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Abstract 

Autonomous agents are expected to manage their behavior across many complex situations and to 

solve difficult problems that arise during their tenure. Environments that face such agents are often 

quite uncooperative, uncertain, and changing during the period an agent plans or executes the actions 

of its plans. The research here examines a cognitive mechanism to anticipate changes in the 

environment that allows the dropping of a given goal and the associated plan to achieve that goal. 

When goals are formulated, the agent creates a perceptual monitor associated with the conditions 

that represents the reasons the goal is preferred to the initial state. When these conditions no longer 

hold, the agent is able to release the goal and avoid further effort in service of its achievement. We 

show how this algorithm outperforms planners that do not use goal monitors or anticipate change. 

1.  Introduction 

A cognitive agent represents an intelligent system that uses knowledge structures to achieve the 

goals to which it is committed in an environment within which it can perceive and act (Huhns & 

Singh, 1998). Cognitive architectures are fixed infrastructures that organize and manage the 

knowledge and the functional reasoning processes that interpret the environment and determine 

action in service of goals for implemented cognitive agents (Langley, Laird & Rogers, 2009). Such 

agent models span many domains and problem-solving tasks. The kinds of problems cognitive 

agents face have increasingly become those in which the agent’s goals must be flexible given the 

dynamic nature of the environments within which they operate. Goals are not simply static 

predicate representations given as input by some external user. The agent itself is expected to 

recognize situations in which new goals are to be formulated or current goals changed and 

abandoned. This is the basic conception of goal reasoning (Aha, Cox, & Munoz-Avila, 2013; 

Hawes, 2011).  

Rich goal structures facilitate the reasoning required for adaptive behavior in changing 

environments and provide focus for the application of scarce cognitive resources (Schank & 

Abelson, 1977; Simon, 1967). However few cognitive agents represent the reasons they pursue the 

goals they possess. Most often they blindly do what they are told (but see Aha & Coman, 2017; 
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Coman, Gillespie, & Munoz-Avila, 2015). Humans provide goals as input to a problem statement 

or as imperative commands to be carried out. Indeed many problems are simply arbitrary initial 

state and goal state configurations such as having one block on top of another (Cox, 2013). This 

paper begins to examine the tasks of reasoning about goals in terms of the contextual reasons they 

are being sought and monitoring that such conditions remain in effect as the agent plans for its 

goals and executes actions within the plans. If a human tells an agent to achieve a goal or perform 

a task, the agent should consider the reasons why (or why not) this is desirable. If the reasons are 

not obvious, then ideally the agent should ask the human to elaborate. If the agent formulates a goal 

on its own, it should have a reason for doing so. These reasons establish the means for monitoring 

that the goal is still worth achieving. 

In addition to goal monitoring, we recognize a number of operations on goals and distinguish 

them for operations on plans (Cox, Dannenhauer, & Kondrakunta, 2017). Although the purpose of 

a plan is to establish a state of the world that satisfies a goal or a set of goals, we argue that the 

separation of goal and planning operations provides at least an organizational benefit within a 

cognitive architecture. However, like Roberts and colleagues (Roberts et al., 2016; 2015) who 

combine both types of operations into a goal life-cycle framework, we acknowledge the close 

relationship between the two. Table 1 classifies the ten primary operations on goal expressions. 

 

Table 1. Fundamental set of goal operations (extended from Cox, Dannenhauer & Kondrakunta, 2017). 

N Operation Description 

1 Goal formulation Create a new pending goal 

2 Goal selection  Commit to an active goal from the set of pending goals 

3 Goal suspension  Pause in pursuit of a currently committed goal 

4 Goal resumption  Resume pursuit of a suspended goal 

5 Goal change  Change a goal into a similar one that is close to the original goal 

6 Goal monitoring  Track that a goal maintains its usefulness 

7 Goal delegation  Find another agent willing to pursue a goal for you 

8 Goal interpretation  Infer the meaning of a stated intent by another agent 

9 Goal abandonment  Remove a pending or committed goal from consideration 

10 Goal achievement  Verify that a goal state is satisfied in some environment 

 

This paper addresses the goal monitoring operation (i.e., #6 above). Many planning approaches 

focus on the capability to generate and execute a sequence of actions that achieve a goal. Some 

planning approaches replan or adapt plans when the world changes or otherwise is uncooperative. 

When the goal suddenly becomes true in the current state, some agents will gracefully stop planning 

or cease executing a plan for a goal that is no longer needed. However few if any address the 

problem that goals are pursued for some reason. When the reason for the goal (as opposed to the 

goal itself) ceases to hold, the agent should also abandon the goal or otherwise change its behavior. 

