
Advances in Cognitive Systems X (2017) 1-6 Submitted X/2017; published X/2017

Hypothesizing Method Structure for HTN Learning from
Demonstration

Michael Leece MLEECE@UCSC.EDU

Arnav Jhala AHJHALA@NCSU.EDU

Abstract
One of the key capabilities of a cognitive system is the ability to plan and reason at some abstract
level. Hierarchical Task Networks are one potential planning framework that provides this capabil-
ity, but are severely limited by the knowledge acquisition bottleneck. There are many components
required in learning HTN models from demonstration, but one of the first steps must be generating
a method structure to build on. Hypothesizing this decomposition has frequently been simple, thus
pushing the responsibility of dealing with an inaccurate model to components further down the
learning pipeline, or ignored, by assuming the decomposition structure is included with the input.
We introduce two methods for hypothesizing method structure and evaluate them for coverage and
signal against a greedy approach used in prior work. Finally, we discuss ways for these methods to
be extended and improved in the future.

1. Introduction

Hierarchical Task Networks (HTN) are a popular planning framework that allow great power and
flexibility in encoding abstract knowledge. By searching the plan space at various levels of ab-
straction, they are more quickly able to find effective plans than traditional search using primitive
operators only.

However, HTNs have a significant drawback that has limited their use in practice. In particular,
they suffer from a heavy knowledge engineering bottleneck. In order to create a functional HTN
planner for a given problem area, a domain expert must encode all of the tasks that could be re-
quested of the planner, as well as the ways each of those tasks can break down into sub-tasks, under
which conditions which decomposition should be applied, and then the same for each of those sub-
tasks, and so on. In a complex domain, this engineering effort quickly becomes a daunting task.
This direct encoding is further complicated by the fact that for some domains, human experts expe-
rience trouble consciously thinking of the reasons for the decisions they make, as demonstrated in
Johnson (1983). In the meantime, humans have the ability to learn this structure from observation,
by identifying patterns and abstractions over multiple demonstrations.

This bottleneck is a well-known problem, and has motivated research into automated retrieval of
the knowledge required. Some work has focused on building up a domain model incrementally by
solving iteratively harder problems, but this disregards the fact that for many domains, there exists
a wealth of expert demonstrations, though not encoded expert knowledge. Other work has worked

c© 2017 Cognitive Systems Foundation. All rights reserved.

M. LEECE AND A. JHALA

toward the goal of learning HTN domains from demonstration, but generally assume that there is
some amount of expert labeling still occurring.

In short, much of the existing work in HTN learning has assumed what tasks are being pursued
with which actions is given, and has focused on learning how to achieve those tasks: when each
decomposition is applicable, ordering constraints, etc. From a knowledge engineering reduction
standpoint, this is understandable—it is much easier for someone to label a trace by simply saying
"This subset of actions was me taking the bus to work" than including every factor that went into
that decision: car was out of gas, it was raining, and the umbrella is broken, leaving those to be
learned by the system through observation.

However, we wish to reach the point where systems can learn a full domain model purely from
observation of primitive actions. On the other hand, if we wish to leverage the existing systems, we
can decouple the components of the learning problem, and attempt to hypothesize a method structure
for downstream components that assume it as given. Prior work that has taken this approach has
used simple algorithms for hypothesizing method structures that lack flexibility, and struggle to
deal with interleaved task expansions. We present two new algorithms for duplicating the human
cognitive ability of acquiring planning structure, and attempt to characterize their strengths and
weaknesses.

2. Related Work

Yang et al. (2007) presents an Expectation Maximization approach to method learning that intro-
duces the HTN Task Cluster Model (HTCM), modeling HTN tasks as Markov chains. This allows
them to calculate probabilities of chains belonging to a given task, with the additional assumption
that the input includes which tasks are achieved by which traces.

Li et al. (2009a) uses a greedy approach to structure hypothesizing while attempting to learn
probabilistic HTNs to simulate user preferences. This took the most common pair of actions across
all traces and replaced it with an abstract task, and repeated, with a special case check for recur-
sive structures. This generates a grammar in Chomsky Normal Form, allowing them to use pCFG
learning techniques for learning method expansion probabilities.

