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Abstract 
With the emergence of low-cost, realistic simulation technologies, learner practice of complex 
cognitive skills (e.g., aircraft piloting, tactical observation, and cross-cultural conversation) is 
feasible. Tailored, guided practice has been shown to be more effective than practice alone but 
practice mediated by human experts is expensive and not scalable. As a consequence, there exists 
significant interest in developing algorithms and technologies for autonomously guiding and 
adapting learner practice. We describe an integrated cognitive systems approach to developing an 
adaptive training technology for tailored practice. We build on the pivotal foundations cognitive 
architectures have provided historically for adaptive instructional technologies (especially 
Intelligent Tutoring Systems). We also identify new requirements that, we contend, intensify the 
need for a cognitive systems approach. We describe how a specific cognitive systems approach is 
contributing to the satisfaction of these new adaptive-training requirements and the creation of 
flexible, reusable adaptive training technology. 

1.  Introduction 
Simulation-based training is becoming a cornerstone of adult skill training in both the commercial 
and military domains. For example, simulation technology is used throughout all the branches of 
the US military, at almost all echelons, and for a broad range of military roles and missions 
(Fletcher, 2009). Well-designed simulation enables more frequent and sustained learner practice. 
Learners practice in a fail-safe environment. The costs of repeated training experiences can be 
much lower, due to much lower comparative cost of simulation-based training than the real world 
(Fletcher & Chatham, 2010). Additionally, simulated entities can provide a realistic environment 
of interactions without incurring the substantial costs of human role players to support training. 

Although simulation is powerful tool for enabling practice, effective instruction requires more 
than providing a realistic practice environment. The most effective learning is hypothesized to 
occur when a practice situation is tailored to a learner’s individual ability at that point in time 
(Vygotsky, 1978) and guidance and feedback are provided as practice progresses (Clark, 2009). 
Although the specific, empirical learning gains from human one-on-one instruction are not as 
great as once thought (Van Lehn, 2011), there is ample evidence that well-trained instructors 
working with a student or small group of students can deliver highly effective training outcomes 
(Clark, 2009).  

Delivering highly individualized, effective instruction and practice via human tutors and 
mentors, however, is generally not scalable or cost-effective. There is presently significant 
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interest in research and development of software systems that can approximate the impacts of 
human instruction in computer-aided learning environments including simulation-based practice 
environments. For example, in the United States, there are initiatives sponsored by the 
Department of Defense and National Science Foundation in educational technology for Science 
Engineering Mathematics and Technology (STEM) learning. Further, the National Academies of 
Engineering has identified “personalized learning” as a grand challenge for 21st century 
engineering (National Academy of Engineering, 2008). 

The goal of researching and developing software systems that approximate human instruction 
is not new to the cognitive systems community. Many Intelligent Tutoring Systems have been 
built on the foundation of cognitive architectures, such as the Andes Physics Tutors (Van Lehn et 
al., 2005) and ACT-R-based cognitive tutors (Anderson et al., 1995). These systems use the 
integrated cognitive capabilities of underlying cognitive architectures to meet requirements for 
the learning systems. Examples include distinctions between declarative memory, where facts 
like the sums of small numbers or important constants (e.g., force of gravity) are stored and 
accessed and the procedural rules of the domain (e.g., commutative property, formulas expressing 
physical laws). Using these kinds of representations enable the system to model (or at least 
reproduce) expert solutions to problems and to attempt to diagnosis specific student errors 
(Corbett & Anderson, 1995).  

Today, emerging requirements for learning systems are being identified that intensify the need 
for integrated cognitive systems approach. These requirements include: 

1. The need to support learning in domains that have unpredictability and ambiguity, and 
lacking well-defined rules for interpreting a domain state or taking action; 

2. Highly dynamic domains, that require nearly continuous monitoring and, potentially, 
adjustment as the learner progresses through a learning exercise;  

3. Instructional flexibility, enabling a system to respond to different students (or the same 
student in a similar situation at a different time) with different instructional approaches 
and tailoring actions; and 

4. Multi-dimensional interpretation of an individual learner’s affective and cognitive state, 
enabling diagnosis beyond right and wrong to include motivation and engagement in 
assessing what instructional actions or interventions are necessary. 

