
Advances in Cognitive Systems 5 (2017) Submitted 3/2017; published 5/2017 

 

 

© 2013 Cognitive Systems Foundation. All rights reserved. 

  
 

Explainable Content Recommendation for Self-Regulated Learning 

 

Michael Freed FREED@AI.SRI.COM 

Melinda Gervasio MELINDA.GERVASIO@SRI.COM 

Aaron Spaulding AARON.SPAULDING@SRI.COM 

Louise Yarnall LOUISE.YARNALL@SRI.COM 

SRI International, 333 Ravenswood Ave., Menlo Park, CA 94205 USA 

Abstract 

Recent years have seen rapid advances in intelligent technology to support online learning in 

various domains but these have primarily targeted formal educational settings, as exemplified by 

classroom-based instruction. In contrast, the predominant form of adult learning in the workplace 

is informal and self-directed. Learners self-assess competency, set goals, find relevant learning 

resources, and self-initiate learning activities covering many topics at different depths at different 

points in time. Our approach to supporting self-regulated learning is embodied in PERLS, a 

mobile personal assistant application that serves as a virtual mentor for informal learning. A key 

component of PERLS is its approach to content recommendation, which adapts to the learner’s 

interests, learning stage, and learning attitude. Content recommendation is driven largely by the 

concept of value propositions, each the basis for a potentially persuasive explanation for why a 

given item was recommended. In this paper, we present the PERLS model of self-regulated 

learning and our approach to content recommendation within this model. 

1.  Introduction 

Rapid innovation in mobile computing and intelligent personal assistant technology presents an 

opportunity to better support self-directed learning, an activity that is widely seen as critical to 

individual job success and overall workforce adaptability. Self-learning is the predominant form 

of learning in the workplace (Marsick & Watkins, 1990; Livingstone, 1999). Adults routinely 

learn job-related knowledge for which no formal instruction is available, doing so through a self-

assembled mixture of resources at times, places, and pace of their own choosing. This informal 

learning requires identifying resources; obtaining access; and coping with gaps, redundancies, 

implicit prerequisites, and other issues that often challenge a learner’s determination and meta-

cognitive faculties. Success at self-learning depends on the combination of individual abilities and 

the support they receive from others. Without sufficient support, typical self-learners will struggle 

with the challenges of informal learning and often fail to advance their learning goals.  

We are designing and testing a system called PERLS (PERvasive Learning System) that 

builds on advances in intelligent assistant technology and the widespread adoption of mobile, 

context-aware device to serve as a virtual mentor. The overarching PERLS task is to help typical 

learners make choices and take actions that strong self-learners use to improve learning outcomes. 
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Self-learning encompasses a wider range of activities than does formal instruction, so being an 

effective mentor requires fulfilling a range of additional requirements. For example, pre-study 

exploration and post-study sustainment lengthen the timeline of learning compared to that of a 

self-contained course. Interaction with a virtual mentor must therefore be engaging and habit-

forming so that self-learners engage regularly during learning trajectories that can last months or 

years. Informal learning takes place in the context of the learners’ daily activities, so a mentor 

that can help users opportunistically utilize available time slots, whenever and wherever they 

occur, will support more reliable use. And because individuals vary in natural self-directedness, 

an effective mentor must be able to promote motivation as well as guide learning once motivation 

is established.  

This paper presents our approach to virtual mentorship in PERLS, with a particular focus on 

the problem of recommending content in self-directed, informal learning settings. We first present 

the PERLS application, including a model of self-regulated learning (SRL) that PERLS uses to 

represent and track individual learning trajectories. We then describe our approach to content 

recommendation that requires consideration a variety of factors, including the learner’s topic 

interests, SRL stage for each high-interest topic, active learning goals, and situational context. We 

discuss three key concepts in our approach: topic interest as a basis for generating candidate 

recommendations, the notion of value propositions driving recommendations, and the different 

factors required for determining recommendation strength. We conclude with a brief discussion 

of the field studies that we are currently conducting in three real-world applications. 

