

Advances in Cognitive Systems (2017) Submitted 3/2017; published 5/2017

© 2017 Cognitive Systems Foundation. All rights reserved.

Perceptual Goal Monitors for Cognitive Agents

in Changing Environments

Michael T. Cox MICHAEL.COX@WRIGHT.EDU

Wright State Research Institute, Wright State University, Beavercreek, OH 45431 USA

Zohreh A. Dannenhauer ALAVI.3@ WRIGHT.EDU

Department of Computing Science and Engineering, Wright State University, Dayton, OH 45435 USA

Abstract

Autonomous agents are expected to manage their behavior across many complex situations and to

solve difficult problems that arise during their tenure. Environments that face such agents are often

quite uncooperative, uncertain, and changing during the period an agent plans or executes the actions

of its plans. The research here examines a cognitive mechanism to anticipate changes in the

environment that allows the dropping of a given goal and the associated plan to achieve that goal.

When goals are formulated, the agent creates a perceptual monitor associated with the conditions

that represents the reasons the goal is preferred to the initial state. When these conditions no longer

hold, the agent is able to release the goal and avoid further effort in service of its achievement. We

show how this algorithm outperforms planners that do not use goal monitors or anticipate change.

1. Introduction

A cognitive agent represents an intelligent system that uses knowledge structures to achieve the

goals to which it is committed in an environment within which it can perceive and act (Huhns &

Singh, 1998). Cognitive architectures are fixed infrastructures that organize and manage the

knowledge and the functional reasoning processes that interpret the environment and determine

action in service of goals for implemented cognitive agents (Langley, Laird & Rogers, 2009). Such

agent models span many domains and problem-solving tasks. The kinds of problems cognitive

agents face have increasingly become those in which the agent’s goals must be flexible given the

dynamic nature of the environments within which they operate. Goals are not simply static

predicate representations given as input by some external user. The agent itself is expected to

recognize situations in which new goals are to be formulated or current goals changed and

abandoned. This is the basic conception of goal reasoning (Aha, Cox, & Munoz-Avila, 2013;

Hawes, 2011).

Rich goal structures facilitate the reasoning required for adaptive behavior in changing

environments and provide focus for the application of scarce cognitive resources (Schank &

Abelson, 1977; Simon, 1967). However few cognitive agents represent the reasons they pursue the

goals they possess. Most often they blindly do what they are told (but see Aha & Coman, 2017;

M. COX, AND Z. DANNENHAUER

2

Coman, Gillespie, & Munoz-Avila, 2015). Humans provide goals as input to a problem statement

or as imperative commands to be carried out. Indeed many problems are simply arbitrary initial

state and goal state configurations such as having one block on top of another (Cox, 2013). This

paper begins to examine the tasks of reasoning about goals in terms of the contextual reasons they

are being sought and monitoring that such conditions remain in effect as the agent plans for its

goals and executes actions within the plans. If a human tells an agent to achieve a goal or perform

a task, the agent should consider the reasons why (or why not) this is desirable. If the reasons are

not obvious, then ideally the agent should ask the human to elaborate. If the agent formulates a goal

on its own, it should have a reason for doing so. These reasons establish the means for monitoring

that the goal is still worth achieving.

In addition to goal monitoring, we recognize a number of operations on goals and distinguish

them for operations on plans (Cox, Dannenhauer, & Kondrakunta, 2017). Although the purpose of

a plan is to establish a state of the world that satisfies a goal or a set of goals, we argue that the

separation of goal and planning operations provides at least an organizational benefit within a

cognitive architecture. However, like Roberts and colleagues (Roberts et al., 2016; 2015) who

combine both types of operations into a goal life-cycle framework, we acknowledge the close

relationship between the two. Table 1 classifies the ten primary operations on goal expressions.

Table 1. Fundamental set of goal operations (extended from Cox, Dannenhauer & Kondrakunta, 2017).

N Operation Description

1 Goal formulation Create a new pending goal

2 Goal selection Commit to an active goal from the set of pending goals

3 Goal suspension Pause in pursuit of a currently committed goal

4 Goal resumption Resume pursuit of a suspended goal

5 Goal change Change a goal into a similar one that is close to the original goal

6 Goal monitoring Track that a goal maintains its usefulness

7 Goal delegation Find another agent willing to pursue a goal for you

8 Goal interpretation Infer the meaning of a stated intent by another agent

9 Goal abandonment Remove a pending or committed goal from consideration

10 Goal achievement Verify that a goal state is satisfied in some environment

This paper addresses the goal monitoring operation (i.e., #6 above). Many planning approaches

focus on the capability to generate and execute a sequence of actions that achieve a goal. Some

planning approaches replan or adapt plans when the world changes or otherwise is uncooperative.

When the goal suddenly becomes true in the current state, some agents will gracefully stop planning

or cease executing a plan for a goal that is no longer needed. However few if any address the

problem that goals are pursued for some reason. When the reason for the goal (as opposed to the

goal itself) ceases to hold, the agent should also abandon the goal or otherwise change its behavior.

We propose goal monitoring as a kind of cognitive process that oversees the continuing benefit of

selective goal expressions and when situations warrant decides whether to abandon its goals.

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

3

The contributions of the paper include a declarative representation for goals, an extended

enumeration of goal reasoning operations, the formalization of the goal monitor operation, an

updated specification of the goal-reasoning function 𝑏𝑒𝑡𝑎, and a cognitive systems implementation

of the goal monitor and abandonment operations evaluated against a no-monitoring condition. We

begin the paper by describing a representation for goal expressions and by formalizing the goal

monitoring operation. We then show how a cognitive architecture called MIDCA implements these

representations and operations. An empirical evaluation of this technique in a simple domain

follows with related research and a conclusion finishing the paper.