We are currently researching and developing a general software system designed to address 
these new requirements while also providing a reusable software framework that can be used in 
many different domains. The Dynamic Tailoring System (DTS) supports tailoring of practice in 
simulation. It is implemented using the Soar architecture (Laird, 2012). The DTS uses Soar as an 
agent architecture (Wray & Jones, 2005) rather than to model an instructor explicitly. However, 
as detailed further below, the integrated cognitive foundation of Soar has contributed significantly 
to the approaches and solutions we are taking to meeting the new requirements introduced above. 

Below, we first describe the overall structure of the DTS and introduce recent or on-going 
applications in three different domains: intercultural conversation, tactical observation, and 
tactical aircraft piloting. We then discuss each of the new requirements, describing their 
importance, implications for system capabilities, and how an integrated cognitive systems 
approach, as exemplified by the DTS, is being used to realize or explore the requirement, with 
examples drawn from the application domains. 
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2.  Overview of the Dynamic Tailoring System 
Dynamic tailoring falls into the broader category of experience manipulation, an adjustment of 
the normal behavior of simulation elements to achieve an objective. Pedagogical experience 
manipulation concerns how one can intrinsically adjust a learning environment and simulation to 
promote learning and facilitate pedagogical goals (Lane & Johnson, 2008). The implementation 
of the Dynamic Tailoring System presumes that the system’s pedagogical experience 
manipulation will usually be used in tandem with extrinsic (outside the simulation) supports, such 
as direct instruction and intelligent tutoring. The DTS also works in conjunction with distinct 
processes that that select and instantiate problems and scenarios (Magerko, Stensrud, & Holt, 
2006). Thus, the Dynamic Tailoring System focuses on “inner loop” (Van Lehn, 2006) tailoring 
and a separate “outer loop” process chooses and instantiates particular practice exercises. 

Because the space of possible interventions from tailoring is large (and growing, as basic 
researchers explore and evaluate new methods for supporting learning), the design of the 
Dynamic Tailoring System is built around a framework that organizes possible interventions and 
adaptations (Wray et al., 2009). Table 1 summarizes primary framework elements.  

Table 1: A Summary of Dynamic Tailoring Goals and Mechanisms. 
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Scaffolding adapts content to support practice 
directly (Davis & Miyake, 2004). Paired with 
fading or the gradual removal of scaffolds that 
are no longer necessary as learners move to 
higher levels of ability (Pea, 2004).   

Engaging: Learner errors may derive not only 
from a lack of knowledge but arise from affective 
states related to attention, stress, and motivation. 
Engagement adaptations attempt to increase 
engagement or to reduce stress. 

Challenging is the inverse of scaffolding, 
introducing content adaptations that make fine-
grained components of practice more difficult.   

Individualizing: Practice environments need to 
adapt how the simulation works to support the 
diversity in preferences, technical competencies, 
and motivation (Heeter & Winn, 2008) 
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Outcome manipulation: The effects of 
simulation actions can be modified or 
modulated by the tailoring system. E.g., 
scaffolding outcome manipulation might 
amplify negative effects of errors likelihood of 
learner detection. 

Choice manipulation is manipulating the 
options and actions available to a learner. 
Examples include direct modifications of the 
actions available to the leaner as well as 
adaptations to the sequence and relationships of 
events (Magerko, 2007; Riedl et al., 2005). 

Character utterance or gesture: Character 
actions can be tailored in response or 
anticipation of learner. Character behaviors are 
usually implemented distinctly from the events 
in the simulation and will likely differ in 
implementation from outcome manipulations. 