Leece & Jhala (2014) present the beginnings of a pattern mining approach to learning method
structures for the real-time strategy video game domain. However, they only analyze the first level
of generated methods, which qualitatively appear to be accurate.

HTN-MAKER, developed in Hogg & Munoz-Avila (2007) and Hogg et al. (2008) is another ex-
ample of a system for learning HTNs from demonstration. While it does not assume the hierarchical
structure of traces as given, it does take the abstract tasks of the domain, in the form of pre- and
post-conditions, from which it learns method decompositions to achieve these tasks by searching
for sequences of actions in demonstrations that achieve these tasks.

Nejati et al. (2006) approaches a similar problem of learning HTNs from demonstration without
hierarchical structure, but assume that some information about the final goal is provided, from which
they construct their learned methods incrementally.

Within the greater cognitive architecture research fields, the major architectures–which are not
explicitly utilizing HTNs, but are using similar planning processes–have also addressed this issue.

2

HYPOTHESIZING METHOD STRUCTURE FOR HTN LEARNING FROM DEMONSTRATION

Könik & Laird (2006) and van Lent & Laird (2001) both explore learning from experts in the
context of the Soar architecture. However, it is a more interactive process that our problem, with
the expert annotating traces generated by the planner, or analyzing and annotating the agent’s self-
annotations. Li et al. (2009b) confront a very similar problem to ours within the context of the
ICARUS architecture.

Finally, there are a number of other systems that perform HTN learning, but most presume
structure as a given. Garland et al. (2001) proves soundness and completeness for learning bindings,
parameters, and constraints, given that the hierarchical decomposition for all traces is provided as
input. Zhuo et al. (2009) approaches the problem of dealing with partial state observations when
learning preconditions and an action model, but also assume that decomposition tree information is
given.

3. Hierarchical Task Networks

Terminology: An HTN domain H consists of a 3-tuple: H = 〈A, T ,M〉. A is the set of primitive
actions in the domain, T is the set of abstract tasks, and M is the set of methods that achieve
the elements of T . A method has four components: a unique identifier, which abstract task it
achieves, a decomposition into subtasks, and a set of constraints, which can consist of preconditions,
postconditions, and conditions that must hold throughout the execution of the method. An HTN
planning problem, then, consists of an initial state, a set of tasks to be achieved, and an HTN
domain. It is then the goal of the HTN planner to find a valid plan that achieves all of the tasks using
the decompositions provided in the domain methods, while maintaining all constraints imposed by
those methods. Learning these decompositions is the target of this work.

4. Algorithm Descriptions

4.1 Baseline

Our baseline is the Structure Hypothesizer algorithm from Li et al. (2009a), which we will summa-
rize briefly for the reader.

Given a library of plans for achieving some high-level task, first search for evidence of recursive
expansion rules. This evidence is of the form of long chains of a repeated action, followed or
preceded by some other action. For example, if the pattern aa . . . ab occurs frequently in the library,
it would imply the recursive rule B → aB;B → b. If the frequency and average length of a
recursive pattern are both above some user-defined threshold, add the recursive expansion to the
HTN method library and replace each instance of it with a new abstract symbol.

If no recursive pattern exceeds the thresholds, find the most frequent pair of adjacent actions in
the plan library. Add a task to the HTN that has a single expansion corresponding to this pair of
actions, and replace all instances of the pair in the plan library with the newly added task.

This process is repeated until all traces in the plan library have been compressed to a single task,
the original high-level task.

3

M. LEECE AND A. JHALA

4.2 EM Algorithm

For our first algorithm, we begin by making the weak assumption that the decompositions for a
given task in an HTN may be modeled as a Markov chain. This is valid for simple hierarchies—for
example, where each task has only one method decomposition with non-overlapping subtasks—
and it even allows for some complexities in expansions, allowing a probabilistic choice between
multiple method expansions, so long as they do not overlap. On the other hand, while it may be
possible to set up a Markov chain to model an HTN, this particular view of task decomposition is
clearly not able to model the full complexity of HTN tasks. A simple demonstration of this would
be two methods for a task which pass through the same subtask. It would be possible for the Markov
chain to switch tracks from the first method to the second, even if this led to an invalid plan.