2. Goals, Goal Monitors, and Goal Abandonment

2.1 Representations for Goals

In many agent formalizations, the goal state is simply a first-order literal consisting of a truth

predicate and a sequence of arguments. For example, the predicate representations 𝑜𝑛(𝐴, 𝐵) is a

goal of the agent desires a block with the label 𝐴 to be on top of the block labelled 𝐵. However the

agent may have such a goal but not be committed to achieving it yet (Cohen & Levesque, 1991).

Thus we require a representation that can identify many of the attributes and modes through which

goal traverse before finally being achieved (or not). Additionally, we wish to represent the goal

relationship itself as a first-class mental object about which a cognitive system can reason as they

can about physical objects in the environment.

In the pictorial illustration of Table 2, the goal is to have block A on B, but in the current state,

𝑠0, A is on C instead. Here the goal and each block have a specific representation. The left hand side

of the table shows them in RDF (resource description framework) triple format (Hayes & Patel-

Schneider, 2014); whereas, the right hand side shows them using a frame representation (Fikes &

Kehler, 1985; Minsky, 1974). The goal is to have a particular state hold between two arguments,

the domain and co-domain. As any predicate, the goal has a current truth value, and it was created

by operator op.9. Here we see that the goal belongs agent.8, and it is not currently delegated to

another agent. Agent.8 is committed to achieving the goal, and it is currently both active and

monitored.

The problem with this representation, however, is that the on relationship for the blocks is an

attribute of the blocks, yet the on goal is itself a different representational object with its own

attributes. Representationally, the desired future state is to have the value of the on attribute of

block.6 to be block.17 rather than block.10. But with classical frames, no mechanism exists with

which to refer directly to the on attribute of block.6.

M. COX, AND Z. DANNENHAUER

4

Table 2. Goal representations for 𝑔𝑐 = 𝑜𝑛 (𝐴, 𝐵) from initial state 𝑠0 using RDF-like triples, pictorial

illustrations, and frame structures. Note that the reasons the goal is pursued is captured in the monitor

structure discussed later in the paper rather than in the goal shown here.

Subject Predicate Object Pictorial States Classical Frame

goal.5 Isa on

𝒈𝒄 = 𝒈𝒐𝒂𝒍. 𝟓

goal.5:

goal.5 Domain block.6 (on (domain block.6)

goal.5 co-domain block.17 (co-domain block.17)

goal.5 truth-value ⊥ (truth-value ⊥)

goal.5 created-by op.9 (created-by op.9)

goal.5 delegated-to nil (delegated-to nil)

goal.5 goal-of agent.8 (goal-of agent.8)

goal.5 Mode committed (mode committed)

goal.5 Activation activated (activation activated)

goal.5 is-monitored ⊤ (is-monitored ⊤))

block.6 Clear ⊤
𝒔𝟎

 block.6: (cube (clear ⊤)

block.6 On block.10 (on block.10)

block.6 Name A (name “A”))

block.17 Clear ⊤ block.17: (cube (clear ⊤)

block.17 Name B (name “B”))

block.10 Clear ⊥ block.10: (cube (clear ⊥)

block.10 Name C (name “C”))

So to represent explicitly the relationship between blocks A and C, we reify the on predicate in

a frame structure. Then for a frame system to treat this uniformly, another level of nesting provides

the necessary representation to differentiate attribute values and the attribute relationship itself. We

adapted an approach from the representational formalism in Cox (1996) and show it below.

block.6: (cube (clear (value ⊤))
 (on (value block.10) // value facet of on attribute for block A

 (relation state.21)) // explicit representation as frame facet
 (name (value “A”)))

state.21: (on (domain (value block.6)) // 1st-class relationship between blocks A and C

 (co-domain (value block.10)))

Treating a goal as a first-class, declarative knowledge-structure linked to explicit relations over

objects enables a uniform mechanism for multiple cognitive processes in the goal-reasoning

framework. The goal operations then serve as executive management functions from one

declarative goal structure to another. Many research efforts have recognized the importance of rich

representations for goals (e.g., Braubach, Pokahr, Moldt, & Lamersdorf, 2004; Hinrichs & Forbus,

2016), and some have emphasized goals as first-class representational structures (e.g., Hinrichs &

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

5

Forbus, 2013). Additionally, many planning systems monitor plan execution in changing

environments and adapt plans when conditions prove unfavorable (e.g., Ayan, Kuter, Yaman &

Goldman, 2007; Munoz-Avila & Cox, 2008; Pettersson, 2005). Here we focus on the monitoring

of the reasons goals are being pursued rather than the plans that accomplish the goals. Replanning

adapts the plan when the plan starts to fail; goal monitoring adapts or drops the goal when the goal

justification conditions no longer hold.

2.2 The Goal Monitor and Abandonment Operations

We posit a model of goal operations that represents the set of transformations on goals an agent

may choose (Cox, in press). The agent’s goal agenda Ĝ = {𝑔1, 𝑔2, … 𝑔𝑐 , … 𝑔𝑛} contains the current

goal 𝑔𝑐. An individual goal operation, 𝛿: 𝐺 → 𝐺, is a function from one goal expression 𝑔 ∈ 𝐺 𝑆

to another 𝑔′, where 𝑆 is the set of all possible states. An operation is formalized as a transformation

represented by = (head(), parameter(), pre(), res()), where pre() and res() are its

preconditions and result. The decisions 〈1, 2, … 𝑛〉 result in the goal 𝑛(…
2

(
1

(𝑔𝑐))) = 𝑔′.