We propose goal monitoring as a kind of cognitive process that oversees the continuing benefit of 

selective goal expressions and when situations warrant decides whether to abandon its goals. 
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The contributions of the paper include a declarative representation for goals, an extended 

enumeration of goal reasoning operations, the formalization of the goal monitor operation, an 

updated specification of the goal-reasoning function 𝑏𝑒𝑡𝑎, and a cognitive systems implementation 

of the goal monitor and abandonment operations evaluated against a no-monitoring condition. We 

begin the paper by describing a representation for goal expressions and by formalizing the goal 

monitoring operation. We then show how a cognitive architecture called MIDCA implements these 

representations and operations. An empirical evaluation of this technique in a simple domain 

follows with related research and a conclusion finishing the paper. 

2.  Goals, Goal Monitors, and Goal Abandonment 

2.1  Representations for Goals 

In many agent formalizations, the goal state is simply a first-order literal consisting of a truth 

predicate and a sequence of arguments. For example, the predicate representations 𝑜𝑛(𝐴, 𝐵) is a 

goal of the agent desires a block with the label 𝐴 to be on top of the block labelled 𝐵. However the 

agent may have such a goal but not be committed to achieving it yet (Cohen & Levesque, 1991). 

Thus we require a representation that can identify many of the attributes and modes through which 

goal traverse before finally being achieved (or not). Additionally, we wish to represent the goal 

relationship itself as a first-class mental object about which a cognitive system can reason as they 

can about physical objects in the environment. 

In the pictorial illustration of Table 2, the goal is to have block A on B, but in the current state, 

𝑠0, A is on C instead. Here the goal and each block have a specific representation. The left hand side 

of the table shows them in RDF (resource description framework) triple format (Hayes & Patel-

Schneider, 2014); whereas, the right hand side shows them using a frame representation (Fikes & 

Kehler, 1985; Minsky, 1974). The goal is to have a particular state hold between two arguments, 

the domain and co-domain. As any predicate, the goal has a current truth value, and it was created 

by operator op.9. Here we see that the goal belongs agent.8, and it is not currently delegated to 

another agent. Agent.8 is committed to achieving the goal, and it is currently both active and 

monitored.  

The problem with this representation, however, is that the on relationship for the blocks is an 

attribute of the blocks, yet the on goal is itself a different representational object with its own 

attributes. Representationally, the desired future state is to have the value of the on attribute of 

block.6 to be block.17 rather than block.10. But with classical frames, no mechanism exists with 

which to refer directly to the on attribute of block.6. 
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Table 2. Goal representations for 𝑔𝑐 = 𝑜𝑛 (𝐴, 𝐵) from initial state 𝑠0  using RDF-like triples, pictorial 

illustrations, and frame structures. Note that the reasons the goal is pursued is captured in the monitor 

structure discussed later in the paper rather than in the goal shown here. 

Subject Predicate Object Pictorial States Classical Frame 

goal.5 Isa on 

𝒈𝒄 = 𝒈𝒐𝒂𝒍. 𝟓 
 

goal.5: 

goal.5 Domain block.6   ( on  (domain block.6) 

goal.5 co-domain block.17   (co-domain block.17) 

goal.5 truth-value ⊥   (truth-value ⊥) 

goal.5 created-by op.9   (created-by op.9) 

goal.5 delegated-to nil   (delegated-to nil) 

goal.5 goal-of agent.8   (goal-of agent.8) 

goal.5 Mode committed   (mode committed) 

goal.5 Activation activated   (activation activated) 

goal.5 is-monitored ⊤   (is-monitored ⊤)  ) 

block.6 Clear ⊤ 
𝒔𝟎 

 

 
 

  block.6: (cube  (clear ⊤) 

block.6 On block.10                  (on block.10) 

block.6 Name A                  (name “A”) ) 

block.17 Clear ⊤   block.17: (cube (clear ⊤) 

block.17 Name B                    (name “B”) ) 

block.10 Clear ⊥   block.10: (cube (clear ⊥) 

block.10 Name C                    (name “C”) ) 

 

So to represent explicitly the relationship between blocks A and C, we reify the on predicate in 

a frame structure. Then for a frame system to treat this uniformly, another level of nesting provides 

the necessary representation to differentiate attribute values and the attribute relationship itself. We 

adapted an approach from the representational formalism in Cox (1996) and show it below.  

block.6: ( cube  (clear  (value ⊤))  
       (on   (value block.10)                    // value facet of on attribute for block A 