However, this assumption does let us calculate the probability of a task T decomposition gener-
ating a sequence of n actions l, given the prior and transition distributions ΘT for that task:

P (l|ΘT) = P (l0|ΘT) ∗
n∏

i=1

P (li|li−1,ΘT) (1)

The original EM method-learning algorithm presented in Yang et al. (2007) presumes that all
abstract tasks formulated in a given trace would be included, in order, with the input. Thus, the
primary goal for the algorithm was determining break points in the chain of primitive actions. With
these, the provided tasks could be overlaid on the appropriate subsequences and learned from the
collection of appearances of that task in the trace library.

Our relaxation of the input assumptions, in which the algorithm receives only the top-level task
and the trace of primitive actions, eliminates this approach. We introduce a set of latent abstract
tasks Y (line 4 of Algorithm 2), representing the HTN tasks that the top-level task decomposes into,
but which are not explicitly provided for us. As mentioned, these are modeled as Markov chains,
and so are represented with a prior and transition distribution (P (a0|ΘT) and P (at|at−1,ΘT), re-
spectively).

Lines 6 and 7 represent the Expectation-Maximization loop of the algorithm. In the terminol-
ogy of EM, we first calculate the most likely explanation for which tasks generated which action
sequences using our current model parameters (stored in taskSequences), then we update our
model parameters based on the actions that have been assigned to them.

To be more precise, we use a Viterbi-like dynamic programming algorithm to calculate the most
probable assignment of primitive actions to tasks for each trace in the library. In the classic Viterbi
algorithm, we calculate the probability of the most likely trace ending in a particular state and time
step by calculating the probability of the most likely traces to each state in the time step prior, and
taking the best of each of those when multiplied with the associated transition probability.

A similar approach for us, if our goal is to assign actions in some trace l to tasks, rather than
states, would result in the following recursive definition:

OPT (i, t) = max(OPT (i− 1, t) ∗ P (li|li−1, Yt), max
u∈Y−{t}

(OPT (i− 1, u) ∗ P (li|Yu))) (2)

where OPT (i, t) is the probability of the most likely assignment that assigns the i-th action to task
t.

4

HYPOTHESIZING METHOD STRUCTURE FOR HTN LEARNING FROM DEMONSTRATION

However, this definition will fail when given ground out traces of partially-ordered plans. Namely,
it assumes that an action either belongs to the same task as the previous action, or is the start of a
new task. This corresponds to the first-order Markov assumption in the Viterbi algorithm.

Our solution is to introduce a parameter k that determines the maximum number of intermediate
actions allowed before two actions may no longer be considered as part of the same task. The higher
this parameter, the more capable the algorithm is of dealing with mixed action groundings. However,
there is a run-time tradeoff as well, limiting k in practice.

This changes the formulation of the recursive definition to the following:

OPT (i, t, s) = max
u∈T

(OPT (i− 1, s[−1], [u] + s[: −1]) ∗ nextTaskProb(li, t, [u] + s[: −1]) (3)

where

• s is a suffix of length k representing the task assignments of the previous k actions.

• nextTaskProb is a function that takes an action a, a task t, and a suffix s, and calculates
the probability of that action being assigned to that task given that it follows the suffix. This
is P (a|t) if none of the actions in the suffix are assigned to t, and otherwise is the transition
probability from the latest t-assigned action to a.

Using standard backtracking techniques, we can then calculate the most probable assignment of
actions to tasks for every trace. With these, we update the parameters of our model Y to maximize
the probability of each task generating the action subsequences that it has been assigned according
to Equation 1 (line 7 of Algorithm 2).