2.  PERLS Overview 

The PERLS mobile app uses a card-based user interface, where each card displays a 

recommendation and a “swipe” gesture is 

used to advance to the next recommendation 

(Figure 1). In general, recommendations that 

come earlier in the sequence will be the ones 

judged to be most appropriate for the learner, 

given the user’s interests, stage of learning, 

and current attitude. By navigating an 

exploration/exploitation tradeoff along the 

user’s learning trajectories, PERLS helps 

learners discover and learn in diverse and 

often unstructured topics. PERLS 

recommends both relatively easy, appealing 

content meant to promote regular learning 

interactions, and challenging content that 

advances learning goals. The rationale behind 

a recommendation is surfaced through a “sell 

point,” a pithy statement that explains the 

recommendation in motivational terms (e.g., 

“You’re on a roll! Continue studying…”). 

 

Figure 1. PERLS card-based UI. 
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The card-based interface also lets PERLS serve up specialized content types such as event 

notifications, quiz cards (single, multiple-choice questions), and action cards that address certain 

needs not easily addressed with traditional content-based recommendation. For example, action 

cards can be used to encourage learners to set topic-specific objectives, make plans, and reflect on 

progress. Such actions, along with the deliberate combination of exploratory learning with goal-

driven learning, light content and challenging content, and formal with informal structure, help 

replicate strategies used by strong self-learners. 

PERLS prioritizes recommendations in a three-stage process. First, it generates a candidate 

set of recommendations based on inferred topic interests. Next it ranks candidates based on 

contextual factors, including estimates of the user’s current phase in the SRL trajectory for each 

topic, the appropriateness of candidate content for that phase, and the relevance of different 

motivations at that phase. Finally, PERLS adjusts the actual sequencing of recommendations to 

more closely align with the user’s immediate situation. This corresponds to steps a good human 

mentor might take to help a learner advance in their learning trajectories: gain an understanding 

of the user’s level of interest and learning goals; determine relevant situational factors; make 

content recommendations that fit interests, goals, and situation; and suggest actions as needed to 

keep the learner motivated and making progress.  

3.  PERLS Self-Regulated Learning Model 

The foundation for PERLS’s recommendations is a 

model of Self-Regulated Learning (SRL). The model 

describes the process of self-learning as a set of 

activities grouped into three phasesExplore, Study, 

and Sharpen. Most learning technology focuses on the 

Study phase, in which the learner expects to make a 

concentrated effort to achieve a learning goal, usually 

in a formally structured context such as a classroom or 

e-course. Informal learning includes an earlier phase 

that sets the stage for successful Study, and a later 

phase to maintain and expand on learning outcomes.  

The PERLS SRL model divides each of the three 

phases into a set of key activities or subphases (Figure 

2). The phases and subphases define intermediate 

learning objectives and natural transitions in self-

regulated learning. For example, establishing 

motivation during the Dabble activity improves 

knowledge intake during the Familiarize subphase. The 

sorts of content that will help advance individuals 

varies accordingly. The model captures the range of 

possible paths, with individuals varying in where they 

enter and exit, and whether they skip or repeat a given 

phase. 

 

Figure 2. The PERLS Self-Regulated 

Learning (SRL) Model. 
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3.1  Explore 

The Explore phase starts with Discovery, where the learner first becomes aware of a topic. In 

some cases, discovery results from intentional explorationfor example, a learner discovering 

potentially interesting topics while browsing news content. In others, discovery happens 

incidentally while doing other things or in response to colleagues drawing attention to the topic. 

Learners who are naturally curious, perceptive, and social will tend to become aware of important 

topics in a timely way; others benefit from technology that supports discovery. 

 After learners have discovered a topic, they may begin Dabblingengaging in light 

interaction with topic materials, consistent with a low level of commitment to long-term learning. 

Dabbling establishes motivation, confidence, and conceptual orientation to a topic in preparation 

for higher-commitment learning. Dabbling content will be relatively lightweight and 

engaginge.g., brief narratively structured readings, engagingly edited video, and brief games or 

game-like experiences. 

