. When this happens, 

the Bayesian Reasoning Subsystem can help to correct the mismatch by considering the totality of 

the circumstances. 

4.2.3  Fuzzy reasoning for countermeasure configuration 

Finally, we take the selected countermeasure and all the other knowledge that was produced and 

use it to configure a countermeasure in the same manner as a human expert might. This is 

accomplished using Fuzzy Logic techniques, which enable the system to reason using imprecise 

concepts and dependencies. The major benefits to this approach include easier expert knowledge 

capture/modeling, easier maintenance, and a much smoother control surface. 

There are variety of techniques that can be used to define Fuzzy Logic variables, rule sets, and 

functions. For our initial iteration, we chose to develop fuzzy sets and rules manually based off of 

the expert knowledge currently available to us. 

In order to avoid a combinatorial explosion of our rule sets as each new dependency was added, 

we decided to make use of the Combs Method (Combs, 1998). The Combs Method adds some 

complexity in regards to less intuitive rules. However, it becomes increasingly attractive as the 

number of variables increases due to the reduced number of rules that need to be defined. 

4.3  Intelligence Surveillance and Reconnaissance (ISR) Retasking 

As another demonstration of our CORA architecture, we performed a simple knowledge acquisition 

and hybrid representation exercise in an Intelligence, Surveillance and Reconnaissance (ISR) 

retasking use case. Joint Publication 2-0 (2013) defines ISR as: “An activity that synchronizes and 

integrates the planning and operations of sensors, assets, processing, exploitation, and 

dissemination systems in direct support of current and future operations. This is an integrated 
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intelligence operations function.” ISR consists of separate elements but requires treatment as an 

integrated whole in order to be optimized. The experimental prototype depicted in Figure 6 is 

designed as an iterative monitoring reasoner that receives inputs from the sensors and produces 

outputs for retasking and further situation awareness and decision making. 

We are using a combination of CBR, Bayesian Networks, and Fuzzy logic to enable reasoning 

in the ISR retasking domain. In the ISR retasking domain, situational analysis and awareness drive 

much of the decision making. Therefore, we enable situational awareness by (a) reasoning over a 

taxonomy of resources (both friendly and enemy), such as time, money, material, (b) reasoning 

about the PMESII context (political, military, economic, social, infrastructure, and information), 

and (c) and providing retasking recommendations that respects constraints (e.g. terrain) and pre-

specified utilities (e.g. rules of engagement, public relations, tolerance of casualties – civilian and 

troop). The output of the reasoning process is a retasking recommendation for gathering the most 

important missing intelligence, while respecting constraints (e.g. terrain, rules of engagement, 

public relations, and tolerance of civilian and troop casualties). 

Consider the following scenario: A centralized control center receives streams of inputs from 

multiple ISR sources. The primary task is to ensure that the enemy does not ingress into the neutral 

zone. Sensors are used to gather missing pieces of intelligence to enable informed command 

decisions. Among the ISR assets are UAVs, UGVs, and unmanned watch towers. Towers can only 

tell vehicle type (air, ground, sea) and size (large, medium, small). UGVs move at 10 movement 

units, whereas UAVs move at 100 movement units. UGVs are heavily armored and slow, whereas 

UAVs are fast and can run for days without refueling. 

To solve problems in this domain, we use CBR to retrieve cases containing Bayesian network 

fragments that represent small retasking information components; the retrieved Bayesian networks 

are used for determining vehicle tasking, based on the expected value of information; fuzzy 

reasoning is used for imprecise decisions (e.g. calculating reliable speed of a particular vehicle 

based upon distance, fuel remaining, mission priority, and terrain) and serves as a form of case 

adaptation. The output of the system is the evidence that should be used for retasking 

recommendation (e.g. to confirm that the unidentified vehicle is a tank, use drone 22). 

 

Figure 6. An instantiation of CORA for the ISR retasking problem 
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to search its case base for a relevant case. The published case is received and correlated with the 

appropriate situation awareness broadcast by the Bayesian network reasoner, which uses the 

information to load the appropriate influence diagram. The network reasoner then performs a value 

of information calculation, which indicates it is either better to do take photos (assuming that doing 

nothing is not an option). The logger module in the background presents a single unified view of 

the messages and calculations as they pass through the system of systems. 

The experimental prototype, while simple, demonstrated the value of integrating the multiple 

reasoners for robust decision making that includes many different kinds and sources of data. We 

are extending this system to include an explicit uncertainty reasoner, a meta-reasoner, and more 

distributable reasoning (as a multi-agent system). These extensions will support approaches to 

known problems described by our DoD customers such as Distributed Battle Management 

(DARPA) and Digital Commander’s Intent (Air Force Research Laboratory). 

5.  Future Work 

There exist numerous algorithms available to learn both the structure and parameter values of 

Bayesian networks, create more robust fuzzy sets and rules. Learning algorithm selection would 

ultimately be based on the structure, spatial attributes, and other properties of the data set. This is 

necessary given that certain algorithms have benefits and drawbacks for any given data set. We 

already have it within our capabilities to run a large variety of learning algorithms and techniques 

and anticipate applying them in future iterations of CORA. 

In ongoing work, we are extending CORA to include more focus on the task autonomy, control 

logic, and shared memory layer pursuant to better supporting collaborative, distributed multi-agent 

problem solving. The example problems that we presented all rely on pre-allocated task 

assignments, even though the modules in some cases were distributed and capable of performing 

other responsibilities. Part of this work includes formalization of decisions as to when and why to 

use each of the learning and reasoning algorithms. We are designing experiments to compare the 

hybrid approaches both in terms of topology and interaction between the reasoning modules. 

Most knowledge-based systems have uncertainty associated with data, reasoning, inferences, 

outcomes and decisions. Additionally, there are multiple sources of uncertainty that we wish to 

explicitly capture and reason about such as measurement errors, missing data, sensor data, the 

certainty of expert knowledge estimates, and errors introduced when combining results from hybrid 

subsystems. Inferences combining data from multiple sources with different uncertainties require a 

calculus for uncertainties combining results. Our treatment of uncertainty has so far been handled 

through adaptation knowledge, Bayesian networks for reasoning over likelihoods, and the distance 

between cases in CBR. We are currently prototyping a knowledge-based approach to reasoning 

about uncertainty that makes use of metadata to augment situation awareness data elements with 

uncertainty estimates, and include provenance and perishability information to improve reasoning. 

This approach relies upon associating metadata associated with data elements (their provenance, 

perishability and uncertainty) in order to allow explicit reasoning based these characteristics. 

Certainty factors have been successfully used in knowledge-based systems and are applicable to 

rule-based inferences and extendable to other types of inference. 
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6.  Conclusions 

The Cognitive Reasoning and Representation Architecture (CORA) is a flexible hybrid approach 

and toolset to enable human-like reasoning across a variety of problem domains. We have 

implemented and demonstrated a modular reasoning architecture including three reasoning 

modules capable of case-based, fuzzy and Bayesian network reasoning. We have also demonstrated 

three problem domains: cognitive wireless communications, electronic sensing for novel radar 

waveforms, and ISR sensor retasking. Future domains and problem types can be addressed through 

combination of existing reasoners and development of new modules within the CORA architecture. 
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