Once the EM loop has converged, and the parameters of the model Y are no longer changing (or
changes are below some threshold), we take the task model in Y with the lowest weighted entropy,
representing the simplest learned model. In the extreme case of zero entropy, this corresponds
to a sequence of actions that always occurs in a set order, which corresponds to a single-method
task. We add this task to the task library, and generate a set of methods to achieve it, using one
of two approaches. The first is to simply add every sequence assigned to this latent task in the
final expectation step; that is, every instance of this task in the most probable assignment of actions
to tasks (hereafter referred to as the Most Probable Explanation (MPE) approach). The second is
finding all walks in the Markov chain with probability greater than some user-defined threshold Θm.
Finally, we replace the subsequences in L that were assigned to this task with an abstract symbol
for the task, clean up L (adding any single-task traces as expansions for the top-level task), and
reiterate.

We would like to make a note that this algorithm is a hard EM algorithm, using the most prob-
able assignment as labels when doing the maximization step, rather than a probability distribution.
A soft EM approach may be feasible as well, using an algorithm similar to the forward-backward
algorithm. However, the complexity would increase, as we would need a posterior probability dis-
tribution for transitions, rather than simply assignments, and this is complicated by the interleaving
of assignments.

5

M. LEECE AND A. JHALA

4.3 Pattern Mining Algorithm

The second approach we present for hypothesizing structure is a generalization of the greedy ap-
proaches used in prior work. The underlying assumption is that subsequences of actions that are
both common and closely linked in the time domain are the best candidates for HTN methods.
When taken to the extreme, this results in taking the most frequently occurring pair of actions as a
task method, replacing them with an abstract task, and repeating until all traces have condensed to
a single task.

However, this approach is not robust when presented with traces from partially-ordered plans.
In particular, it may require an exponential number of pairs to explain plans in which tasks are
overlapped.

Our solution to this problem is to use the Generalized Sequential Pattern (GSP) algorithm de-
veloped by Srikant & Agrawal (1996), in replacement of simple pair-matching. GSP is a pattern
mining algorithm that takes a database of traces and searches for common subsequences. These
common subsequences act as our HTN method candidates, and we can replace them with an ab-
stract task in L and iterate to find higher-level tasks (lines 7-10 of Algorithm 1). In addition, it
includes two parameters that will be useful to us:

• Minimum Support - The minimum amount of traces a subsequence must appear in to be
considered a frequent pattern

• Maximum Gap - The maximum gap allowed between elements of a subsequence. If 0, the
subsequence must be contiguous. If the length of the trace, any subsequence is allowed.

By relaxing these two parameters (line 13), we can identify additional subsequences, and conse-
quently more HTN method candidates. Our evaluation tests two different approaches to this relax-
ation strategy.

5. Evaluation

5.1 Synthetic Domains

For evaluation, we used randomly generated synthetic planning domains with a single high-level
task, for two primary reasons. First, it provides an oracle planner that can be exhaustively searched
to generate all valid plans. Second, it allows us to run a suite of tests and therefore achieve stronger
confidence in our results than if we were confined to a single domain.

Some domain characteristics for the randomly generated domains used in these evaluations are
as follows:

• Depth of plan decomposition tree: Between 3 and 8. Median depth of 5.

• Method expansions per task: Randomly chosen between 1, 2 and 3

• Subtasks per method: Randomly chosen between 2 and 3

6

HYPOTHESIZING METHOD STRUCTURE FOR HTN LEARNING FROM DEMONSTRATION

Algorithm 1: GSP Structure Hypothesizer algorithm
Input : L : library of action traces for the same top-level task
Output: T : A set of HTN tasks

M : A library of method expansions for T
1 T ← ∅
2 M ← ∅
3 while |L| > 0 do
4 while GSP(L) 6= ∅ do
5 patterns← GSP (L)
6 foreach p ∈ patterns do
7 t← nextAbstractSymbol()
8 T ← T + {t}
9 M ←M + {(t, p)}

10 L← replaceTask(p, t)

11 end
12 end
13 Relax Minimum Support or Maximum Gap
14 end

Algorithm 2: EM Structure Hypothesizer algorithm
Input : L : library of action traces for the same top-level task
Output: T : A set of HTN tasks