Table 3 shows the goal reasoning function β that perceives the world with respect to its goals,

managing them as necessary. More formally, the function 𝛽: 𝑆 × 𝐺 𝐺 returns a (possibly new)

goal 𝑔′ given some state 𝑠 and a current goal 𝑔𝑐. The distinguished transformation ∗
 represents

goal formulation and has been detailed in Cox (in press; 2013). Here we assume ∗
 can also be

implemented with goal operators as discussed in section 3.1. Three main cases exist within the beta

function: (1) only goal formulation ∗ is chosen; (2) the chosen elements consist of goal formulation

and one or more goal changes; (3) only goal changes are chosen. For each case, beta updates the

goal agenda, and if necessary, changes the goal. An output value for the input goal is finally

returned.

Table 3. The beta goal-reasoning function (adapted from Cox, Dannenhauer, & Kondrakunta, 2017).

Although is an ordered set, ̂ is a sequence where 𝑖𝑛 is treated like the set operator ∈ and “–“ like set

difference. Reverse maintains the order of (choose inverts it).

𝜷(𝒔: 𝑺; 𝒈𝒄: 𝑮):𝑮

̂ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑐ℎ𝑜𝑜𝑠𝑒(𝑠, 𝑔𝑐 ,))

if ∗in ̂ then // if new goal formulated

 𝑔𝑞
𝑚𝑜(

∗
()) // then goal monitoring applied to new goal

 if ̂ = 〈∗〉 then // case 1: goal formulation only

 Ĝ {𝑔1, 𝑔2, … 𝑔𝑐 , … 𝑔𝑛} ∪ 𝑔𝑞

 𝛽 𝑔𝑐 ⋀ 𝑔𝑞

 else 〈1, 2, … 𝑚〉 = ̂ ̂ - 𝑔𝑞 // case 2: goal formulation plus goal change

 Ĝ {𝑔1, 𝑔2, … 𝑚(…
2

(
1

(𝑔𝑐))), … 𝑔𝑛} ∪ 𝑔𝑞

 𝛽 𝑚(…
2

(
1

(𝑔𝑐))) ⋀ 𝑔𝑞

else Ĝ {𝑔1, 𝑔2, … 𝑚(…
2

(
1

(𝑔𝑐))), … 𝑔𝑛} // case 3: goal change only

 𝛽 𝑚(…
2

(
1

(𝑔𝑐)))

M. COX, AND Z. DANNENHAUER

6

Table 4 shows the function choose used within Beta. From an input set of goal transformations

, the recursive choose function returns the sequence of transformations whose preconditions are

satisfied in the current state 𝑠. Note that a sequence whose first element is head and whose

remaining element are the subsequence tail is written as “head | tail”. In set notation, however, the

symbol “|” signifies “such that.”

Table 4. The choose function (adapted from Cox, Dannenhauer, & Kondrakunta, 2017). The function ends

up reversing the order of the poset .

𝒄𝒉𝒐𝒐𝒔𝒆(𝒔: 𝑺, 𝒈𝒄: 𝑮, = {𝟏, 𝟐, … }: 𝒑𝒐𝒔𝒆𝒕): 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆

return (if = { } then 〈 〉

 else if [𝑥|𝑥 ∈ 𝑝𝑟𝑒(1) ⋀ (𝑠⋃𝑔𝑐) ⊧ 𝑥] then

 1|𝑐ℎ𝑜𝑜𝑠𝑒(𝑠, 𝑔𝑐 , − {1})

 else choose (𝑠, 𝑔𝑐 , − {1}))

Table 5 formalizes the goal monitor operation as a goal transformation, 𝒎𝒐. The content of

the goal does not change in this operation. Rather the is-monitored attribute changes. This flag on

the goal signals to an implementation that a monitor procedure needs creation. The monitor includes

2 major conditions. First the monitor encapsulates environmental conditions whose change signals

the need for goal reconsideration. Second the monitor includes a specification of the response (e.g.,

goal abandonment) if perceptions detects the first condition. We will examine this next.

Table 5. The goal monitor operation as transformation. Bergmann’s (2002) notation 𝑪𝑳 is a class hiearchy

having leaves 𝐿𝐶 ⊆ 𝑪𝑳 and whose root class 𝐶 has superclass ⊤, i.e., 𝐶𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 = ⊤. Precondition 𝑝𝑟𝑒2 of

the transformation assures that the goal is not already monitored. State 𝑠 in 𝑝𝑟𝑒2 is within scope of β above.

𝒎𝒐(𝒈𝒄: 𝑮): 𝑮

ℎ𝑒𝑎𝑑(𝑚𝑜) = 𝑚𝑜𝑛𝑖𝑡𝑜𝑟

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑚𝑜) = 𝑔𝑐 = 𝑝(𝑜𝑏𝑗1, 𝑜𝑏𝑗2)

𝑝𝑟𝑒1(𝑚𝑜) = 𝑜𝑏𝑗1 ∈ 𝑂𝑏𝑗𝑠 ⋀ 𝑜𝑏𝑗2 ∈ 𝑂𝑏𝑗𝑠

𝑝𝑟𝑒2(𝑚𝑜) = ∃𝑝, 𝑝′, 𝑖 | 𝑝 ∈ 𝑪𝑳 ⋀ 𝑝′ ∈ 𝑪𝑳 ⋀ 𝑝𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠 = 𝑝′ ⋀ 𝑝 = (𝑝𝑛𝑎𝑚𝑒 , 𝑝′, (𝑝. 𝐴1, 𝑝. 𝐴2, … 𝑝. 𝐴𝑚))