Bridging is the process of preparing for more intensive, high-commitment learning. Learners 

self-assess their level of competence in the topic and begin to formulate their learning plan, 

setting expectations, identifying learning resources, and gauging the time and effort it will take to 

achieve their learning goals. During bridging, learners check their current understanding and 

confidence, connect with more advanced learners and mentors, and preview learning materials. 

3.2  Study 

Learners who make the transition to the Study phase have made the commitment to gain some 

level of competence, to complete a course, or to achieve some other goal. Formal instruction is a 

special case of Study since learners may achieve their goals through formal or informal methods. 

Study begins with Familiarization, where the learner goes through introductory study materials to 

build a foundation for learning (i.e.,  knowledge of terms, concepts, procedures, and principles). 

After familiarization comes Practice, through which learners build fluency through improved 

memorization of the basic topic-relevant knowledge and skills and develop understanding through 

improved organization and complexity of knowledge in the topic. Practice typically involves 

building expertise by focusing on specific gaps and elements in one’s knowledge and skills. 

Throughout the Study phase, learners will also typically be in Assessmentreceiving or 

seeking feedback, both formally and informally, on their proficiency level in the topic. Earlier 

assessments are typically formative, providing the learner with feedback on specific aspects of 

performance that may be adjusted to improve results. Later assessments will be more summative, 

evaluating an individual’s performance against criteria-based standards or group norms.  

3.3  Sharpen 

Once learners have achieved the desired level of competence in a topic, they enter the Sharpen 

phase for sustaining their new knowledge. In Use, learners build fluency by applying their newly 

acquired knowledge to real-life problems or situations and understand of the range of situations 

where the knowledge is most commonly applicable. This is in contrast to Practice, where the 

focus of applying learned knowledge is to verify learning. 
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In the Refresh subphase, learners seek to check or strengthen knowledge or skill. This may be 

driven by some external circumstance where their knowledge or skill will be on display (for 

example, a meeting or a presentation) or by an innate drive for increased proficiency. 

A learner in the Extend subphase is seeking to enrich basic knowledge or to deepen a basic 

skill beyond the requirements for basic proficiency. Learners extending their knowledge build on 

existing competence foundationfor example, by learning about unusual/corner cases or by 

transitioning into subtopics.  

4.  Content Recommendation for Self-Regulated Learning 

Technology-enhanced learning presents challenges not typically addressed in the recommender 

systems community (Manouselis et al., 2011). Conventional recommender tasks are often focused 

on specialized atomic tasks such as product recommendation or ad placement, with the goal of 

identifying items the user will like. In contrast, recommendation for learning systems 

encompasses a wide range of recommendation objectives, which vary at different SRL phases, 

and a wide range of recommendable entities including content, people, events, and meta-learning 

behaviors that advance learning outcomes. While formal learning environments offer predefined 

curricula that constrain the range of appropriate recommendations, informal learning settings 

typically lack such structure. Context-aware recommender systems for learning have attempted to 

address some of these issues by incorporating various notions of context, including physical 

location, user activity, and social networks (Verbert et al., 2012); but most work in this area 

focuses on single recommendations targeted at the user’s immediate context.  

In developing the concept of the PERLS virtual mentor for self-regulated learning, we 

identified three critical requirements. First, in accordance with established principles for adult 

learning, self-learning recommendations need to be explained in convincing detail (Knowles, 

1984). Thus, the mentor must have some mechanism for representing and reasoning about learner 

motivation. Second, whereas most recommendation methods rely on statistical machine learning 

approaches requiring a great deal of training data, workplace-oriented learning content is often 

interesting to a small number of people and of no interest to most others. As a result, SRL 

recommendation needs to rely heavily on techniques used for recommendation bootstrapping 

such as rules and decision-theoretic methods.  

Third, and finally, most recommenders use behavior data about an individual or group to 

predict a single valuegenerally capturing the probability that the user will accept the 

recommendation (Adomavicius & Tuzhilin, 2005). In PERLS, because the learner’s current SRL 

stage will vary for different topics, both the criteria for prediction and the set of user behaviors 

that count as a successful response will vary accordingly. For example, a candidate associated 

with a Dabble-phase topic will be evaluated on its likely effectiveness to motivate, build 

confidence, and orient the learner to topic concepts. Bookmarking the recommendation for later is 

almost as valuable as experiencing the content. In contrast, content associated with a Familiarize-

phase topic will be evaluated on its ability to enhance declarative knowledge, but it is only a good 

recommendation if the learner can complete the content successfully.  