M : A library of method expansions for T
1 T ← ∅
2 M ← ∅
3 while |L| > 0 do
4 Initialize latent tasks Y randomly
5 while Y not converged do
6 taskSequences← viterbiBacktrack(L, Y)
7 Y ← updateTasks(taskSequences)

8 end
9 tr ← lowestEntropy(Y)

10 T ← T + {tr}
11 M ←M + generateMethods(tr)
12 L← replaceTask(tr)

13 end

7

M. LEECE AND A. JHALA

In truth, this only explores there a small fraction of the potential space of HTN planning do-
mains, and it is possible that different results would be obtained in domains with different char-
acteristics. However, we feel that the synthetic domains were sufficiently complex to present a
challenge to learning systems.

Using these domains, we generated primitive action traces by sampling the plan space for
partially-ordered plans and their groundings, using a simple probabilistic check (p = 0.1 in our
evaluation) when expanding a task to decide whether or not to interleave its subtasks’ actions when
grounding. These formed a demonstration library of primitive action traces that could be fed to the
algorithms for hypothesizing method structure.

We introduce two metrics that we will be using to evaluate the effectiveness of the hypothesized
method structures.

• Coverage — A measurement of how well the hypothesized structures cover the valid plans of
the oracle. The fraction of valid plans generated by the oracle that exist as a grounding of a
partially-ordered plan in the learned structure.

• Signal — A measurement of how much noise is in the plans of the hypothesized structure.
The fraction of partially-ordered plans generated by the learned structure that can be ground
to a valid oracle plan.

Note that these correspond loosely to the precision and recall measures from classification, adjusted
to fit our problem.

As the envisioned first step in a learning pipeline, it is clear that our first target is high cover-
age, with a secondary goal of high signal. This is because future learning steps will be pruning the
method structure via learning applicability conditions, and in doing so therefore remove large num-
bers of potential plans that do not correspond to valid oracle plans. On the other hand, we can see
that a simple greedy approach such as our baseline will maximize signal, as it only builds structure
that can expand into exact traces that it has observed. However, this hurts its generalization ability
in being able to generate unseen plans.

5.2 Method Selection for EM

Table 1 shows the average coverage and signal of a number of parameter configurations for the EM
algorithm over 12 different randomly generated domains. The two different configurations refer
to the approaches used to generate methods for the abstract task once EM has been run and the
lowest-entropy task selected. MPE uses all action subsequences assigned to the task in the final
Expectation step as methods, while Threshold uses all walks through the final Markov chain that
are above a given probability Θm.

MPE has the advantage of having one less parameter to tune (we discuss α in the following
section), and appears to be consistently stronger than the baseline. The inherent risk of this approach
is of a task’s Markov chain acquiring responsibility for explaining some extraneous action sequences
that match no task well during the EM process, and these being added as a method expansion while
not reflecting the main task the representation has learned. However, this risk is mitigated, though
not entirely removed, by choosing the lowest entropy task.

8

HYPOTHESIZING METHOD STRUCTURE FOR HTN LEARNING FROM DEMONSTRATION

Algorithm Coverage Signal

Baseline 0.491± 0.101 1.00± 0.00

EM MPE α
1 0.662± 0.045 0.043± 0.03

0.1 0.695± 0.055 0.027± 0.012
0 0.662± 0.048 0.072± 0.017

EM Threshold α Θm

1 0.05 0.420± 0.082 0.662± 0.070
1 0.01 0.390± 0.147 0.138± 0.049
0 0.1 0.525± 0.052 0.450± 0.086
0 0.05 0.620± 0.094 0.052± 0.024
0 0.01 0.827± 0.083 0.024± 0.019

GSP 0.532± 0.090 0.983± 0.02

Table 1. Coverage and Signal for a range of algorithm configurations over 12 random domains, with a demon-
stration library of 200 plans. α is the additive smoothing parameter for Laplace estimation in Maximization-
step updates, and Θm is the probability threshold for paths in the Markov chain to be added as methods.