          (relation state.21) )                  // explicit representation as frame facet 
       (name (value “A”) )  ) 

state.21: ( on  (domain (value block.6))     // 1st-class relationship between blocks A and C 

      (co-domain (value block.10)) ) 

Treating a goal as a first-class, declarative knowledge-structure linked to explicit relations over 

objects enables a uniform mechanism for multiple cognitive processes in the goal-reasoning 

framework. The goal operations then serve as executive management functions from one 

declarative goal structure to another. Many research efforts have recognized the importance of rich 

representations for goals (e.g., Braubach, Pokahr, Moldt, & Lamersdorf, 2004; Hinrichs & Forbus, 

2016), and some have emphasized goals as first-class representational structures (e.g., Hinrichs & 
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Forbus, 2013). Additionally, many planning systems monitor plan execution in changing 

environments and adapt plans when conditions prove unfavorable (e.g., Ayan, Kuter, Yaman & 

Goldman, 2007; Munoz-Avila & Cox, 2008; Pettersson, 2005). Here we focus on the monitoring 

of the reasons goals are being pursued rather than the plans that accomplish the goals. Replanning 

adapts the plan when the plan starts to fail; goal monitoring adapts or drops the goal when the goal 

justification conditions no longer hold.  

2.2  The Goal Monitor and Abandonment Operations 

We posit a model of goal operations that represents the set of transformations on goals an agent 

may choose (Cox, in press). The agent’s goal agenda Ĝ = {𝑔1, 𝑔2, … 𝑔𝑐 , … 𝑔𝑛} contains the current 

goal 𝑔𝑐. An individual goal operation, 𝛿: 𝐺 → 𝐺, is a function from one goal expression 𝑔 ∈ 𝐺 𝑆 

to another 𝑔′, where 𝑆 is the set of all possible states. An operation is formalized as a transformation 

represented by  = (head(), parameter(), pre(), res()), where pre() and res() are its 

preconditions and result. The decisions 〈1, 2, … 𝑛〉 result in the goal 𝑛(… 
2

(
1

(𝑔𝑐))) = 𝑔′. 

Table 3 shows the goal reasoning function β that perceives the world with respect to its goals, 

managing them as necessary. More formally, the function 𝛽: 𝑆 × 𝐺 𝐺 returns a (possibly new) 

goal 𝑔′ given some state 𝑠 and a current goal 𝑔𝑐. The distinguished transformation ∗
 represents 

goal formulation and has been detailed in Cox (in press; 2013). Here we assume ∗
 can also be 

implemented with goal operators as discussed in section 3.1. Three main cases exist within the beta 

function: (1) only goal formulation ∗ is chosen; (2) the chosen elements consist of goal formulation 

and one or more goal changes; (3) only goal changes are chosen. For each case, beta updates the 

goal agenda, and if necessary, changes the goal. An output value for the input goal is finally 

returned. 

 

Table 3. The beta goal-reasoning function (adapted from Cox, Dannenhauer, & Kondrakunta, 2017). 

Although  is an ordered set, ̂ is a sequence where 𝑖𝑛 is treated like the set operator ∈ and “–“ like set 

difference. Reverse maintains the order of  (choose inverts it). 

𝜷(𝒔: 𝑺; 𝒈𝒄: 𝑮):𝑮  

̂  𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑐ℎ𝑜𝑜𝑠𝑒(𝑠, 𝑔𝑐 ,))  

if ∗in ̂ then                                                                    // if new goal formulated 

        𝑔𝑞
𝑚𝑜(

∗
())                                                          // then goal monitoring applied to new goal 

        if ̂ = 〈∗〉 then                                                         // case 1: goal formulation only 

                  Ĝ  {𝑔1, 𝑔2, … 𝑔𝑐 , … 𝑔𝑛} ∪  𝑔𝑞 

                𝛽 𝑔𝑐  ⋀ 𝑔𝑞 

        else 〈1, 2, … 𝑚〉 = ̂  ̂ - 𝑔𝑞                               // case 2: goal formulation plus goal change 

               Ĝ {𝑔1, 𝑔2, … 𝑚(… 
2

(
1

(𝑔𝑐))), … 𝑔𝑛} ∪ 𝑔𝑞  

                𝛽 𝑚(… 
2

(
1

(𝑔𝑐))) ⋀ 𝑔𝑞 

else  Ĝ  {𝑔1, 𝑔2, … 𝑚(… 
2

(
1

(𝑔𝑐))), … 𝑔𝑛}                 // case 3: goal change only 

        𝛽 𝑚(… 
2

(
1

(𝑔𝑐))) 
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Table 4 shows the function choose used within Beta. From an input set of goal transformations 

, the recursive choose function returns the sequence of transformations whose preconditions are 

satisfied in the current state 𝑠. Note that a sequence whose first element is head and whose 

remaining element are the subsequence tail is written as “head | tail”. In set notation, however, the 

symbol “|” signifies “such that.” 

