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Abstract
Herein we present IACI, a human-inspired computational architecture to help us understand how
we bridge a dataset to our goals and background knowledge, translating it into a visual encoding.
IACI combines visual perception, memory, domain-specific knowledge and reinforcement learn-
ing techniques to learn and visually encode data. IACI uses a dual mechanism of internally and
externally depicting plots in its learning process. Our motivation comes from astronomy, which
increasingly generates large datasets, fostering discovery opportunities, e.g. new planets or rare
phenomena observations. Insights from a human study of real astronomers conducting an open-
ended visual exploration of a large dataset informed IACI’s design and output format.

1. Introduction

Suppose you are moving to a new city and looking for a home. You look for city data to help you
decide what neighborhood to focus on. You find a dataset to explore with a clear goal in mind. What
are the variables driving your visual data exploration? What makes you choose to combine particular
attributes instead of others? What do you look for on the scatterplots you create? Why is the
number of property violations different from the number of bus stations? Our previous knowledge,
experiences and common sense imbue meaning to a dataset attributes. While visualizing data, we
may continually check if what we see matches what we expect to be seeing. If not, anomalies may
trigger curiosity, or suspicion about the data, or even about our own assumptions. The Ignorance
Project from Rosling (2013) is an interesting experiment that shows how people’s assumptions
may not be matched by data. Now, suppose an astronomer has been visually exploring a dataset
and suddenly makes a discovery: she sees a pattern and conceives a new equation, an alternative
approach to measure something important within the astronomy literature. Something very much
like this happened with the discovery described in Bastien et al. (2013). Fabienne Bastien was
exploring data from the Kepler space observatory using a data visualization tool called Filtergraph
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from Burger et al. (2013), when she saw a curious visual correlation. The pattern she saw resulted
in a novel method for measuring the surface gravity of distant stars.

This visual discovery inspired us to investigate what happens when an astronomer visually ex-
plores a dataset. That framed our research problem: “how to model and develop a human-inspired
computational architecture to help us understand visual data exploration”? Our goal is to build
a human-inspired computational architecture that gets a dataset as input and uses its domain and vi-
sual knowledge to learn from the data and to output a sequence of plots. For the sake of simplicity,
we are approaching the domain of Astronomy. Our computational architecture is called IACI1. In
astronomy data exploration, it is not rare to find performance-driven tools, or impressive methods,
such as in Shallue and Vanderburg (2018), aiming to help astronomers to discover new planets,
or stars from massive amounts of data, etc. Our approach is different but complementary; IACI
is human-inspired and design-driven, which we expect in the long run will lead to performance-
enhancing tools of a different kind. Our expectations are: 1. To understand and rudimentary mimic
some of the processes underlying human visualization of datasets (such as depicting plots in our
thoughts or actually plotting and visualizing them). 2. From IACI’s output, to produce plots clear
and useful enough to assist people in exploring their data and, being a bit ambitious, add to the
scientific discovery. Herein we describe IACI in a high-level, seeing that we are still designing it.
We are aware of five challenges:

1. To define IACI’s design;
2. To delimit an adequate output format;
3. To circumscribe a testing bed;
4. To outline metrics to measure IACI’s functioning and results;
5. To distinguish metrics to assess at what level IACI rudimentary mimics humans.

In this paper, we address the challenges 1-3 at different levels. In Appendices A and B 2 we included
a story-parallel between an astronomer and IACI visually exploring a dataset (see Figure 1), and a
table with the terminology we used in IACI’s design. IACI is composed of an Analysis System
(AS), a Visual System (VS), and a system specifying IACI’s motor capabilities, the Actuator (OR)
– see Figure 3. Once a dataset is inputted, the Analysis System is activated and phase 1 begins. At
the end of phase 1, a domain-driven sequence of plots is outputted by the Actuator, triggering the
Visual System. Phase 2 begins when the Visual System visualizes the outputted plots. At the end of
phase 2, the Actuator outputs a visual-driven sequence of plots and a decision log of both phases.
Figure 3 shows IACI and Figure 2 depicts phases 1 and 2, dashed lines highlighting the internally
visualized plots mechanism.

1. According to a Tupi-Guarani tribe narrative, Iaci is the god of the moon (Cascudo 2000), and there are several stories
related to its legend. We mention two versions. First, Tupã created Coaraci (god of the sun) and then, to avoid the
darkness of the night, Iaci. Iaci and the sun fell in love, but they could only meet during an eclipse. Another version
tells the origin of Naia, the Victoria Amazonica flower, a large white water lily. Iaci would visit the Earth and take
girls into the sky to transform them into stars. Naia, a Tupi-Guarani girl, searched for Iaci everywhere. One day,
exhausted and sick from the search, Naia saw Iaci’s reflection on the water and ran towards it, only to drown. Iaci
saw it and decided to transform Naia into a star in the water, instead of in the sky.

2. Appendices are at https://vanderbilt.app.box.com/s/trr5ulpfcpv9kfwcb2qdpihrmw0ortz6
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Figure 1. A figure depicting a story-parallel between an astronomer and IACI visually exploring a dataset.