Thresholding removes this risk, as it will only take the major action paths that have been learned
(though it retains the risk of a task learning to represent two non-colliding oracle tasks and thus
merging them incorrectly). However, it performed much less consistently, responding drastically to
changes in the threshold parameter. In a domain with no oracle to test against, it may be difficult to
determine whether one is using the correct parameter values.

Note that if no walk exceeded the threshold probability, the highest probability walk was used
as the only method expansion for that task. In the Θm = 0.1 case, this behavior led the algorithm
to a structure much closer to the baseline’s single method per task expansion, resulting in a higher
signal, at the cost of a mediocre coverage.

A third possibility for generating task methods from a Markov chain is using Monte Carlo
rollouts. In testing, we discovered that this approach performed significantly worse than either
of the prior two. Due to the nature of the EM algorithm, each latent task absorbs some amount
of ‘noise’, whether it be true noise or the result of higher-level structures that can’t currently be
modeled. Choosing the lowest-entropy task means that if the rollout does leave the common paths,
it tends to meander among actions randomly until reaching a common chain again. This generates
a very long and low-quality method.

9

M. LEECE AND A. JHALA

5.3 Smoothing

During the Maximization step of the EM algorithm, we perform an update to each task’s Markov
chain representation based on the action sequences assigned to it by the previous Expectation step.
We tested the performance of the algorithm with and without additive smoothing during this update.
When α = 0, the update is a maximum likelihood update, and has a tendency to converge more
rapidly and rigidly (if an action transition is not present in a step’s subsequences, it will never
be assigned to this task again). When α = 1, we include a ‘pseudo-observation’ of each action
transition, a slightly more forgiving approach.

We observe in Table 1 that a small amount of smoothing was marginally (though not statistically
significantly) beneficial to the MPE version of the algorithm, but it was severely detrimental to
the coverage of the Thresholding configuration. We believe the reason for this is that HTN tasks,
once they have been expanded into methods, are in fact fairly rigid processes. As a result, leaving
them flexible is an inaccurate representation of the underlying mechanic. One avenue for further
exploration is to reduce α over the course of the EM algorithm, to allow flexibility in the beginning
when latent tasks are finding their identity, and rigidity toward the end, when they are solidifying
which action sequences they account for.

5.4 GSP

Two different procedures for relaxing the minimum support and maximum gap parameters of the
GSP algorithm were tested. Using an approach similar to grid search, one parameter was slowly
relaxed until a defined limit was reached, then tightened again and the other parameter relaxed by a
single increment. Changing which parameter belonged to which ’dimension’ of the search resulted
in two different learned method structures.

Unfortunately, due to a lack of branching factor introduction to the hypothesized methods, each
structure was only able to reproduce the traces provided to it, and so their metrics were identical
(though the expansions to reproduce those traces were different). As a result, the GSP algorithms
were only able to slightly outperform the baseline approach, likely due to their ability to deal with
interleaved actions due to searching for subsequences rather than contiguous pairs.

5.5 Size of Plan Library

Figure 1 shows the progression of coverage as the algorithms receive greater numbers of demon-
stration plans from the oracle. As expected, both the Baseline and GSP are relatively linear, with
low generalization ability. On the other hand, the EM algorithms both improve very quickly, imply-
ing that they are learning substructures across demonstrations that can be used to generate the valid
plans that have not yet been observed.

6. Future Work

As mentioned, these algorithms provide only one component of a full HTN learning system. The
true evaluation of their efficacy is as part of a complete unit that performs learning from start
(unlabeled primitive traces) to finish (full HTN model with tasks, methods, preconditions, etc.).

10

HYPOTHESIZING METHOD STRUCTURE FOR HTN LEARNING FROM DEMONSTRATION

100 200 300

0.2

0.4

0.6

C
ov

er
ag

e

Baseline

100 200 300

0.2

0.4

0.6

0.8

EM Threshold

100 200 300
0.2

0.4

0.6

0.8

Plan Library Size

C
ov

er
ag

e

EM MPE

100 200 300

0.2

0.4

0.6

Plan Library Size

GSP

Figure 1. Change in coverage as the size of the provided plan library increases. The total number of valid
oracle plans was 400.