 

Table 4. The choose function (adapted from Cox, Dannenhauer, & Kondrakunta, 2017). The function ends 

up reversing the order of the poset . 

𝒄𝒉𝒐𝒐𝒔𝒆(𝒔: 𝑺, 𝒈𝒄: 𝑮, = {𝟏, 𝟐, … }: 𝒑𝒐𝒔𝒆𝒕): 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 

return (if  = { } then 〈 〉 

         else if [𝑥|𝑥 ∈ 𝑝𝑟𝑒(1) ⋀  (𝑠⋃𝑔𝑐) ⊧ 𝑥] then 

                  1|𝑐ℎ𝑜𝑜𝑠𝑒(𝑠, 𝑔𝑐 , − {1}) 

              else choose (𝑠, 𝑔𝑐 , − {1})) 

 

Table 5 formalizes the goal monitor operation as a goal transformation, 𝒎𝒐. The content of 

the goal does not change in this operation. Rather the is-monitored attribute changes. This flag on 

the goal signals to an implementation that a monitor procedure needs creation. The monitor includes 

2 major conditions. First the monitor encapsulates environmental conditions whose change signals 

the need for goal reconsideration. Second the monitor includes a specification of the response (e.g., 

goal abandonment) if perceptions detects the first condition. We will examine this next. 

 

Table 5. The goal monitor operation as transformation. Bergmann’s (2002) notation 𝑪𝑳 is a class hiearchy 

having leaves 𝐿𝐶 ⊆ 𝑪𝑳 and whose root class 𝐶 has superclass ⊤, i.e., 𝐶𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 = ⊤. Precondition 𝑝𝑟𝑒2 of 

the transformation assures that the goal is not already monitored. State 𝑠 in 𝑝𝑟𝑒2 is within scope of β above. 

𝒎𝒐(𝒈𝒄: 𝑮): 𝑮 

ℎ𝑒𝑎𝑑(𝑚𝑜) = 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑚𝑜) = 𝑔𝑐 = 𝑝(𝑜𝑏𝑗1, 𝑜𝑏𝑗2) 

𝑝𝑟𝑒1(𝑚𝑜) = 𝑜𝑏𝑗1 ∈ 𝑂𝑏𝑗𝑠 ⋀ 𝑜𝑏𝑗2 ∈ 𝑂𝑏𝑗𝑠 

𝑝𝑟𝑒2(𝑚𝑜) = ∃𝑝, 𝑝′, 𝑖 | 𝑝 ∈ 𝑪𝑳 ⋀ 𝑝′ ∈ 𝑪𝑳 ⋀ 𝑝𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 = 𝑝′ ⋀ 𝑝 = (𝑝𝑛𝑎𝑚𝑒 , 𝑝′, (𝑝. 𝐴1, 𝑝. 𝐴2, … 𝑝. 𝐴𝑚))  

          ⋀ 1 ≥ 𝑖 ≥ 𝑚 ⋀ 𝐴𝑖 = 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 ⋀  𝑝. 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 =⊥  

𝑝𝑟𝑒3(𝑚𝑜) = 𝑛𝑒𝑒𝑑𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑠, 𝑔𝑐)                                          // reasoning whether to monitor the goal 

pre(𝑚𝑜
) = {𝑝𝑟𝑒1(𝑚𝑜), 𝑝𝑟𝑒2(𝑚𝑜), 𝑝𝑟𝑒3(𝑚𝑜)} 

𝑟𝑒𝑠(𝑔𝑒) = if x|x ∈ 𝑝𝑟𝑒(𝑚𝑜) ⋀  (𝑠 ⊨ 𝑥) then 𝑝. 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑⊤ 

                    return(𝑔𝑐) 

3.  Goal Operations in MIDCA 

The metacognitive integrated dual-cycle architecture (MIDCA) is a cognitive architecture that 

models both cognition and metacognition for intelligent agents (Cox et al., 2016; Paisner et al., 
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2014). It consists of “action-perception” cycles at both the cognitive level and the metacognitive 

level (see Figure 1). In general, a cycle performs problem-solving to achieve its goals and tries to 

comprehend the resulting actions and those of other agents. The output side of each cycle consists 

of intention, planning, and action execution, whereas the input side consists of perception, 

interpretation, and goal evaluation. 