PERLS calculates the strength of a recommendation candidate using a decision-theoretic 

approach that takes account of factors such as estimated topic interest, current SRL phase, and a 
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range of contextual gating and preference factors. Recommendations are ordered so that content 

on high-interest topics with high fitness are prioritized and presented early in the card sequence. 

4.1  Topic Interest  

All PERLS recommendations will be on topics of interest to the learner, although the learner’s 

level of interest, learning stage, and particular learning goals may vary from topic to topic. 

PERLS thus tracks user interest in topics1, monitoring for direct evidence of user interest and 

propagating this to nearby topics in the corpus structure. Direct evidence comes in various forms, 

such as the user starring or subscribing to a topic, setting a learning goal, or starting some 

learning content. In determining the base interest in a topic from direct evidence, we use the 

following heuristic: explicit intention > explicit interest > demonstrated interest. Thus, setting a 

goal to complete a course (explicit intention) is stronger evidence of interest than starring a topic 

(explicit interest), which is stronger than completing a learning object (LO) under a topic 

(demonstrated interest). 

Multiple instances of the same type of evidence within a short time period are indicative of 

greater interest while evidence that occurs further in the past indicates lower interest. Thus, we 

increase the base interest value for intensity (number of instances of the same evidence type 

within a given time period) and discount it for recency (time since the most recent event in the 

cluster). For the intensity adjustment, we want a function that gradually asymptotes to the 

maximum interest level. For example, for a base interest of b, a maximum interest level of 10, and 

n instances of the evidence type within a designated period of time, we can calculate the 

additional interest for user u in a topic t due to intensity as: 

∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑢, 𝑡)  = (10 − 𝑏) ∗ (1 −
1

𝑛
) 

For the recency adjustment, we want the inversea smooth discounting toward the minimum 

interest value (0). For example, if we allow a grace period of d days (i.e., within d days, an event 

is still considered ‘recent’), we can calculate the discount for an evidence type whose most recent 

event was m days ago as: 

𝛥𝑟𝑒𝑐𝑒𝑛𝑐𝑦 (𝑢, 𝑡) =  𝑚𝑎𝑥(𝑙𝑜𝑔2(𝑚 − 𝑑 + 1), 𝑏 + ∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑢, 𝑡)) 

 The direct interest of a user in a topic t is then 

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑑𝑖𝑟𝑒𝑐𝑡(𝑢, 𝑡) = 𝑏 +  ∆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑢, 𝑡) −  ∆𝑟𝑒𝑐𝑒𝑛𝑐𝑦 (𝑢, 𝑡) 

After computing direct interest for all topics, we can calculate indirect interesti.e., interest 

inferred from the direct interest in neighboring topics. Intuitively, interest in a subtopic translates 

to strong interest in a parent topic, so we distribute uniformly the direct interest in a topic to its 

                                                 
1 The PERLS corpus is organized through four kinds of content groups: topics (sets of learning objects 

(LOs) or groups corresponding to semantically meaningful topics), collections (arbitrary sets of LOs), 
courses (ordered sets of LOs), and feeds (short-lived LOs that arrive over time). Since these distinctions 
are irrelevant for the purposes of this paper, we simply use topics to refer to all the groups. 
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parent topics. For example, if a child topic c with direct interest interestchild has np parents, then 

the indirect interest contributed by the child to a parent can be calculated as: 

∆𝑖𝑛𝑡𝑝(𝑢, 𝑐) = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑐ℎ𝑖𝑙𝑑(𝑢, 𝑐) −  𝑙𝑜𝑔10 𝑛𝑝 

 In contrast, indirect interest from a parent topic decreases with the number of child LOs of 

that topic. A topic with many immediate child LOs is likely to be a relatively self-contained focus 

of interest and thus interest in that topic is unlikely to transfer to its subtopics. On the other hand, 

interest in a topic with no child LOs strongly implies interest in at least some of its subtopics. 