11

M. LEECE AND A. JHALA

Therefore, the most immediate task is to integrate this output into a pipeline that leverages existing
components from prior research.

Beyond that, we would like to develop a mathematically principled approach for tuning the
maximum gap width and minimum support threshold for the GSP algorithm, rather than the grid
search used in this work. Additionally, GSP suffers from a similar problem as the greedy algorithms,
namely, that tasks other than the high-level one tend to have exactly one method expansion. This
leads to high signal, but low coverage, which we would like to address in the future.

One of the original motivations for this work was for learning from human demonstrations in
complex domains, in which a lack of labeled data, interleaved tasks and noise all cause significant
problems for the existing HTN learning systems. In light of this, we would like to evaluate our
approach with human demonstrations, though we would need to rely on domain performance as
evaluation, with no access to an oracle to compare against.

7. Conclusion

In conclusion, we have presented two algorithms for hypothesizing method structure for an HTN
domain that rely purely on primitive action traces. One slightly outperforms the greedy baseline as
a generalized version better able to handle interleaved actions, while the other significantly outper-
forms it in learning unseen plans via substructures.

This comes at the cost of introducing a number of possible plans that are not valid, and so
in order to be effective, these algorithms must be filling a role as the start of a learning pipeline,
rather than standalone. However, if they are, they will provide a structure from which more domain
information can be extracted and pruned.

References

Garland, A., Ryall, K., & Rich, C. (2001). Learning hierarchical task models by defining and
refining examples. Proceedings of the 1st international conference on Knowledge capture (pp.
44–51). ACM.

Hogg, C., & Munoz-Avila, H. (2007). Learning hierarchical task networks from plan traces. Pro-
ceedings of the ICAPS-07 Workshop on AI Planning and Learning.

Hogg, C., Munoz-Avila, H., & Kuter, U. (2008). HTN-MAKER: Learning HTNs with minimal
additional knowledge engineering required. AAAI (pp. 950–956).

Johnson, P. E. (1983). What kind of expert should a system be? Journal of Medicine and Philoso-
phy, 8, 77–97.

Könik, T., & Laird, J. E. (2006). Learning goal hierarchies from structured observations and expert
annotations. Machine Learning, 64, 263–287.

Leece, M., & Jhala, A. (2014). Sequential pattern mining in starcraft: Brood war for short and
long-term goals.

van Lent, M., & Laird, J. E. (2001). Learning procedural knowledge through observation. Proceed-
ings of the 1st international conference on Knowledge capture (pp. 179–186). ACM.

12

HYPOTHESIZING METHOD STRUCTURE FOR HTN LEARNING FROM DEMONSTRATION

Li, N., Kambhampati, S., & Yoon, S. W. (2009a). Learning probabilistic hierarchical task networks
to capture user preferences. IJCAI (pp. 1754–1759).

Li, N., Stracuzzi, D. J., Langley, P., & Nejati, N. (2009b). Learning hierarchical skills from problem
solutions using means-ends analysis. Proceedings of the 31st Annual Meeting of the Cognitive
Science Society. Amsterdam, Netherlands: Cognitive Science Society, Inc.

Nejati, N., Langley, P., & Konik, T. (2006). Learning hierarchical task networks by observation.
Proceedings of the 23rd international conference on Machine learning (pp. 665–672). ACM.

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance
improvements. Springer.

Yang, Q., Pan, R., & Pan, S. J. (2007). Learning recursive HTN-method structures for planning.
Proceedings of the ICAPS-07 Workshop on AI Planning and Learning.

Zhuo, H. H., Hu, D. H., Hogg, C., Yang, Q., & Munoz-Avila, H. (2009). Learning HTN method
preconditions and action models from partial observations. IJCAI (pp. 1804–1810).

13