In problem solving, the Intend phase commits to a current goal from those available. The Plan 

phase then generates a sequence of actions (a hierarchical-task-network plan). The plan is executed 

by the Act phase to change the actual world through the effects of the planned actions. The agent 

will then use these expectations in the next cycle to evaluate the execution of the plan. 

Comprehension starts with perception of the world through the Perceive phase. The Interpret 

phase takes as input the resulting predicate relations and the expectations in memory to determine 

whether the agent is making sufficient progress. It is here that new goals are generated when the 

environment presents problems and opportunities for the agent. The Evaluate phase incorporates 

the concepts inferred from Interpret and notes whether existing goals are achieved. 

3.1  Goal Monitoring 

In a cognitive system, goals provide focus for the agent’s reasoning and represent the desired future 

state it seeks to achieve. Three types of goal monitors can exist for these knowledge structures. 

1. Operator style. Observing preconditions of the goals; 

2. Explanatory. Observing the causal justifications of the goal; 

3. Direct. See if the goal is achieved exogenously. 

Memory

Domain

goal 

change goal

input

Intend

Act 

Plan

Evaluate

Perceive

Interpret

Goals

subgoal

goal

insertion

Figure 1. Schematic action-perception cycle for both cognitive and metacognitive levels in MIDCA (Cox et 

al., 2016). Intend, Plan, and Act compose the problem-solving mechanism in the architecture, and Perceive, 

Interpret, and Evaluation constitute the comprehension mechanism. Memory is shared between them. 
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Explanatory monitors assume that the goal was formulated in response to a discrepancy 

between the agent’s expectations and the observation (Cox, 2007; Dannenhauer & Munoz-Avila, 

2015). An explanation provides the antecedents for the discrepancy, and the agent generates a goal 

from the explanation. The antecedents also provide the environmental conditions that must persist 

for the goal to still be valid. Direct monitors check that the goal itself does not exogenously become 

true at some point in the planning or in plan execution. If they do, then the goal can be dropped 

from either the set of pending goals or from the current goal expression. 

In this paper, we consider the operator style monitor and will leave implementation of the 

explanatory monitor for future work. In MIDCA, this monitor class currently depends upon goals 

being generated by goal operators.1 We denote a goal operator, o, as the tuple (name(𝑜), 

precond(𝑜), result(𝑜)). The set of literals precond(𝑜) represents the operator’s preconditions. They 

specify what conditions the current state must satisfy in order for o to be applied. The persistence 

of these conditions in the future is also the target of the goal monitor. The term result(𝑜) specifies 

the goal 𝑔. Tac-Air Soar (Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999) takes this approach. 

Operators exist for various goal types and data-driven context-sensitive rules spawn them given 

matching run-time observations. 

Algorithm 1 shows high-level details in the MIDCA Interpret phase. When a feature being 

monitored changes and the change is detected, we say that the monitor fires. If a monitor fired, then 

the goal will be abandoned and removed from pending goals 𝐺 (steps 2-6 in Algorithm 1). The 

algorithm next checks to see if a new goal is created (steps 7-10). If a new goal exists and Interpret 

decides to have it monitored, a monitor will be created for 𝑔𝑛’s operator (steps 10-13). 

Algorithm 2 shows the details of creating monitors for the preconditions of a given goal 

operator op. These preconditions must be monitored, because, should they become false, the goal 

is not useful in the current state anymore. This indirectly assumes that goal formulation is 

performed when the operator preconditions hold in the current state. 

The function fired checks for monitors that trigger (see Algorithm 3). Perceive creates a set of 

percepts from environmental input (Ѱ) and induces a predicate representation 𝑠 from these percepts 

(Alavi & Cox, 2016). It then takes a list of monitors and checks if the conditions are still satisfied 

in 𝑠. If not, it will assemble a list of goals to drop from a list of the agent’s pending goals. 

 

 

                                                 
1 Note that goal operators are distinct from planning operators. The former represents an alternative choice for goal 

formulation; whereas the latter is an action model that represents a potential choice for step in a plan. An agent may 

create a goal monitor based on the preconditions of the goal operator and may create a plan monitor based on the 

preconditions of the plan operator (see Alavi & Cox, 2016; Dannenhauer & Cox, in press, for details regarding our use 

of plan monitors in MIDCA). In such light, the monitors are very similar, but when the monitor condition fires, a goal 

monitor abandons or otherwise changes the goal; whereas a plan monitor changes the plan. We anticipate a divergence 

of similarity between the two for explanatory goal monitors.  
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Algorithm 1. Goal monitoring in the MIDCA Interpret phase. Goal formulation and goal abandonment 

accompany the monitoring procedure. 