 ⋀ 1 ≥ 𝑖 ≥ 𝑚 ⋀ 𝐴𝑖 = 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 ⋀ 𝑝. 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 =⊥

𝑝𝑟𝑒3(𝑚𝑜) = 𝑛𝑒𝑒𝑑𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑠, 𝑔𝑐) // reasoning whether to monitor the goal

pre(𝑚𝑜
) = {𝑝𝑟𝑒1(𝑚𝑜), 𝑝𝑟𝑒2(𝑚𝑜), 𝑝𝑟𝑒3(𝑚𝑜)}

𝑟𝑒𝑠(𝑔𝑒) = if x|x ∈ 𝑝𝑟𝑒(𝑚𝑜) ⋀ (𝑠 ⊨ 𝑥) then 𝑝. 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑⊤

 return(𝑔𝑐)

3. Goal Operations in MIDCA

The metacognitive integrated dual-cycle architecture (MIDCA) is a cognitive architecture that

models both cognition and metacognition for intelligent agents (Cox et al., 2016; Paisner et al.,

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

7

2014). It consists of “action-perception” cycles at both the cognitive level and the metacognitive

level (see Figure 1). In general, a cycle performs problem-solving to achieve its goals and tries to

comprehend the resulting actions and those of other agents. The output side of each cycle consists

of intention, planning, and action execution, whereas the input side consists of perception,

interpretation, and goal evaluation.

In problem solving, the Intend phase commits to a current goal from those available. The Plan

phase then generates a sequence of actions (a hierarchical-task-network plan). The plan is executed

by the Act phase to change the actual world through the effects of the planned actions. The agent

will then use these expectations in the next cycle to evaluate the execution of the plan.

Comprehension starts with perception of the world through the Perceive phase. The Interpret

phase takes as input the resulting predicate relations and the expectations in memory to determine

whether the agent is making sufficient progress. It is here that new goals are generated when the

environment presents problems and opportunities for the agent. The Evaluate phase incorporates

the concepts inferred from Interpret and notes whether existing goals are achieved.

3.1 Goal Monitoring

In a cognitive system, goals provide focus for the agent’s reasoning and represent the desired future

state it seeks to achieve. Three types of goal monitors can exist for these knowledge structures.

1. Operator style. Observing preconditions of the goals;

2. Explanatory. Observing the causal justifications of the goal;

3. Direct. See if the goal is achieved exogenously.

Memory

Domain

goal

change goal

input

Intend

Act

Plan

Evaluate

Perceive

Interpret

Goals

subgoal

goal

insertion

Figure 1. Schematic action-perception cycle for both cognitive and metacognitive levels in MIDCA (Cox et

al., 2016). Intend, Plan, and Act compose the problem-solving mechanism in the architecture, and Perceive,

Interpret, and Evaluation constitute the comprehension mechanism. Memory is shared between them.

M. COX, AND Z. DANNENHAUER

8

Explanatory monitors assume that the goal was formulated in response to a discrepancy

between the agent’s expectations and the observation (Cox, 2007; Dannenhauer & Munoz-Avila,

2015). An explanation provides the antecedents for the discrepancy, and the agent generates a goal

from the explanation. The antecedents also provide the environmental conditions that must persist

for the goal to still be valid. Direct monitors check that the goal itself does not exogenously become

true at some point in the planning or in plan execution. If they do, then the goal can be dropped

from either the set of pending goals or from the current goal expression.

In this paper, we consider the operator style monitor and will leave implementation of the

explanatory monitor for future work. In MIDCA, this monitor class currently depends upon goals

being generated by goal operators.1 We denote a goal operator, o, as the tuple (name(𝑜),

precond(𝑜), result(𝑜)). The set of literals precond(𝑜) represents the operator’s preconditions. They

specify what conditions the current state must satisfy in order for o to be applied. The persistence

of these conditions in the future is also the target of the goal monitor. The term result(𝑜) specifies

the goal 𝑔. Tac-Air Soar (Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999) takes this approach.

Operators exist for various goal types and data-driven context-sensitive rules spawn them given

matching run-time observations.

Algorithm 1 shows high-level details in the MIDCA Interpret phase. When a feature being

monitored changes and the change is detected, we say that the monitor fires. If a monitor fired, then

the goal will be abandoned and removed from pending goals 𝐺 (steps 2-6 in Algorithm 1). The

algorithm next checks to see if a new goal is created (steps 7-10). If a new goal exists and Interpret

decides to have it monitored, a monitor will be created for 𝑔𝑛’s operator (steps 10-13).

Algorithm 2 shows the details of creating monitors for the preconditions of a given goal

operator op. These preconditions must be monitored, because, should they become false, the goal

is not useful in the current state anymore. This indirectly assumes that goal formulation is

performed when the operator preconditions hold in the current state.

The function fired checks for monitors that trigger (see Algorithm 3). Perceive creates a set of

percepts from environmental input (Ѱ) and induces a predicate representation 𝑠 from these percepts

(Alavi & Cox, 2016). It then takes a list of monitors and checks if the conditions are still satisfied

in 𝑠. If not, it will assemble a list of goals to drop from a list of the agent’s pending goals.