Thus, for computing indirect interest from a parent to its children, if a parent topic p has nclo child 

LOs and nctopic child subtopics, then we might calculate the indirect interest contributed by the 

parent to a child subtopic as: 

∆𝑖𝑛𝑡𝑐(𝑢, 𝑝)  = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡(𝑢, 𝑝) −  𝑙𝑜𝑔4

𝑛𝑐𝑙𝑜 + 1

𝑛𝑐𝑡𝑜𝑝𝑖𝑐
 

 The final interest level of a topic t is the sum of the direct interest in the topic and the 

maximum of the indirect interests from its parents and children, i.e., 

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑢, 𝑡) = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑑𝑖𝑟𝑒𝑐𝑡(𝑢, 𝑡) + 𝑚𝑎𝑥 ( 𝑚𝑎𝑥
𝑐 ∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑝)

∆𝑖𝑛𝑡𝑝(𝑢, 𝑐) , 𝑚𝑎𝑥
𝑝 ∈𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑐)

∆𝑖𝑛𝑡𝑐(𝑢, 𝑝)) 

The use of max to aggregate indirect interest greatly simplifies the calculation of topic interest 

but, more importantly, supports a straightforward explanation of why PERLS believes a learner is 

interested in a topic. We note that the specific functions used for calculating direct and indirect 

interest are less important than their characteristics (e.g., the effects of intensity gradually 

diminishing with the number of events) and we anticipate refining these functions as we obtain 

additional PERLS usage data. Given a user’s interest levels in the different topics, PERLS 

considers as candidates for recommendation all the LOs under topics meeting a minimum interest 

threshold.  

4.2  Value Propositions 

PERLS uses diverse features of users, content, and situation factors as inputs. With enough 

training data, statistical machine learning approaches could be used to acquire accurate ranking 

functions for the recommender. However, the application of recommending work-related micro-

content is a small data problem: unlike general education domains (e.g., algebra) where many 

learners may consume each bit of content and content rarely becomes obsolete, workplace content 

is typically fragmented, low-circulation, and perishable. Standard approaches are also not 

amenable to generating the explainable recommendations that are critical to adult learning.  

We thus adopt an approach with a significant domain modeling and knowledge engineering 

component. In particular, PERLS recommendations are based on the notion of a value proposition 

(VP), that represents a potentially compelling explanation or “reason” for a user to accept a 

recommendation. There is a large scientific literature on human motivation, although none are 

completely suited to self-directed learning. Some are too broad, covering all of human experience 

while providing little insight on learning in particular (e.g., Maslow, 1943; Reiss, 2004). Others 
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apply specifically to learning but focus on particular learning behaviors and contexts (e.g., Lepper 

& Malone, 1987) or on goal setting (e.g., Locke, 1968). 

Perhaps the best known scientific idea regarding motivation is the distinction between 

intrinsic and extrinsic motivationinternal desires such as curiosity vs. external rewards or 

punishments. However, ongoing research in Self-Determination Theory shows that motivations 

are inherently neither one nor the other (Ryan & Deci, 2000). We thus take a simpler approach of 

categorizing VPs by whether they involve endogenous or exogenous motives. Endogenous 

motives involve an innate connection between learning activity and outcome (e.g., learning to 

play a guitar for fun or because you want to make music), while exogenous motives focus on 

rewards and punishments (e.g., learning to play a guitar to impress people or make money). 

We are developing a taxonomy of VPs based on these and other high level distinctions 

grounded in relevant psychological literature. VPs based on more specific motivational types tend 

to be more persuasive but apply in a narrowed range of conditions.  So our goal is an extensible 

library containing numerous and diverse VPs.  Careful ontology building is important for guiding 

the expansion of this library and assessing coverage. For the purposes of the PERLS 

recommendation task, the existence of the ontology is immaterial; what is important are the 

individual VPs and how they factor into the recommendation process, which we discuss next. 