2. Related Work and Background

Anscombe (1973) acknowledged the importance of visualizing data. In a similar direction, Matejka
and Fitzmaurice (2017) developed a system that intakes a dataset and perturbs it towards a desired
visual shape, still maintaining nearly the same statistical properties. If distinct datasets, whose
statistical properties are very similar, can look so different on a scatterplot, we may wonder: is a
scatterplot a reliable source for deducing the statistical properties of a dataset? Sher et al. (2017)
conducted a study to investigate how reliable humans are to identify correlation indices through
scatterplots, and their results suggest a lack of consistency in human judgments. Healey and Enns
(2012) detail multiple attention and perceptual processing issues applicable to data visualization.
Regardless our visual limitations, there are uncountable human discoveries from visually encoding
data (consider our motivation: Bastien et al., 2013). Perhaps some discoveries only happened due
to our limitations. Particularly for highly multivariate datasets, techniques may be required: 1. To
reduce dimensionality and 2. To provide a more human-suitable visual encoding. According to
Sedlmair et al. (2012), despite the importance of guidance through both techniques to data explo-
ration, there is a lack of algorithms automatically addressing such guidance. The authors produced
a “taxonomy of visual cluster separation factors”. Working with synthetic and real datasets, they
compared a human-made visual cluster identification with a non-visual, made by two different mea-
sures. Their results show a discrepancy between visual and non-visual cluster identification. Our
expectation from IACI is that it should provide a cluster identification closer to humans than to the
reported measures. By having cluster identification as goal and being fed with a dataset used in
Sedlmair et al. (2012), we expect to compare IACI’s cluster identification with theirs. Leman et al.
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Figure 2. IACI and phases 1 and 2. Top – Phase 1, the Analysis System (AS) commands the Actuator (OR).
Bottom – Phase 2, the Visual System (VS) commands the Actuator. IACI outputs plots in both phases, while
a decision log is outputted at the end of phase 2.
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(2013) describe a system for human interaction with data called “Visual to Parametric Interaction”
(V2PI). V2PI addresses the issue of incorporating expert feedback into data visualizations with a
system which seeks to break down barriers between mathematical and cognitive representations of
data. V2PI is similar to our work for its focus on human cognitive responses to data visualizations
and the importance of the judgment of trained experts in producing meaningful plots.

2.1 Background

We conducted a human study with experienced astronomers (graduate students). Participants were
asked to make scatterplots while exploring an unfamiliar galaxy dataset from Berlind et al. (2006)
using the Filtergraph visualization tool. Our preliminary results are described in Eliott et al. (2017):
data collecting from screen recordings of each exploration session is anchored at the XY-pair of
attributes, leading to the definition of major observation (M ) and minor observation (N ). Whereas
we defined M and N to collect our results, we got intrigued by how powerful those definitions are:
1. To standardize our results and reveal interesting patterns, which would be hidden otherwise, such
as the circular walk across M (repetition of an XY-pair after a gap) and within M (plot repetition
withing M ). 2. To find a narrative-like skeleton under their exploration: seeing XY-pairs as a
sort of character, and attributes (at color, size or Z-axis) or transformations brought to the scene (a
scatterplot) as a change, a new perspective of the character. We observed a story-like sequence of
plots develop as the participants chose to ‘flip through’ the dataset, setting up N at a brisk pace.
Interestingly, Nersessian (1992) brings up that narrative-like reflections play an important role in
scientists’ thought experiments. We saw in M and N conceptual framework a promising human-
inspiration skeleton to guide IACI’s decision-making. See Figure 7 for a sequence of N ’s produced
in our human study.

Definition. XY-pair of attributes are the attributes assigned to the XY-axes of a scatterplot,
e.g.: getting a galaxy dataset and setting the Velocity attribute at the Y-axis and the Brightness
attribute at the X-axis.

Definition. M is a grouping of contiguously viewed scatterplots (chronological sequence of
N ’s) within which the attributes assigned to X and Y axes remain constant. When the attribute
assigned to either the X or Y axis (or both) is changed, a new major observation begins.

Definition. N – each individual scatterplot generated within M is called N . When a new
M begins, its first N is created: a scatterplot holding only the XY-pair of attributes, nothing else.
Then, each time an action command is applied at the scatterplot, a new, subsequent N is created.
We adjusted here the definition of N to accommodate IACI’s design.

Definition. Motions get action commands and execute them to make a scatterplot. There are
7 motions: XY-axes, zoom, filter, Z-axis, color, size, transformation. Transformation is a multi-
faceted motion in the sense that it teams up with another motion when triggered. XY-axes is the
motion of setting up the XY-axes of a scatterplot, while XY-pair is an action command delivered
to the XY-axes motion. In our human study, the Filtergraph visualization tool gets human action
commands and then handles and coordinates motions to make scatterplots. However, IACI plays a
dual role: as a user and as a visualization tool: the Actuator, IACI’s motor system, is responsible of
coordinating motions and making scatterplots.
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Figure 3. Left: IACI Computational Architecture. Right: IACI decision process and definition of simulation.