1 Note that goal operators are distinct from planning operators. The former represents an alternative choice for goal

formulation; whereas the latter is an action model that represents a potential choice for step in a plan. An agent may

create a goal monitor based on the preconditions of the goal operator and may create a plan monitor based on the

preconditions of the plan operator (see Alavi & Cox, 2016; Dannenhauer & Cox, in press, for details regarding our use

of plan monitors in MIDCA). In such light, the monitors are very similar, but when the monitor condition fires, a goal

monitor abandons or otherwise changes the goal; whereas a plan monitor changes the plan. We anticipate a divergence

of similarity between the two for explanatory goal monitors.

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

9

Algorithm 1. Goal monitoring in the MIDCA Interpret phase. Goal formulation and goal abandonment

accompany the monitoring procedure.

Algorithm 2. Goal-monitor generation. The algorithm assumes that the monitor uses the operator style.

Input: goal operator 𝑜, world state 𝑠, and list of monitors 𝑚𝑛𝑡𝑠

Output: list of monitors 𝑚𝑛𝑡𝑠

1: 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑠 (𝑜, 𝑠, 𝑚𝑛𝑡𝑠)

2: 𝒇𝒐𝒓 𝑝 𝑖𝑛 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑜) 𝒅𝒐

3: 𝑚𝑛𝑡𝑠 (𝑝, 𝑔) ∪ 𝑚𝑛𝑡𝑠

4: 𝒆𝒏𝒅 𝒇𝒐𝒓

5: 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑚𝑛𝑡𝑠)

6: 𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

Algorithm 3. Goal monitor firing. The algorithm checks the state for monitors that fire.

Input: list of monitors 𝑚𝑛𝑡𝑠

Output: list of goals to drop 𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝

1: 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑓𝑖𝑟𝑒𝑑 (𝑚𝑛𝑡𝑠)

2: 𝑠 ← 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒()

3: 𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝

4: 𝒇𝒐𝒓 (𝑝, 𝑔) 𝑖𝑛 𝑚𝑛𝑡𝑠

5: 𝒊𝒇 ¬(𝑠 ⊨ 𝑝) 𝒕𝒉𝒆𝒏

6: 𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝 ← 𝑔 ∪ 𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝

7: 𝒆𝒏𝒅 𝒊𝒇

8: 𝒆𝒏𝒅 𝒇𝒐𝒓

9: 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑔𝑜𝑎𝑙𝑠_𝑡𝑜_𝑑𝑟𝑜𝑝)

10: 𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

 Input: list of pending goals �̂�, current state 𝑠, and list of goal monitors 𝑚𝑛𝑡𝑠

Output: list of goal monitors 𝑚𝑛𝑡𝑠

1: 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑔𝑜𝑎𝑙_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 (�̂�, 𝑠, 𝑚𝑛𝑡𝑠)

2: 𝒇𝒐𝒓 𝑔 𝑖𝑛 𝑓𝑖𝑟𝑒𝑑(𝑚𝑛𝑡𝑠)

3: �̂� �̂� − 𝑔 // goal abandoned

4: 𝑔. 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

5: 𝑚𝑛𝑡𝑠 𝑚𝑛𝑡𝑠 – {(𝑝, 𝑔)|𝑝 = 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑𝑠𝑡𝑎𝑡𝑒𝑠(𝑚𝑛𝑡𝑠, 𝑔)} //removing monitor from mnts

6: 𝒆𝒏𝒅 𝒇𝒐𝒓

7: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 �̂� // temp var

8: // Three cases of 𝛽 below: 𝑔𝑛 = 𝑔𝑐 (no change); 𝑔𝑐 may change into 𝑔𝑛; or 𝑔𝑛 added to �̂�

9: 𝑔𝑛 𝛽(𝑠, 𝑔𝑐)

10: 𝒊𝒇 |𝑝𝑒𝑛𝑑𝑖𝑛𝑔| + 1 = |�̂�| // when new goal formulated in beta, �̂� will be larger by 1

11: ⋀ 𝑔𝑛 . 𝑖𝑠𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 𝒕𝒉𝒆𝒏

12: 𝑚𝑛𝑡𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑠 (𝑔𝑛 . 𝑐𝑟𝑒𝑎𝑡𝑒𝑑𝑏𝑦, 𝑠, 𝑚𝑛𝑡𝑠)

13: 𝒆𝒏𝒅 𝒊𝒇

14: 𝑟𝑒𝑡𝑢𝑟𝑛(𝑚𝑛𝑡𝑠)

15: 𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

M. COX, AND Z. DANNENHAUER

10

3.2 A Short Goal Monitoring Example

Table 6 illustrates an example goal operator for a logistics delivery task. If MIDCA receives an

order to deliver package 𝑝1 to location 𝑙11 and 𝑝1 is available in one of the warehouses (e.g., 𝑤2),

the beta function uses the goal operator to formulate the delivery goal 𝑔7 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(𝑝1, 𝑙11). If

MIDCA decides to monitor this goal, monitors are created to observe the conditions obj-at(𝑝1, 𝑤2)

and order(𝑝1, 𝑙11). Now if at a later time, 𝑝1 is stolen or otherwise becomes missing from the

warehouse or if the order is canceled, then the monitor will abandon 𝑔7, removing it from 𝐺.

Table 6. Exampled goal operator for delivering an ordered package.