4.3  Recommendation Strength 

Intuitively, PERLS looks for the most compelling reason to recommend a particular LO to a 

learner. In general, multiple VPs will apply to any one LO and there may be significant, unknown 

semantic overlap between them. Thus, PERLS calculates as the recommendation value or 

strength of a LO for a user to be the maximum strength of any VP for that LO. Let u be a user, o 

be a candidate LO, and V be the set of all VPs. Then the recommendation strength of o for u is: 

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑜, 𝑢) =  𝑚𝑎𝑥
𝑣 ∈ 𝑉

 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑢, 𝑣, 𝑜) 

where strength(u,v,o) is the product of the VP’s importance and fitness to u according to o: 

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑢, 𝑣, 𝑜) =  𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑢, 𝑣, 𝑜) ∗ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑢, 𝑣, 𝑜) 

4.3.1  Importance 

Importance is a sum of three values: topic importance, urgency importance, and VP importance. 

Topic importance can be interpreted as the value of a LO due solely to it being on a topic of 

interest while urgency importance is its value due solely to the existence of a pressing need to 

consume the content sooner rather than later. While one could ostensibly create VPs that capture 

motivations along these lines (and we do), PERLS factors them separately because they capture 

fairly universal motivations. That is, all learners will naturally be more interested in topics of 

interest and they will be more inclined to attend to urgent content.  

Topic importance is a function of the learner’s interest in the topicat its simplest, topic 

interest itself, i.e., 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝑝𝑖𝑐(𝑢, 𝑡) = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑢, 𝑡)) 
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For urgency, PERLS tracks a number of urgency factors, each representing some immediate need 

to consume the LOfor example, because of an approaching deadline (whether self-imposed or 

set by an external authority), or because the content is associated with some location the learner is 

currently near. Urgency importance is the maximum value of any of these factorsi.e., the most 

urgent need. Let U be the set of urgency factors and urgency(u,o) be the value of the factor u for a 

LO in the user’s current context. Then the urgency importance of a LO for a user is: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑢, 𝑜) = 𝑚𝑎𝑥
𝑢 ∈𝑈

𝑢𝑟𝑔𝑒𝑛𝑐𝑦(𝑢, 𝑜) 

The primary component of importance is VP importance, which captures the rationale behind 

a recommendationi.e., how motivating a particular VP will be to a learner, given the learner’s 

current state of mind and stage of learning on a given topic. There are two main components to 

VP importance: attitude and phase. Attitude represents the learner’s current disposition toward 

learning. For example, a learner with an achievement attitude in the Familiarize subphase of 

Study is looking to make significant learning progress and is thus likely to be receptive to more 

challenging content. In contrast, a learner in the same subphase with a discovery attitude is still 

looking to get the lay of the land and will probably be more amenable to lighter content. Given a 

set of possible attitudes, we attach to each VP a baseline VP importance for each subphase for 

that attitude that captures how important that VP is generally to a learner with that attitude. For 

example, VPs with high baseline values for the discovery attitude in the Explore subphases might 

include “This is trending” or “You might be interested in this because of your interest in X.” 

Meanwhile, VPs with high baseline values for the achievement attitude in the Study subphases 

might include “This will raise your competency in X” or “This will complete the course.”  

The second component of VP importance is phase, which represents the user’s current stage 

within the SRL model described earlier. More specifically, within any subphase, the user may be 

in one of four states: Not Ready, Ready, Progressing, and Done. For a VP to apply to a LO given 

the user’s learning status for a topic, the user must be either Ready or Progressing in the 

subphase, the content must be appropriate for that subphase, and the VP must have a nonzero 

baseline value for the subphase. PERLS currently constructs a discrete probability distribution 

over these states for each subphase to provide an estimate of the user being in a particular state 

within a subphase. The probabilities are inferred through a Markov Logic Network (MLN) 

(Richardson & Domingos, 2006), which we chose because it provides a principled way to 

integrate probabilities with logical rules. Phase estimation is a task for which we have significant 

knowledge about different pieces of evidence that a user is in a particular phase/subphase/state 

but where there is some uncertainty in that knowledge and in the evidence itself. For example, if a 

user starts a few Dabble LOs in a topic, the user is likely to be in the Ready or Progressing states 

for Dabble. After completing several such LOs, the learner is likely to be Done with Dabble. If 

learners are Ready, Progressing, or Done in a subphase, they are likely to be Done with any 

precursor subphase. By encoding such rules within a MLN, PERLS can use the learner’s 

activities to infer the probabilities over the different states. In addition, when learner data 

becomes available, MLNs naturally lend themselves to automatic adjustment of rule weights 

through machine learning techniques.  