Definition. Action command is a specific instruction to a motion. Therefore, action commands
are restrained by the scope of motions, which is: 1. defining the XY-pair (two specific attributes,
or combination of attributes) to set the scatterplot XY-axes. 2. To use color on the point-glyph:
IACI may use one attribute, or combinations of attributes. Once a point-glyph has color, IACI may
change the palette of colors, such as set a 5-colors pallet instead of 2-color to fit best with the data.
3. To use size on the point-glyph: is similar to color but, instead of choosing a palette, IACI chooses
a shape. 4. zoom: e.g., zoom at the top 25% X-axis values; 5. filter the data: to simplify, IACI’s
filtering uses only categorical dataset attributes and respective categories. 6. Z-axis: use a specific
attribute, or combination of attributes, to set the Z-axis. 7. To use a function to transform the X,
Y, or Z axes, or color, or even the size values. Suppose we have the average velocity of different
objects at the Z-axis. If we have the space and time attributes, we may transform the Z-axis by using
v = s/t.

A limitation in IACI’s current design is the lack of emotions, feelings and homeostatic goals.
As Damásio (1994) and Damásio (2004) emphasize, emotions help us to establish priorities and our
decision-making. As suggested in the astronomer-IACI parallel story2, people usually frame real-
time priorities and decision-making during their data exploration path. Of course, some decisions
may be at random, or we may decide to follow a random data exploration strategy – in fact, one of
our human study participants told us to be doing so. Still, emotions are likely to be playing their role
in the decision of establishing no priorities and following a random strategy. We ask ourselves: is
it the case that the role of emotions over our participants’ decision-making, and our own emotions
while interpreting their output, spotlighted a story-like impression from M ’s and N ’s?

3. IACI, a Human-Inspired Computational Architecture

IACI gets a dataset as input and uses reinforcement learning techniques (Sutton & Barto (1998)) to
learn action commands and achieve goals – the learning state space is depicted in Figure 4. IACI’s
task is to read a datafile, define goals related to the inputted dataset, and learn action commands to
output plots meeting a goal. Three main systems compose IACI, Figure 3: the Analysis System,
the Visual System and the Actuator. Even though the Analysis System is domain-driven and the
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Visual System is visual-driven, their structure is very much alike. For that, and because we are
still designing the Visual System, we detail the functioning of the Analysis System only. However,
as the contents of the systems are different, we provide clarifications. IACI is to learn from every
dataset it “sees”. A dataset leaves content in IACI’s long-term memory in the format of rules in
the Analysis System and of image-like rules in the Visual System. Rules are produced and updated
through learning and, when IACI decides to stop the simulation, rules are embedded in IACI’s
long-term memory. IACI refines its action commands from learning within a simulation and across
simulations. In Table 1 we present the terminology used to describe IACI.

IACI works in cycles of two phases (Figure 2): in phase 1, the Analysis System commands the
Actuator; in phase 2, the Visual System commands the Actuator. The Analysis System produces
and learns ak, domain-driven action commands. The Visual System produces and learns ai, visual-
driven action commands. Definition. Simulation outlines at least one complete cycle. IACI reads
a datafile, learns, outputs scatterplots (resuming phases 1 and 2) and stops. We depict a simulation
and IACI’s decision process in Figure 3.

IACI outputs scatterplots; therefore, the Actuator coordinates 7 built-in motions and 2 plot
makers: the Internal Plot Maker (IP) and the External Plot Maker (EP). The External Plot Maker is
part of the Plot Selection (PS), a bigger Module that gets action commands and success rates and
selects action commands to be sent to the External Plot Maker. The External Plot Maker gets action
commands and makes plots for external depiction, an externally visualized plot υout (outputted plot).
The Internal Plot Maker gets action commands and makes plots for internal depiction, internally
visualized plot υint (not-outputted). Action commands are motion instructions such as “zoom the
top 25% X-axis values”, or “use a specific attribute at the Z-axis and apply a log transformation at
the Z-axis”. If the Actuator receives action commands and a success rate, it delivers both to the Plot
Selection; otherwise, the Actuator sends the action commands to the Internal Plot Maker.

Goals. IACI has two kinds of goals: domain-driven goals gk (in the Analysis System) and
visual-driven goals gi (in the Visual System). IACI focus on goals while producing an action com-
mand, which, on its turn, generates υint. Then, IACI matches υint with the goal to calculate the
action command success rate υint:S . We may have goals beforehand. Thus, we select action com-
mands towards a scatterplot accomplishing our goals; or goals may follow from visualizing the data.
Actually, both may be happening at the same time: goals→ action commands→ plots, or plots→
goals→action commands. The Analysis System mimics mostly the 1rst approach, while the Visual
System the 2nd. To keep goal consistency within a phase, goals are steady. IACI avoids changing
goals at the same phase, though the Analysis System and the Visual System can replace a goal –
observation of plots may drive us to think of new goals or, if experimenting on our data and realizing
our goal does not fit well, we may adjust the goal to the data.