Attribute Representation

Goal operator o (?p,?w,?l)

Preconditions 𝑜𝑏𝑗𝑎𝑡(? 𝑝, ? 𝑤), 𝑜𝑟𝑑𝑒𝑟(? 𝑝, ? 𝑙), 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(? 𝑝, ? 𝑙) ∉ �̂�

Result 𝑔 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(? 𝑝, ? 𝑙)

Monitor conditions obj-at(? 𝑝, ? 𝑤), order(?𝑝, 𝑙)

4. Empirical Performance Evaluation

We claim that using goal monitors in a cognitive architecture like MIDCA increases the

performance of the agent. To evaluate this hypothesis, we conducted tests with MIDCA on a

simulated logistics domain. We use a simple simulator to model the world state and agent actions

that change the state.

4.1 Logistics Domain Experiments

The version of the logistics domain (Veloso, 1994) we use includes packages inside different

warehouses that are needed to be delivered to their destinations by trucks or airplanes. The agent is

tasked to deliver packages for different orders. For example, transporting the package 𝑝1 by truck

to location 𝑙 and then unloading it achieves the goal 𝑔𝑐 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑(𝑝1, 𝑙). We assume that the

agent has full observability and has access to the list of packages in the warehouses.

 When there is an order for a package and the package exists in one of the warehouses, Interpret

generates a delivery goal for that package. The MIDCA Intend phase selects one warehouse and

commits to achieving all goals for the packages in that warehouse. The JSHOP planner2 (Nau et al.

2003) that implements the MIDCA Plan phase then generates a plan for these packages. If one

package is stolen from a warehouse 𝑤𝑖, the planner fails to generate a plan for all delivery goals

in 𝑤𝑖. However, with goal monitors, the agent will know that a package is missing, and before Plan

starts planning for that warehouse, it will drop the goal for the missing package. Planning will now

succeed for the current goals. Notice that lost packages are distributed evenly across warehouses,

and we assume that packages are stolen from the warehouse that is not planning for currently.

 We ran two experiments. In the first, we varied the number of warehouses, and in the second,

we varied the number of lost packages. Every goal achieved (each package delivered) by MIDCA

2 https://sourceforge.net/projects/shop/files/JSHOP2/

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

11

has a score of one point. In each scenario of the first experiment, we set the initial state to be the

one with n warehouses, five packages in each warehouse, and one order exists for each package.

Interpret generates a delivery goal for each package. During runtime, six packages from different

warehouses become lost. We varied the number of warehouses from five to twenty in increments

of five. Each warehouse has five packages.

In each scenario of the second experiment, the initial state is set to be the one with twenty

warehouses with five packages each. During runtime, n packages are lost. We varied the number

of lost packages from one to twenty.

4.2 Experimental Results

Figures 2 and 3 summarize the results of MIDCA with and without goal monitors for these two

experiments. The y-axis is the goal score that the agent was able to achieve for delivering packages.

We plot the score as a function of the amount of warehouses in Figure 2 and in Figure 3 as a function

of the number of lost packages. The results show that the performance of MIDCA with goal

monitors is better than MIDCA with static goals (e.g., no goal monitors), because goal monitors

allow the agent to drop its goals when they are not achievable. In Figure 2, when the number of

warehouses is five, MIDCA without goal monitors is not able to achieve any goal (one package is

lost from each warehouse causing all plans to fail).

Figure 2. Logistics domain performance with goal monitors and without goal monitors. Number of

stolen packages is six in each warehouse. Each warehouse has five packages.

M. COX, AND Z. DANNENHAUER

12

Figure 3 shows the result of the second experiment with twenty warehouses. When no package

is lost, both approaches show equivalent performance. But when more packages are stolen, MIDCA

with goal monitors is able to achieve a higher score by dropping delivery goals of lost packages.

The score of MIDCA with static goals converges to zero as more packages are lost. The results

support our claim that the goal monitors technique improves the performance of a cognitive

architecture in a simulated logistics domain.

5. Related Research

Goal-driven autonomy (GDA) (Aha, et al., 2010; Cox, 2013; Klenk, Molineaux & Aha, 2013) is a

kind of goal reasoning that focuses on explanation of discrepancies in order to formulate new goals.

Our work is firmly situated within this research area. GDA agents generate goals as the agent

encounters differences between the agent’s expectations for the outcome of its actions and the

actual observed outcomes in each new state (Dannenhauer & Munoz-Avila, 2015). When such a

discrepancy occurs, GDA agents generate a causal explanation for the discrepancy, and generate a

new goal based on the causal structure.

Other research in the GDA and broader goal reasoning community has formalized the idea of

goal change and goal reasoning. Roberts and colleagues (Johnson, Roberts, Apker, & Aha, 2016;

Roberts et al., 2016; 2015) has developed the notation of a goal life-cycle where goals transition

through modalities that represent goal formulation, goal selection, goal expansion, goal

Figure 3. Logistics domain performance in MIDCA for twenty warehouses with five packages in each.

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

13

commitment, goal dispatching, goal monitoring, goal evaluation, goal repair, and goal deferment.

Many of these transitions corresponds to our goal operations, but their formalism itself treats goal

reasoning as goal refinement where our casts it in standard notation similar to that used in the

automated planning community. Additionally Roberts proposes a complex goal structure that

differs from ours. Their goal node includes not only the desired state but also super-ordinate and

subordinate goal linkages, goal constraints, quality metrics, and pointers to the current plan

associated with the node. Finally we note that the BDI (belief-desire-intention) community has also

developed a goal life cycle representation and formalized a set goal operations. See Harland,

Morley, Thangarajah, & Yorke-Smith (2014). This work, unlike the goal reasoning community,

does not focus on goal change and goal formulation. The BDI community has also developed a

sophisticated mechanism for performing goal suspension, resumption, and abandonment (Harland,

Morley, Thangarajah, & Yorke-Smith, 2017). Their work differentiates goal abandonment (where

plans are cleaned up and then the goal is dropped) from the direct goal drop operation itself.