Given the phase estimates, PERLS can determine the learner’s current state within a subphase 

to know whether a VP applies. A straightforward approach would be to set the highest-probability 
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state in a subphase as the learner’s current state in that subphase. However, this would lead 

PERLS to always recommend content that matches its best guess as to the user’s current learning 

stage. While reasonable, this approach relies heavily on accurate estimates and prevents fortuitous 

exposure to topics of potential but unverified interest. To address this exploration/exploitation 

tradeoff, PERLS employs an ϵ-greedy exploration strategy: with probability 1 – ϵ, PERLS 

chooses a high-probability state and with probability ϵ, a low-probability one. We set the 

high/low threshold at 0.25 (uniform probability over four states). So, for example, if the states 

{Not Ready, Ready, Progressing, Done} have probabilities {0.2, 0.4, 0.3, 0.1} respectively, then 

exploit will pick Ready with probability 
0.4

0.7
 and Progressing with probability 

0.3

0.7
, whereas explore 

will pick Not Ready with probability  
0.2

0.3
 and Done with probability  

0.1

0.3
. 

The final factor for determining VP importance is fitness-to-phasei.e., how well the LO 

suits a phase/subphase/state. There are different possible interpretations of suitabilityfor 

example, that an educator has determined the content to be appropriate or that the learner will 

agree that the content is desirable in their current context. 

Given that the user may be Ready or Progressing in multiple subphases, that the VPs have 

different baseline importance values for different subphase-states, and that the LOs are suitable 

for different phases, we want to choose the combination of VP and subphase-state that leads to 

the highest VP importance value.  

Let S(u,t) be the subset of subphase-states selected for the user u for a topic t according to the 

exploration/exploitation strategy described above. Further let importancebase(v,p,s,a) be the 

baseline importance of the VP v for the subphase-state (p,s) when the user has attitude a, and 

fittophase(o,p,s) be the LO fitness to the subphase-state. Currently, PERLS relies on learner 

attitude being given (e.g., by the user indicating their own attitude) but eventually, we anticipate 

estimating the learner’s attitude based on observed behavior (e.g., the rate at which the user is 

flipping through content). Similarly, fittophase(o,p,s) is currently provided by corpus contributors 

but could potentially be learned from learner data in the future. The value of a VP v for a LO o in 

the subphase-state (p,s) when the learner has attitude a is: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑉𝑃(𝑢, 𝑣, 𝑎, 𝑡, 𝑜) = 𝑚𝑎𝑥
(𝑝,𝑠)∈𝑆(𝑢,𝑡)

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑏𝑎𝑠𝑒(𝑣, 𝑝, 𝑠, 𝑎) ∗ 𝑓𝑖𝑡𝑡𝑜𝑝ℎ𝑎𝑠𝑒(𝑜, 𝑝, 𝑠) 

Finally, importance is a weighted sum of topic importance, urgency importance, and VP 

importance. As with the formulas presented for calculating interest, the calculation of importance 

values and fitness values are meant to provide prescriptive criteria, and we expect that some 

parameter adjustment or formula modification will be needed to better match actual experience. 

4.3.2  Fitness 

The second factor in strength(u,v,o) is fitnessi.e., the likelihood that the LO will deliver the 

value defined by the VP. A LO provides strong support for a VP if the VP is true of that LO with 

high certainty, the content is suited to a selected subphase-state for its topic, and it is high quality 

(e.g., it is appealing, effective, up-to-date). We have already discussed LO suitability for a phase 

state so we focus on VP truth value and content quality here. 
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Rather than attempting to define VP truth value as an absolute measure, we take a more 

practical approach of defining it by whether a user is likely to agree that the VP is true of the LO. 