Since the Analysis System and the Visual System autonomously define goals, gk and gi are
likely to be distinct in a cycle. However, it may happen for goals present in both systems: suppose
on cycle 5, gk = gi =monotonic plots. The Visual System uses visual variables and a visual
memory gallery of monotonic plots to attain gi. On the other hand, the Analysis System may use
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the monotonic scagnostics measure (one out of 9) from Wilkinson et al. (2005) and Wilkinson et al.
(2006), to get a score of υint for monotonic, defining the υint:S .3

3.1 IACI and Major and Minor Observations Framework

We use the M and N framework in IACI’s design. This is a choice of design, but it makes sense
to explore an XY-pair at a brisk space and then change to another XY-pair (as we saw in our study;
see Figure 7), instead of choosing every scatterplot parameters at the same time (without fixing
the XY-pair). Each complete cycle creates M and the sequence of N is given by the outputs from
phases 1 and 2. When phase 2 is complete, IACI may decide to look at a new XY-pair and restart
phase 1, or to stop (see Figure 3). IACI reads a dataset, autonomously decides what XY-pairs to
look at (with regard to defining the number of M ’s and of cycles) and stops when all XY-pairs have
been visualized. At the beginning of phase 1, the Analysis System triggers the XY-axes motion by
delivering an XY-pair action command to the Actuator. The XY-axes motion is kept running the
same XY-pair until the end of phase 2. In every plot (υint and υout), the first triggered motion is the
XY-axes to execute the action command of setting the XY-pair. IACI never repeats an XY-pair in
the same simulation (no circular walk).

IACI reads and processes a dataset. Then, phase 1 begins: the Analysis System uses its inherited
background knowledge and memory from past datasets to calculate the current XY-pair of attributes
and a list of attributes per motion which makes sense to combine and informs the Visual System.
The Analysis System learns to produce domain-driven action commands by following gk. At the
end of phase 1, the Actuator follows action commands from the Analysis System and outputs a set
of υout. The Visual System externally visualizes the set υout, marking the beginning of phase 2: to
learn and refine action commands seeking gi, the Visual System uses a) υout from phase 1; and b)
a list of attributes per motion provided by the Analysis System. The Visual System uses its visual
memory and internal variables to define gi and selects action commands accordingly. At the end of
phase 2, the Actuator follows action commands from the Visual System and outputs a set of υout
and a decision log of phases 1 and 2.

In contrast to phase 2, all point-glyph from phase 1 (in both, υint and υout) have no color or
size. As Figure 4 (right) shows, the Visual System and the Analysis System trigger different sets of
motions. In phase 1, the Analysis System chooses the XY-pair and works through transformation,
Z-axis, zoom and filter. In phase 2, the Visual System triggers color, size, transformation, Z-axis and
zoom. The Visual System and the Analysis System may have distinct goals but both are synchro-
nized regarding the current XY-pair and the set of attributes to use motions with. The Actuator gets
action commands from both, the Analysis System and the Visual System, and makes scatterplots by
coordinating motions to execute action commands. In case of motions triggered by both systems,
the flavor of action commands should be very different, as a result of the systems distinct goals and
contents. Of course, splitting the motions reached by each system is a choice of design. We made
the two groups considering what motion can favour each system more.

3. We may use the scagnostics measures to define some of gk and gi. That case, the υint:S for gk comes from the R
cran package from Wilkinson & Anand (2015).
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3.2 Phase 1 and the Analysis System (AS)

The Analysis System (AS) is composed of two systems: the Domain-Knowledge (DK) and the Rea-
soning System (RS). The former is related to IACI’s long-term memory and the latter to its working
memory and learning. The Domain-Knowledge is responsible of providing gk and the Reasoning
System of providing ak and υint:S . IACI may be applied to fields other that astronomy. To
accomplish this, the Domain-Knowledge is to be replaced by a field-related knowledge. While
looking at a dataset and knowing what the attributes mean, an analyst has expectations about the
dataset objects and relationships among them. Expectations contribute to visual data exploration;
regardless of whether they are met, it is interesting to investigate how people visually encode re-
sponses to their thoughts (our human study contributes on that). In case we are not familiar with
a dataset, we may generalize from previous experiences while getting to know the dataset. The
Domain-Knowledge is intended to mimic, in a simplistic sense, using domain-knowledge and pre-
vious experiences to investigate data while defining goals and combinations of attributes to plot.

Once IACI reads a datafile, the Analysis System works to put the dataset into context – this
step is done only once by simulation. The Domain-Knowledge identifies categorical and numerical
attributes. The former are inspected to enumerate data filtering options. The latter are categorized:
whether they belong to the Z set, if they are normalized, etc. IACI gets the dataset name and
labels of attributes and matches them with its inherited astronomy knowledge to pinpoint the dataset
domain dD. The Domain-Knowledge stores specific domain knowledge linked to key labels of
attributes – e.g. for dD =galaxy, key labels such as V el for velocity, and so on. Of course, one
requirement for IACI to work properly is an accurate identification of the dataset name and attribute
labels. For instance, velocity related data must have vel as part of its attribute label. The same
way, a dataset named ‘galaxy’ should refer to a galaxy domain. Even for humans, a self-speakable
label facilitates data manipulation. The Domain-Knowledge is embedded with ways to deal with
homonyms. IACI handles dataset produced from discrete observations on multiple objects
differently from continuous views about the same object.