Algorithm 2. Goal-monitor generation. The algorithm assumes that the monitor uses the operator style.  

Input: goal operator 𝑜, world state 𝑠, and list of monitors 𝑚𝑛𝑡𝑠  

Output: list of monitors 𝑚𝑛𝑡𝑠   

1:  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑠 (𝑜, 𝑠, 𝑚𝑛𝑡𝑠)  

2:     𝒇𝒐𝒓 𝑝 𝑖𝑛 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜) 𝒅𝒐 

3:             𝑚𝑛𝑡𝑠 (𝑝, 𝑔)  ∪  𝑚𝑛𝑡𝑠  

4:     𝒆𝒏𝒅 𝒇𝒐𝒓 

5:     𝑟𝑒𝑡𝑢𝑟𝑛 (𝑚𝑛𝑡𝑠) 

6:  𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

Algorithm 3. Goal monitor firing. The algorithm checks the state for monitors that fire.  

Input: list of monitors 𝑚𝑛𝑡𝑠                     

Output: list of goals to drop 𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝   

1:  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑓𝑖𝑟𝑒𝑑 (𝑚𝑛𝑡𝑠) 

2:     𝑠 ← 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒() 

3:     𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝   

4:     𝒇𝒐𝒓 (𝑝, 𝑔) 𝑖𝑛 𝑚𝑛𝑡𝑠 

5:             𝒊𝒇  ¬(𝑠 ⊨ 𝑝) 𝒕𝒉𝒆𝒏 

6:                     𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝 ←  𝑔 ∪  𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝 

7:             𝒆𝒏𝒅 𝒊𝒇 

8:     𝒆𝒏𝒅 𝒇𝒐𝒓 

9:     𝑟𝑒𝑡𝑢𝑟𝑛 (𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝) 

10: 𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

 

 Input: list of pending goals �̂�, current state 𝑠, and list of goal monitors 𝑚𝑛𝑡𝑠 

Output: list of goal monitors 𝑚𝑛𝑡𝑠 

1:  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑔𝑜𝑎𝑙_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 (�̂�, 𝑠, 𝑚𝑛𝑡𝑠) 

2:     𝒇𝒐𝒓 𝑔 𝑖𝑛 𝑓𝑖𝑟𝑒𝑑(𝑚𝑛𝑡𝑠) 

3:             �̂� �̂� − 𝑔                         // goal abandoned 

4:             𝑔. 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑   

5:             𝑚𝑛𝑡𝑠  𝑚𝑛𝑡𝑠 – {(𝑝, 𝑔)|𝑝 = 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑠𝑡𝑎𝑡𝑒𝑠(𝑚𝑛𝑡𝑠, 𝑔)}  //removing monitor from mnts 

6:     𝒆𝒏𝒅 𝒇𝒐𝒓 

7:     𝑝𝑒𝑛𝑑𝑖𝑛𝑔 �̂�                           // temp var 

8:     // Three cases of 𝛽  below: 𝑔𝑛 = 𝑔𝑐 (no change); 𝑔𝑐 may change into 𝑔𝑛; or 𝑔𝑛 added to �̂� 

9:      𝑔𝑛 𝛽(𝑠, 𝑔𝑐)  

10:    𝒊𝒇 |𝑝𝑒𝑛𝑑𝑖𝑛𝑔| + 1 = |�̂�|         // when new goal formulated in beta, �̂�  will be larger by 1 

11:        ⋀ 𝑔𝑛 . 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 𝒕𝒉𝒆𝒏   

12:            𝑚𝑛𝑡𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑠 (𝑔𝑛 . 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝑏𝑦, 𝑠, 𝑚𝑛𝑡𝑠) 

13:    𝒆𝒏𝒅 𝒊𝒇 

14:    𝑟𝑒𝑡𝑢𝑟𝑛(𝑚𝑛𝑡𝑠) 

15: 𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 
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3.2  A Short Goal Monitoring Example  

Table 6 illustrates an example goal operator for a logistics delivery task. If MIDCA receives an 

order to deliver package 𝑝1 to location 𝑙11 and 𝑝1 is available in one of the warehouses (e.g., 𝑤2), 

the beta function uses the goal operator to formulate the delivery goal 𝑔7 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(𝑝1, 𝑙11). If 

MIDCA decides to monitor this goal, monitors are created to observe the conditions obj-at(𝑝1, 𝑤2) 

and order(𝑝1, 𝑙11). Now if at a later time, 𝑝1  is stolen or otherwise becomes missing from the 

warehouse or if the order is canceled, then the monitor will abandon 𝑔7, removing it from 𝐺. 