The criteria for determining the probability that a VP is true differ for each VP, so each VP is 

associated with a unique estimation function within some normalized range (e.g., [0,1]). VP truth 

value estimation can vary widely. Any information represented in PERLS is potentially relevant, 

including situational, learning, social, and interaction context; and user profile, population, and 

corpus data as well as trends or patterns computed over them. While some VP values may be 

easily determinedfor example, by checking for specific annotations or metadata on a LO, other 

calculations may be more involved. For example, determining that “This is hot with your peers” 

requires identifying the peer group and calculating statistics on their learning; while determining 

that “This is the sort of thing you like first thing in the morning” could involve learning a 

classifier based on features of the content, time of LO interaction, user feedback, and so on. 

Regardless of the information required to for the VP truth value estimate, computing the value 

itself should be reasonably efficient as the computation will have to be made for all potential 

recommendations. 

Content quality addresses the desire to prefer recommending higher quality content over 

lower quality ones. In line with the objective of extensibility, PERLS does not subscribe to a 

well-defined set of quality criteria nor does it require information about their relative importance. 

Instead, PERLS allows quality criteria to be defined over a wide range of factors such as 

production value, instructional effectiveness, enjoyability, and author popularity. We cast content 

quality as a multiplicative discount factor ranging from [0,1] so that the discount in importance is 

inversely proportional to the quality of the content. 

Finally, we have 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑢, 𝑣, 𝑜) =  𝑡𝑟𝑢𝑡ℎ(𝑣, 𝑜) ∗  𝑓𝑖𝑡𝑡𝑜𝑝ℎ𝑎𝑠𝑒(𝑜, 𝑝, 𝑠) ∗  𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑜) 

where (p,s) is the subphase-state determined earlier to yield the highest importance value. 

5.  Summary 

Our approach to content recommendation has been implemented in the PERLS mobile app. In 

addition to providing a mobile-based app for recommendations to support self-directed learning, 

PERLS also serves as an integration point for different content providers and content delivery 

methods (Figure 3). Selecting a card in PERLS initiates a learning activity, with some activities 

supported natively in the PERLS mobile phone app and others linking to external applications 

integrated with PERLS (Freed et al., 2017). In its prototype phase, PERLS is intended to support 

lifelong (or at least employment-long) learning for members of large organizations where the 

need to support learning is high, some capacity to invest in it exists, and there is a concentration 

of personnel to support social learning and data analysis.  

PERLS has been deployed in limited contexts within our organization for the purpose of 

conducting user studies to explore and validate design concepts (Freed et al., 2014). We are 

currently participating in a large-scale integration effort led by the Advanced Distributed 

Learning (ADL) Initiative, where PERLS provides the primary user interface to a variety of 

content providers and backend services embedded within the Total Learning Architecture (TLA) 
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(Regan et al., 2013). The integration is being tested in the cybersecurity domain, as an auxiliary 

learning resource to support military members in their preparation for eventual enrollment in 

more formal training courses. Preparation is also currently under way for two field studies of 

PERLS in collaboration with two Department of Defense (DoD) organizations: the Joint 

Knowledge Online (JKO) office in the domain of Defense Support for Civilian Authorities and 

the Defense Language and National Security Office (DLNSEO) in the domain of foreign 

language study. 

Self-directed, informal learning is the predominant form of adult learning in the workplace 

and yet remains largely unaddressed by existing work in intelligent learning assistants. Much of 

this has to do with the ill-defined, partially structured, dynamic, and uncertain nature of informal 

learning, which makes traditional approaches designed for formal, classroom-based learning ill-

suited to the task. In our work on PERLS, we have developed a model of self-regulated learning 

that captures a wide variety of informal learning trajectories. The PERLS approach to content 

recommendation is centered on the notion of value propositions, which provide the motivational 

rationale behind recommendations. By tracking user activity, PERLS can estimate users’ level of 

interest in different topics, their learning goals, and their progress through the SRL model, 

enabling PERLS to make recommendations that best suit the user’s current learning context.  
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