3.2.1 Domain-Knowledge (DK)

The Domain-Knowledge is equipped with two embedded modules: the Semantic Knowledge (SK)
and the Episodic Knowledge (EK). The Semantic Knowledge is supposed to rudimentary mimic
the background and foundation knowledge experts learn from studying astronomy. The Semantic
Knowledge imbues IACI with rule-based knowledge on astronomy objects, relations, equations and
principles, and keeps a matching between knowledge and key labels of attributes. While the Seman-
tic Knowledge is hard-wired and unchangeable, the Episodic Knowledge keeps experience-based
knowledge, supposed to mimic the experience experts get from data exploration. The Episodic
Knowledge keeps rule-based knowledge dynamically updated within and across simulations. Once
dD is determined and the dataset processed, the Domain-Knowledge starts searching for background
knowledge related to the dataset. It searches the Semantic Knowledge and the Episodic Knowledge
to determine a set of XY-pairs of attributes (one attribute by axis, or attributes combined at the same
axis) from the dataset. Then, for each XY-pair, the Domain-Knowledge:
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• Determines a set of attributes (from the dataset) for each motion: for filter, transformation, Z-
axis, color and size. The set of attributes for transformation are tied to functions and motions
to team-up with – e.g. use the average velocity equation at the Z-axis. Sets of motion attributes
and the XY-pair are fed into the Visual System;
• Establishes a set of suitable zooming options;
• Items above define aMk : the number of available action commands for the current XY-pair;
• Determines a set of gk.

Note that the set of gk is based on the astronomy literature. That means the effect of a goal in
IACI’s data exploration varies according to the dataset (i.e. distinct datasets may approach differ-
ently the same domain). Sets of gk are embedded in the Semantic Knowledge, while their scores in
the Episodic Knowledge. A score may start from zero or slightly above zero (if the goal is usually
followed among the astronomy literature for the XY-pair). Through learning, IACI tries at least one
gk by XY-pair. The Reasoning System updates the score of gk when used by the Learning Module,
and sends it back to the Episodic Knowledge at the end of the simulation. If gk consistently provides
low scores for an XY-pair during learning, IACI updates the score of gk and changes the goal. From
a human perspective, it is like checking a hypothesis and moving on. Since the rank provides ways
for IACI to explore or to exploit goals, the Learning Module uses the scores and internal learning
variables to dynamically rank goals.

Semantic knowledge (SK)
The Semantic Knowledge incorporates five categories linked to key labels of attributes:

1. General Overview on astronomy objects and relations among them. Objects such as stars,
planets and galaxies;

2. Event Oriented Overview: focus on specific objects and draws some of the most common
events associated with them. For example, what may happen to a star? It may explode,
incorporate another star, etc;

3. Astronomy equations related to the topics above;
4. Representative Examples: keeps representative study case examples of events related to the

objects. For example, what are the values that, without a doubt, one can tell that a star has
died?

5. Unusual Examples: keeps representative study case examples that seem to contradict the
theory. We believe those examples are crucial to trigger interesting plots.

Episodic knowledge (EK) The Episodic Knowledge stores experience-based rules from pre-
vious simulations. After processing a dataset, the Episodic Knowledge buffers into the Reasoning
System scores of goals and every rule related to dD – mimicking a process of triggering memories.
Rules not related to dD are kept unaltered inside the Episodic Knowledge (not triggered memories).
At the beginning of the very 1rst IACI’s simulation, the Episodic Knowledge has got only scores of
goals, none experience yet. When the learning starts, the Reasoning System creates new rules and
updates buffered rules. At the end of a simulation, every rule and goal scores are sent back to the
Episodic Knowledge.
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3.2.2 Reasoning System (RS)

The Reasoning System is composed of: Working Memory (WM), Learning Module (LM) and Do-
main Reasoning (DR). The Reasoning System is responsible of IACI’s domain-related learning
(Learning Module) of action commands, and of IACI’s reasoning (Domain Reasoning) to evaluate
action commands. The Working Memory keeps a working memory of the learning process and
updates past memories (buffered rules and score of goals). Both, the Learning Module and the
Working Memory send action commands to the Actuator to produce υout. However, the Plot Selec-
tion outputs them in a different fashion (see Figure 6), using as assumption that our response to flash
of memories is faster than to the learning’s (while we are exploring and building new memories).

IACI’s learning refines action commands aiming to produce υint with high success rates for
a goal. When IACI stops the learning process, it has found a high success sequence of action
commands oMa (or as high as it can be, since a goal may not fit well with the data, but still be
usable). Then, oMa and respective υint:S are sent to the Actuator. The Actuator delivers both to
the Plot Selection which, on its turn, sends oMa to the External Plot Maker. The External Plot
Maker coordinates motions to execute action commands and outputs one υout by action command
(translating internally visualized plots into externally visualized plots).

Domain Reasoning (DR) The Domain Reasoning has internal mechanisms to match goals and
plots to provide a success rate of action commands. The Domain Reasoning gets υint from the
Actuator and gk from the LM to provide υint:S . If υint has zero point-glyph, it is considered an
invalid plot: υint:S < 0.

Learning Module (LM). We are considering two learning approaches: 1. Learn from motions
or 2. Learn from action commands. An issue with 1 is that shortening the decision space to one
motion still leaves the decision of what action command to apply; a subsystem would have to pick
an action command from the selected motion. For simplicity, we are adopting approach 2. We may
be using the model-based reinforcement learning algorithm R-max from Brafman & Tennenholtz
(2002) in a fixed-sum game, modeling it as a Markov Decision Process, in which the Analysis
System plays against a stationary adversary with only a single action at each state and rewards
ranging between zero and Rmax (reward values built from υint:S).