The BDI work cited above also characterizes a kind of goal monitoring for maintenance goals

that assures a particular state holds across an interval of time. These goals contrast with

achievement goals that establish a particular state at a point in time. This process monitors the state

and (re)activates the maintenance goal whenever the state changes during the interval. Our use of

goal monitoring is directed at achievement (i.e., attainment) goals and monitors the reasons goals

were formulated in the first place. Although both are called goal monitoring, our work is very

different.

Finally, cognitive agents including GDA agents need to adapt to changes in the environment.

Rationale-based plan monitors (Alavi & Cox, 2016; Veloso, et al., 1998) provide a means of

focusing visual attention on features of the world likely to affect the plan during planning time. The

MIDCA Plan phase generates these monitors to interact with a vision system and react only to those

environmental changes that bear on current planning decisions. When plan monitors detect relevant

changes, corresponding plan transformations are executed as needed. Alternatively, the work in

this paper concerns reactions to environmental changes that affect the agent’s goals. The Interpret

phase in MIDCA generates goal monitors associated with the conditions that led the agent to choose

that goal. It enables the agent to abandon the goal when the goal is not useful in the current state.

6. Conclusion

Autonomous cognitive agents reason about and formulate their own goals and need to adapt to

changes in the environment. In this paper, we introduce goal monitors for cognitive systems that

observe the justification for goal selection and abandon the goal when justifications are not valid

in the environment. This research follows the cognitive systems research paradigm (Langley, 2012)

in that it focuses on high-level cognition, represents goals as structured knowledge, is a systems-

level research topic, implements a heuristic approach to intelligence, is inspired by human

cognition, and despite the notational formalism, is an exploratory rather than formal research

endeavor. This research represents an increment in the exploration, specification and further

M. COX, AND Z. DANNENHAUER

14

understanding of the functional roles goal operations contribute to successful high-level reasoning

and subsequent robust behavior for cognitive agents in difficult environments.

Much future work remains to be performed. We have implemented a simple form of goal

monitors that works similar to existing plan monitor implementations. As mentioned previously,

however, the goal monitor process will diverge from plan monitors once we implement explanatory

monitors as well. Currently the monitors simply drop the goals if the monitored conditions no

longer hold. Yet alternative responses exist in many situations that would be preferred over

abandonment. Goals might be changed instead. To make such choice, we need to develop a

mechanism to reason about the response once a monitor fires rather than simply carry out a

predetermined response. Finally the evaluation presented here is still preliminary. We showed

results that were essentially obvious, though as to our knowledge, this had not been previously

demonstrated in the literature. A more thorough empirical evaluation rests in the near future.

Acknowledgements

This research was supported by ONR grants N00014-15-1-2080 and N00014-15-C-0077. We thank

the anonymous reviewers for their comments and suggestions.

References

Aha, D. W., & Coman, A. (2107). The AI rebellion: Changing the narrative. In Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence (pp. 4826-4830). Menlo Park, CA: AAAI
Press.

Aha, D. W., Klenk, M., Munoz-Avila, H., Ram, A., & Shapiro, D. (Eds.) (2010). Goal-driven
Autonomy: Notes from the AAAI Workshop. Menlo Park, CA: AAAI Press.

Aha, D. W., Cox, M. T., & Munoz-Avila, H. (Eds.) (2013). Goal Reasoning: Papers from the ACS
workshop (Tech. Rep. No. CS-TR-5029). College Park, MD: University of Maryland.

Alavi, Z., & Cox, M. T. (2016). Rationale-based visual planning monitors. In Working Notes of the
4th Workshop on Goal Reasoning. New York, IJCAI-16.

Ayan, N.F., Kuter, U., Yaman F., & Goldman R. (2007). Hotride: Hierarchical ordered task
replanning in dynamic environments. In F. Ingrand, & K. Rajan (Eds.) Planning and Plan
Execution for Real-World Systems – Principles and Practices for Planning in Execution: Papers
from the ICAPS Workshop. Providence, RI.

Bergmann, R. (2002). Experience management: Foundations, development methodology, and
internet-based applications. Berlin: Springer.

Braubach, L., Pokahr, A., Moldt, D., & Lamersdorf, W. (2004). Goal representation for BDI agent
systems. In R. H. Bordini et al. (Eds.) PROMAS 2004, LNAI 3346 (pp. 44–65). Berlin: Spring.

Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial
Intelligence, 42, 213-261.

Coman, A., Gillespie, K., & Munoz-Avila, H. (2015). Believable emotion-influenced perception:
The path to motivated rebel agents. In D. W. Aha (Ed.), Goal reasoning: Papers from the ACS
workshop. Tech. Rep. No. GT-IRIM-CR-2015-001. Atlanta, GA: Georgia Institute of
Technology, Institute for Robotics and Intelligent Machines.

PERCEPTUAL GOAL MONITORS FOR COGNITIVE AGENTS IN CHANGING ENVIRONMENTS

15

Cox, M. T. (in press). A goal reasoning model of planning, action, and interpretation. To appear in
Advances in Cognitive Systems.

Cox, M. T. (2013). Goal-driven autonomy and question-based problem recognition. In 2nd Annual

Conference on Advances in Cognitive Systems 2013, Posters (pp. 29-45). Cog. Sys. Foundation.

Cox, M. T. (2007). Perpetual self-aware cognitive agents. AI Magazine, 28(1), 32-45.