Table 6. Exampled goal operator for delivering an ordered package. 

Attribute Representation 

Goal operator  o (?p,?w,?l) 

Preconditions 𝑜𝑏𝑗𝑎𝑡(? 𝑝, ? 𝑤), 𝑜𝑟𝑑𝑒𝑟(? 𝑝, ? 𝑙), 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(? 𝑝, ? 𝑙) ∉  �̂� 

Result 𝑔 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(? 𝑝, ? 𝑙) 

Monitor conditions  obj-at(? 𝑝, ? 𝑤), order(?𝑝, 𝑙) 

4.  Empirical Performance Evaluation 

We claim that using goal monitors in a cognitive architecture like MIDCA increases the 

performance of the agent. To evaluate this hypothesis, we conducted tests with MIDCA on a 

simulated logistics domain. We use a simple simulator to model the world state and agent actions 

that change the state. 

4.1  Logistics Domain Experiments 

The version of the logistics domain (Veloso, 1994) we use includes packages inside different 

warehouses that are needed to be delivered to their destinations by trucks or airplanes. The agent is 

tasked to deliver packages for different orders. For example, transporting the package 𝑝1 by truck 

to location 𝑙 and then unloading it achieves the goal 𝑔𝑐 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(𝑝1, 𝑙). We assume that the 

agent has full observability and has access to the list of packages in the warehouses.  

 When there is an order for a package and the package exists in one of the warehouses, Interpret 

generates a delivery goal for that package. The MIDCA Intend phase selects one warehouse and 

commits to achieving all goals for the packages in that warehouse. The JSHOP planner2 (Nau et al. 

2003) that implements the MIDCA Plan phase then generates a plan for these packages. If one 

package is stolen from a warehouse 𝑤𝑖, the planner fails to generate a plan for all delivery goals 

in 𝑤𝑖. However, with goal monitors, the agent will know that a package is missing, and before Plan 

starts planning for that warehouse, it will drop the goal for the missing package. Planning will now 

succeed for the current goals. Notice that lost packages are distributed evenly across warehouses, 

and we assume that packages are stolen from the warehouse that is not planning for currently.  

 We ran two experiments. In the first, we varied the number of warehouses, and in the second, 

we varied the number of lost packages. Every goal achieved (each package delivered) by MIDCA 

                                                 
2 https://sourceforge.net/projects/shop/files/JSHOP2/ 
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has a score of one point. In each scenario of the first experiment, we set the initial state to be the 

one with n warehouses, five packages in each warehouse, and one order exists for each package. 

Interpret generates a delivery goal for each package. During runtime, six packages from different 

warehouses become lost. We varied the number of warehouses from five to twenty in increments 

of five. Each warehouse has five packages.  

In each scenario of the second experiment, the initial state is set to be the one with twenty 

warehouses with five packages each. During runtime, n packages are lost. We varied the number 

of lost packages from one to twenty. 

4.2  Experimental Results 

Figures 2 and 3 summarize the results of MIDCA with and without goal monitors for these two 

experiments. The y-axis is the goal score that the agent was able to achieve for delivering packages. 

We plot the score as a function of the amount of warehouses in Figure 2 and in Figure 3 as a function 

of the number of lost packages. The results show that the performance of MIDCA with goal 

monitors is better than MIDCA with static goals (e.g., no goal monitors), because goal monitors 

allow the agent to drop its goals when they are not achievable. In Figure 2, when the number of 

warehouses is five, MIDCA without goal monitors is not able to achieve any goal (one package is 

lost from each warehouse causing all plans to fail). 

  

Figure 2. Logistics domain performance with goal monitors and without goal monitors. Number of 

stolen packages is six in each warehouse. Each warehouse has five packages. 
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Figure 3 shows the result of the second experiment with twenty warehouses. When no package 

is lost, both approaches show equivalent performance. But when more packages are stolen, MIDCA 

with goal monitors is able to achieve a higher score by dropping delivery goals of lost packages. 

The score of MIDCA with static goals converges to zero as more packages are lost. The results 

support our claim that the goal monitors technique improves the performance of a cognitive 

architecture in a simulated logistics domain. 

 

5.  Related Research 

Goal-driven autonomy (GDA) (Aha, et al., 2010; Cox, 2013; Klenk, Molineaux & Aha, 2013) is a 

kind of goal reasoning that focuses on explanation of discrepancies in order to formulate new goals. 