If we merge phases 1 and 2, allowing the Analysis System and the Visual System to work at
the same time, we may consider a variation. We can model it as a stochastic game in self-play
– one agent representing the Visual System and the other representing the Analysis System, both
agents competing to decide what action command goes to υin. At each state, the winner is who
chooses the action command with the highest υint:S . This case, υout results from the Visual System’s
and Analysis System’s conjoint work. A homeostatic system can play a role in here, impacting
priorities for a visual (Visual System) or a domain-oriented (Analysis System) decision. Another
reinforcement learning algorithm we think may be interesting is the WoLF-phc from Bowling &
Veloso (2001).

Think about a scatterplot. What is the maximum number of action commands you still consider
to be possible to follow? To mimic a human limitation in IACI’s design, we defined α, the maxi-
mum allowed number of action commands per υint. Duo our human limitations, it becomes hard
to understand a plot after adding many action commands at the same scatterplot. In fact, in our
human study, the session with higher average of action commands by scatterplot reached a value
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Figure 4. Left: State space defined by the maximum number of action commands for the current XY-pair.
Right: set of motions triggered by the Analysis System (AS) and by the Visual System (VS).

below 4. Suppose we transform the X-axis values equalizing all the point-glyph values. From a
visual perspective, there is only one point-glyph. But what is the maximum number of action
commands a single scatterplot can hold? It depends upon motion definition and the dataset, but it
may be infinite. If restraining the filter to categorical attributes only, the number of filtering action
commands is finite and given by the universe of the dataset categories. Once set an XY-pair, we may
add a Z-axis, set color and size (so far, 4 action commands). We can filter or zoom the data until
there is only one instance left. Suppose {X-axis value = Y-axis value = 1}: it can continuously
be transformed if multiplied by N numbers, one multiplication (and plot) at a time – of course, the
story is different for a zero value instead of 1.

The Learning Module is activated every time a new XY-pair is delivered to the Reasoning Sys-
tem: it is time for the Learning Module help IACI to produce N . The Learning Module uses the
motion sets and aMk , both sent by the Domain-Knowledge to choose action commands. The Learn-
ing Module uses the scores of goals and its internal learning variables to dynamically rank goals and
choose the current gk. The ranking takes into account: how easy it is to obtain a high success rate
for that goal; in how many simulations the goal has been followed. A dynamic ranking enhances
the diversity of υint, even if inputting multiple times the same dataset. The Analysis System has an
embedded mechanism to handle dataset repetition and increase the diversity through augmenting all
exploratory parameters. In the future, we aim replacing the ranking process by a Homeostatic
module mimicking emotions and feelings to prioritize goals and systems. We may be using
Eliott & Ribeiro (2015) as inspiration.

When the Learning Module is activated, at each time step one action command is selected
to be added on υint. The number of action commands on υint increases according to: oM =
{1; 2; 3; ...; omax}. Figure 5 depicts how υint is made through learning. For comparison with a
human output, Figure 7 shows a sequence of plots within M produced by an astronomer during our
pilot study. IACI uses the Analysis System to define omax according to the current XY-pair, but
omax <= α. We expect α <= 20: in our human study, the higher session average of action
commands per scatterplot is below 4 (including visual action commands).

The first υint of every M is a scatterplot with only the XY-pair. The 2nd υint is made by adding
another action command. The 3rd υint has oM = 3 (the current and the previous, inherited action
commands), and so on. IACI keeps learning from adding action commands until oM = omax. The
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Figure 5. Learning process: action commands from the Learning Module (LM) chronologically generating
an υint, one plot per action command.

learning state space is defined by oM – Figure 4 depicts the state space and transitions while Figure
5 shows the generation of υint. After selecting a new action command and transitioning to a new
state, the Analysis System sends the action commands to the Actuator. The Actuator makes υint and
sends it to the Domain Reasoning. The Domain Reasoning uses gk to calculate υint:S and sends it to
to the Learning Module. There is a possibility of using different goals for different states (humans
may change goals within M ). The Learning Module calculates the reward value using: 1.υint:S ;
2.the current state and omax; 3. a weight %Mgk from the Working Memory (see the Working Memory
for details). With the reward value, IACI learns how good the current aK is given gk and the current
combinations on υint. Suppose omax = 3 and aMk = 5. In the first state, aK =XY-pair; in the 2nd
state, there are 4 possible aK ; in the 3rd state, there are 3 possible aK (we don’t allow ak repetition):
12 possible combinations of action commands for 3-state space with 5 possible action commands.
The ordering of action commands is important because different ordering may lead to distinct υint.
Of course, omax <= aMk .

Definition: Learning loop. Once υint has omax action commands, IACI restarts the learning
loop. IACI goes back to oM = 1, υint with only the XY-pair. Note that from oM > 1, the υint:S
results from a chronological combination of action commands. IACI restarts the learning loop until
it has explored aMk action commands and converged to a sequence oMa = {ak:1; ...; ak:max} of
action commands (or if a maximum number of learning loops is reached). In case aK produces
a plot with no point-glyph (invalid action command for the current data), the Domain Reasoning
delivers υint:S < 0, the learning variables are updated, and IACI restarts the learning loop. If the
average value of υint:S for oMa is very low, IACI chooses another goal and restarts the learning loop.
At the end of the learning loop, the Learning Module uses omax, and the average value of υint:S (for
oMa ) to update the score of gk. The Learning Module sends oMa and success rate to the Actuator,
the Actuator to the Plot Selection, which, finally, delivers every action command from the Learning
Module to the External Plot Maker. The External Plot Maker outputs a sequence of omax υout, from
ak:1 to ak:max: each υouts inheriting previous action commands.