Cox, M. T. (1996). Introspective multistrategy learning: Constructing a learning strategy under
reasoning failure (Tech. Rep. No. GIT-CC-96-06). Doctoral dissertation, Georgia Tech, Atlanta.

Cox, M. T., Alavi, Z., Dannenhauer, D., Eyorokon, V., Munoz-Avila, H., & Perlis, D. (2016).
MIDCA: A metacognitive, integrated dual-cycle architecture for self-regulated autonomy. In

Proceedings of the 30th AAAI Conference on Artificial Intelligence (pp. 3712-3718). Palo Alto,
CA: AAAI Press.

Cox, M. T., Dannenhauer, D., & Kondrakunta, S. (2017). Goal operations for cognitive systems.
In Proceedings of the Thirty-first AAAI Conf. on Artificial Intelligence. Palo Alto, CA: AAAI
Press.

Dannenhauer, Z., & Cox, M. T. (in press). Rationale-based visual planning monitors for cognitive

systems. To appear in Proceedings of the 30th International FLAIRS Conf. Palo Alto, CA: AAAI
Press.

Dannenhauer, D. and Muñoz-Avila, H. (2015) Raising expectations in GDA agents acting in
dynamic environments. In Proceedings of the International Joint Conference on Artificial
Intelligence. AAAI Press.

Fikes, R., & Kehler, T. (1985). The role of frame-based representation in reasoning.

Communications of the ACM, 28(9), 904-920.

Harland, J., Morley, D. N., Thangarajah, J., & Yorke-Smith, N. (2017). Aborting, suspending, and
resuming goals and plans in BDI agents. Autonomous Agents and Multi-Agent Systems, 31(2),
288–331.

Harland, J., Morley, D. N., Thangarajah, J., & Yorke-Smith, N. (2014). An operational semantics
for the goal life-cycle in BDI agents. Autonomous Agents and Multi-Agent Systems, 28, 682–719.

Hawes, N. (2011). A survey of motivation frameworks for intelligent systems. Artificial
Intelligence, 175(5-6), 1020-1036.

Hayes, P. J., & Patel-Schneider, P. F. (2014, February). RDF 1.1 semantics: W3C recommendation.
W3C. Retrieved February 24, 2017, from http://www.w3.org/TR/2014/REC-rdf11-
mt-20140225.

Hinrichs, T. R., & Forbus, K. D. (2013). Beyond the rational player: Amortizing type-level goal

hierarchies. In Aha, D. W., Cox, M. T., & Munoz-Avila, H. (Eds.), Goal Reasoning: Papers from
the ACS workshop. Tech. Rep. No. CS-TR-5029. College Park, MD: University of Maryland,
Department of Computer Science.

Hinrichs, T. R., & Forbus, K. D. (2016). Qualitative models for strategic planning In Advances in
Cognitive Systems, 4, 75-92.

Huhns, M. N., & Singh, M. P. (1998, November). Cognitive agents. IEEE Internet Computing.

Johnson, B., Roberts, M., Apker, T., & Aha, D. (2016). Goal reasoning with information measures.
In Fourth Annual Conference on Advances in Cognitive Systems 2016. Palo Alto, CA: Cognitive
Systems Foundation.

M. COX, AND Z. DANNENHAUER

16

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). Automated
intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27-41.

Klenk, M., Molineaux, M., & Aha, D. W. (2013). Goal-driven autonomy for responding to

unexpected events in strategy simulations. Computational Intelligence 29(2): 187–206.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues and
challenges. Cognitive Systems Research, 10(2), 141-160.

Langley, P. (2012). The cognitive systems paradigm. Advances in Cognitive Systems, 1, 3–13.

Minsky, M. (1974). A framework for representing knowledge. MIT AI Memo 306. Cambridge.

Munoz-Avila, H., & Cox, M. T. (2008). Case-based plan adaptation: An analysis and review. IEEE

Intelligent Systems, 23(4), 75-81.

Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:
An HTN planning system. Journal of Artificial Intelligence Research, 20, 379 – 404.

Paisner, M., Cox, M. T., Maynord, M., & Perlis, D. (2014). Goal-driven autonomy for cognitive
systems. In Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp.
2085–2090). Austin, TX: Cognitive Science Society.

Pettersson, O. (2005). Execution monitoring in robotics: A survey. Robotics and Autonomous
Systems, 53, 73–88

Roberts, M., Shivashankar, S., Alford, R., Leece, M., Gupta, S., Aha, D. W. (2016). Goal
Reasoning, Planning, and Acting with ACTORSIM, The Actor Simulator. In Proceedings of the
4th Annual Conference on Advances in Cognitive Systems 2016. Cog. Systems Foundation.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Apker, T., Johnson, B., & Aha, D. W. (2015).

Goal reasoning to coordinate robotic teams for disaster relief. In A. Finzi, F. Ingrand, & A.
Orlandini (Eds.), Planning and Robotics: Papers from the ICAPS Workshop. Palo Alto, CA:
AAAI Press.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding: An inquiry into
human knowledge structures. Hillsdale, NJ: Lawrence Erlbaum Associates.

Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological Review,

74(1), 29-39.

Veloso, M. M. (1994). Planning and learning by analogical reasoning. Berlin: Springer.

Veloso, M. M., Pollack, M. E., & Cox, M. T. (1998). Rationale-based monitoring for continuous
planning in dynamic environments. In R. Simmons, M. Veloso, & S. Smith (Eds.), Proceedings
of the 4th International Conference on Artificial Intelligence Planning Systems (pp. 171-179).
Menlo Park, CA: AAAI Press.