Our work is firmly situated within this research area. GDA agents generate goals as the agent 

encounters differences between the agent’s expectations for the outcome of its actions and the 

actual observed outcomes in each new state (Dannenhauer & Munoz-Avila, 2015). When such a 

discrepancy occurs, GDA agents generate a causal explanation for the discrepancy, and generate a 

new goal based on the causal structure.  

Other research in the GDA and broader goal reasoning community has formalized the idea of 

goal change and goal reasoning. Roberts and colleagues (Johnson, Roberts, Apker, & Aha, 2016; 

Roberts et al., 2016; 2015) has developed the notation of a goal life-cycle where goals transition 

through modalities that represent goal formulation, goal selection, goal expansion, goal 

Figure 3. Logistics domain performance in MIDCA for twenty warehouses with five packages in each. 
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commitment, goal dispatching, goal monitoring, goal evaluation, goal repair, and goal deferment. 

Many of these transitions corresponds to our goal operations, but their formalism itself treats goal 

reasoning as goal refinement where our casts it in standard notation similar to that used in the 

automated planning community. Additionally Roberts proposes a complex goal structure that 

differs from ours. Their goal node includes not only the desired state but also super-ordinate and 

subordinate goal linkages, goal constraints, quality metrics, and pointers to the current plan 

associated with the node. Finally we note that the BDI (belief-desire-intention) community has also 

developed a goal life cycle representation and formalized a set goal operations. See Harland, 

Morley, Thangarajah, & Yorke-Smith (2014). This work, unlike the goal reasoning community, 

does not focus on goal change and goal formulation. The BDI community has also developed a 

sophisticated mechanism for performing goal suspension, resumption, and abandonment (Harland, 

Morley, Thangarajah, & Yorke-Smith, 2017). Their work differentiates goal abandonment (where 

plans are cleaned up and then the goal is dropped) from the direct goal drop operation itself.  

The BDI work cited above also characterizes a kind of goal monitoring for maintenance goals 

that assures a particular state holds across an interval of time. These goals contrast with 

achievement goals that establish a particular state at a point in time. This process monitors the state 

and (re)activates the maintenance goal whenever the state changes during the interval. Our use of 

goal monitoring is directed at achievement (i.e., attainment) goals and monitors the reasons goals 

were formulated in the first place. Although both are called goal monitoring, our work is very 

different. 

Finally, cognitive agents including GDA agents need to adapt to changes in the environment. 

Rationale-based plan monitors (Alavi & Cox, 2016; Veloso, et al., 1998) provide a means of 

focusing visual attention on features of the world likely to affect the plan during planning time. The 

MIDCA Plan phase generates these monitors to interact with a vision system and react only to those 

environmental changes that bear on current planning decisions. When plan monitors detect relevant 

changes, corresponding plan transformations are executed as needed. Alternatively, the work in 

this paper concerns reactions to environmental changes that affect the agent’s goals. The Interpret 

phase in MIDCA generates goal monitors associated with the conditions that led the agent to choose 

that goal. It enables the agent to abandon the goal when the goal is not useful in the current state. 

6.  Conclusion 

Autonomous cognitive agents reason about and formulate their own goals and need to adapt to 

changes in the environment. In this paper, we introduce goal monitors for cognitive systems that 

observe the justification for goal selection and abandon the goal when justifications are not valid 

in the environment. This research follows the cognitive systems research paradigm (Langley, 2012) 

in that it focuses on high-level cognition, represents goals as structured knowledge, is a systems-

level research topic, implements a heuristic approach to intelligence, is inspired by human 

cognition, and despite the notational formalism, is an exploratory rather than formal research 

endeavor. This research represents an increment in the exploration, specification and further 



M. COX, AND Z. DANNENHAUER 

14 

understanding of the functional roles goal operations contribute to successful high-level reasoning 

and subsequent robust behavior for cognitive agents in difficult environments. 

Much future work remains to be performed. We have implemented a simple form of goal 

monitors that works similar to existing plan monitor implementations. As mentioned previously, 

however, the goal monitor process will diverge from plan monitors once we implement explanatory 

monitors as well. Currently the monitors simply drop the goals if the monitored conditions no 

longer hold. Yet alternative responses exist in many situations that would be preferred over 

abandonment. Goals might be changed instead. To make such choice, we need to develop a 

mechanism to reason about the response once a monitor fires rather than simply carry out a 

predetermined response. Finally the evaluation presented here is still preliminary. We showed 

results that were essentially obvious, though as to our knowledge, this had not been previously 

demonstrated in the literature. A more thorough empirical evaluation rests in the near future. 
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