Working Memory (WM)
The Episodic Knowledge buffers a set of rules % and scores of goals into the Working Memory

at the beginning of a simulation. Then, the Working Memory keeps track of the learning loops
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Figure 6. The Plot Selection (PS) uses action commands from the Learning Module (LM) and from the Work-
ing Memory (WM) in a different fashion. Example of 3 action commands: oMa = %Ma [1] = {X-axis=IDgal,
Y-axis=Velocitygal; Z-axis=IDgal; Transform the Z-axis, Reverse Function}. The Plot Selection commands
the External Plot Maker (EP) to produce one υout per action command from oMa ; starting from the 2nd, each
υout inherits previous action commands. Dashed Lines: The Plot Selection commands the External Plot
Maker to produce one υout (with all action commands) from %Ma [1].

to create new rules and update %, registering IACI’s learning and data exploration. At the end of
the simulation, all rules are sent back to the Episodic Knowledge. We are using the Alec architec-
ture’s cognitive system from Gadanho (2003) as inspiration do design IACI’s rule-system – Alec’s
cognitive system is influenced by Clarion from Sun & Peterson (1998).

The Working Memory helps the Learning Module to use past memories (from the same dD,
XY − pair and gk, but not necessarily the same inputted dataset) to diversify action command
choice – also a way for IACI to generalize from previous to similar experiences. During the learning
loop, if the Working Memory already has a rule (from simulations other than the current) matching
the current set of action commands and goals, it informs the Learning Module by sending %Mgk ≈
0.98, so the Learning Module may converge to another set of action commands but with a similar
υint:S . In case there isn’t such a rule, %Mgk = 1.

Creating Rules. The Working Memory keeps track of the learning loops: if ak generated a high
υint:S , the Working Memory records and transforms that into a rule %M . Each % keeps: 1. rule ID;
2. dD; 3. XY-pair; 4. gk; 5. all action commands currently at υint:S ; 6.number of action commands
at υint; 7. number of times the rule has been used by the Plot Selection to output υout, starting from
zero; 8. how old the rule is (simulation ID); 9. success rate: a measure taking into account 6., 7. and
8. Rules with more action commands tend to have higher success rates. Deleting Rules. At the end
of a simulation, the Working Memory searches for similar rules and deletes the ones with smaller
number of action commands.

After the Learning Module has delivered oMa to the Actuator, the Working Memory searches
through its rules and selects some of them to be sent to the Actuator. The Working Memory makes
a vector %Ma of rule-based action commands, with each rule separately kept in a vector’s position.
Each position holds a sequence of rule-based action commands and success rate. The Plot Selection
uses the success rate to decide which positions of %Ma to follow and sends that to the External Plot

52



A HUMAN-INSPIRED COMPUTATIONAL ARCHITECTURE FOR VISUAL DATA EXPLORATION

Figure 7. A sequence of plots from our pilot study. In chronological order, from left to right: plots showing
14 N ’s within one M .

Maker. The Plot Selection informs the %Ma chosen positions to the Working Memory, so it can
update the rule’s statistics of use. Note that %Ma holds sequences of action commands from distinct
simulations, and even datasets. Suppose IACI reads two different datasets sharing the same dD and
key attributes. If IACI produced the same XY-pair and gk while reading each dataset, it may have
produced rules from learning through both datasets.

3.3 Phase 2 and the Visual System (VS)

We are still in the progress of designing the Visual System. Therefore, we describe it briefly. At
the beginning of a simulation, the Analysis System feeds the Visual System with the current sets of
motions. The Visual System is free to choose action commands, but not to choose motion defining
attributes. When IACI starts outputting υout from the Analysis System, the Visual System is acti-
vated: it externally visualizes the plots. Phase 2 begins, IACI shifts from a domain-oriented to a
visual oriented approach. Analog imagery may help IACI to match goals and plots: we are studying
how to embed IACI’s Visual System with a visual analogical reasoning (Kunda et al. (2013) and
McGreggor et al. (2014)). The Visual System combines the externally visualized plots with the
motion sets sent by the Analysis System to learn action commands meeting gi. The Visual System
uses each υout as starting point: it internalizes the externally visualized plots and provides a visually
modified version of it. The Visual System adds its own action commands ai by learning to fulfill
visual goals. This is how plots get color or size: though the action of the Visual System. The Visual
System is composed of the Visual Knowledge (VK) and the Visual Reasoning System (VRS).

3.3.1 Visual Knowledge (VK)

The Visual Knowledge is composed of two modules: the Visual Semantic Knowledge (VSK) and
the Visual Episodic Knowledge (VEK). To explore data, it may be valuable to search for mathe-
matical patterns, for example, to look at a scatterplot and, by using a visual memory, to compare its
appearance with familiar distributions of data points. We intend to mimic a visual search for math-
ematical patterns in the Visual Semantic Knowledge. The Visual Semantic Knowledge also holds a
visual plot gallery matching visual goals and visual assumptions, such as examples of ‘monotonic
plots’. The Visual Semantic Knowledge is equipped with knowledge about palettes of colors and
shapes to use with size. Described in Eilbert et al. (2018), we conducted a 2nd human study to
get insights on how to design the Visual Knowledge. We collected scatterplots from astronomy.
Then, for each scatterplot, we compared scagnostics values given by people with the ones provided
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by the scagnostics CRAN package from Wilkinson & Anand (2015). We expect to collect scatter-
plots from the astronomy literature (followed by astronomy interpretations) to feed IACI’s Visual
Semantic Knowledge. The same way as the Analysis System keeps experience-based knowledge
in the format of rules, the Visual Episodic Knowledge keeps a experience-based visual memory of
υin, with rules keeping images of plots.

3.3.2 Visual Reasoning System (VRS)

The Visual Reasoning System is composed of the Visual Working Memory (VWM), the Visual
Learning Module (VLM) and the Visual Reasoning (VR). During learning, the Visual Working
Memory may decide to keep some of υint into its visual gallery by making new rules. We intend
to employ pixel-oriented techniques, such as in Keim (2000), in the Visual Reasoning to provide
υint:S .

3.4 Actuator (OR)

A plot may be internally visualized by the Analysis System and by the Visual System or outputted,
externally visualized by the Visual System. The Actuator is composed of Internal and External Plot
Makers, which get action commands and coordinate motions to make plots. The Plot Selection
outputs a decision log and uses υint:S to select a set of action commands to be sent to the External
Plot Maker, generating υout. Note that most of the υint are discarded during the learning loop and
never get to be outputted. Action commands lacking a success rate are sent to the Internal Plot
Maker; and sent to the Plot Selection otherwise. The Plot Selection sends to the External Plot
Maker every action command delivered by the Learning Module. On the other hand, if it came
from the Working Memory, it decides what to output and does it in a different fashion, see Figure
6. Every υout from the same cycle is considered an N belonging to the same M . At the end of the
simulation, the Actuator uses the success rates to output a decision log for everyM produced within
the simulation.

4. Assessment of IACI Computational Architecture

A possible approach to assess IACI is by comparing the astronomers’ plots and decisions from our
study with IACI’s plots and decision log. A simpler approach to test incomplete pieces of IACI
is to define IACI’s Domain-Knowledge using the Hertzsprung-Russell (HR) Diagram; embedding
IACI’s Semantic Knowledge with the HR’s established parameters on stars, such as spectral class,
surface temperature, luminosity, absolute magnitude, etc. IACI’s goals may be to test relationships
in a star dataset: e.g. groupings into different star classifications, or evolution routes of stars between
groups.

5. Final Remarks

We described IACI, a human-inspired computational architecture to help us understand how we
visually encode datasets. We are aware that IACI should be able to capture a narrative-like mecha-
nism while choosing what to plot (to somehow mimic the role that narrative-like reflections play in
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Term Name
dD Dataset domain
AS Analysis System
DK Domain-Knowledge
SK Semantic Knowledge
EK Episodic Knowledge
RS Reasoning System

WM Working Memory
LM Learning Module
DR Domain Reasoning
VS Visual System
VK Visual Knowledge

VSK Visual Semantic Knowledge
VEK Visual Episodic Knowledge
VRS Visual Reasoning System

VWM Visual Working Memory
VLM Visual Learning Module
VR Visual Reasoning
OR Actuator
PS Plot Selection
IP Internal Plot Maker
EP External Plot Maker

Motions XY-axes, transformation, color, size, zoom, filter, Z-axis
XY-pair Pair of attributes used by the XY-axes motion
M Major Observation
N Minor Observation
gk Domain-driven goal determined by the AS
gi Visual-driven goal determined by the VS
υout Externally visualized (outputted) plot
υint Internally visualized plot
υint:S Action command success rate
ak Action command from the AS
ai Action command from the VS
aMk Number of action commands available for the current XY-pair
α Maximum allowed number of action commands per υint

omax Maximum number of action commands for the current M
oM Defines the learning state space

oMa = {ak:1; ...; ak:max} Sequence of action commands from the LM
%Ma Vector of rule-based sequences of action commands from the WM
% Set of rules buffered by the EK into the WM
%Mgk A weight value sent by the WM to the LM

Table 1. Terminology – IACI Computational Architecture

scientists’ thought experiments, as Nersessian (1992) emphasized). Similarly, outputs should easily
be seen as a narrative. We understand this is not a trivial problem and we are approaching M and
N as an initial attempt to mimic a narrative-like data-exploration and visualization – simulation of
emotions and feelings can add into that goal. Another point to consider is our personal preferences
and human variability. For example, someone may be biased to apply log transformations while
another person may find color a powerful tool towards insights. As Ziemkiewicz et al. (2013) and
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Green et al. (2010) point out, even personality may influence our visual exploration. We observed in
our human study an unexpected use of motions, such as using lack of color to filter the data. Using
motions in a manner other than the designed, is a very human thing to do, and certainly plays a
role in innovation and creativity. IACI does not mimic any aspect of that. Another limitation is that
IACI does not remove action commands from a plot, only adds – we chose to do so to simplify our
research problem. The Human inspiration to develop and test IACI may contribute to the develop-
ment of Measuring Data Skills tests; for example, helping to frame a visual taxonomy for equation
and number distribution comprehension and manipulation. Measuring Data Skills tests can help,
for example, in the recruitment of people in the autism spectrum.
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