Simulation/Event manipulation: Any pre-
emptive event introduced to support pedagogy. 
E.g., varying signal-to-noise ratio of learning-
relevant cues, introducing environment events that 
reinforced pedagogical feedback or bring the 
learner’s attention to the environment. 

Gameplay manipulation: Tailoring may include manipulations that change the way a simulation is 
experienced. E.g., adding or removing an explicit representation of progress and status, enabling 
access to external (non-game) content to amplify or aid the pursuit of learning objectives, and 
changing the user interface to accommodate preferences and technical literacy of individual learners. 
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The framework enumerates general reasons to use tailoring strategies and the classes of 
tailoring strategies that apply to simulation-based learning environments and thus defines a space 
of functional requirements that a dynamic tailoring software system should address. The intent of 
the framework is to organize exploration of tailoring methods and generalizations about learning 
outcomes without tying experiment results to specific interventions in a particular system. 

2.1  Cognitive-Architecture-based Dynamic Assessment and Tailoring  

Figure 1 illustrates the systems architecture of the Dynamic Tailoring System. Similar to an ITS, 
the system tracks learner actions and maintains a student model. An expert model describes 
correct behavior, an assessment model facilitates error recognition, categorization and mapping to 
active learning objectives, and a proficiency model enables long-term tracking of performance 
against learning objectives. Three distinct agents accomplish dynamic tailoring: Monitor, 
Pedagogical Manager, and Experience Manager.  

The basic flow of control starts with the expert model that defines appropriate and 
inappropriate actions. The Monitor draws from the expert model and other available measures of 
the learner (e.g., physiological measures relating to boredom/stress) to assess learner actions. 
Based on the assessment, the Pedagogical Manager updates the estimated proficiency of the 
student and sets preferences for tailoring, such as desired levels of difficulty or helpfulness for 

 

Figure 1. Software Architecture of the Dynamic Tailoring System. 

 



 A COGNITIVE SYSTEMS APPROACH TO TAILORING LEARNER PRACTICE  

25 

individual learning objectives. The Experience Manager then evaluates the preferences in terms 
of available tailoring options and determines a course(s) of action.  

The Monitor and Experience Manager are implemented via Soar and, as we outline further 
next, employ native mechanisms of Soar to achieve the desired functionality. The Pedagogical 
Manager is currently implemented in Java, but we are re-implementing the Pedagogical Manager 
in Soar to accommodate an emerging need for context-mediated decision making in the 
Pedagogical Manager (Section 3.2.3). We next outline the role cognitive architecture and other 
algorithms play in the existing implementation of this software system. Section 3 will then 
describe details of some of the approaches and implementations to illustrate the roles of 
integrated cognitive components in realizing solutions to key requirements.  

2.1.1  Monitor 

The Monitor’s responsibility is to observe learner actions (and, when available, affective state), 
interpret those actions and states in the context of the learning situation, and then to assess the 
learner’s behavior in terms of active learning objectives and relevant indices (e.g., estimated level 
of arousal). Interpretation processes are not specific to the domain. Instead, the Dynamic 
Tailoring System supports a declarative expert model representation loosely derived from 
constraint-based tutoring (Mitrovic & Ohlsson, 1999). Errors are detected in the Monitor by 
identifying conflicts between the learner’s actions and constraints specified in the model. 
Constraint-based models are easily authored; an expert model representation can be created 
quickly without needing detailed knowledge of the Monitor implementation that performs the 
constraint checking. 

The monitor classifies errors (errors of omission, commission, etc.) by comparing its 
interpretation of learner behavior with an Assessment Model that defines the class of an error 
(e.g., skipping a required step results in an “omissions error” label). The Monitor takes advantage 
of Soar’s efficient pattern matching capability to match constraints and identify constraint 
violations. It uses Soar’s problem space decomposition function to organize and to switch 
between scenario and learner performance “contexts” specified in the expert model. 

2.1.2  Pedagogical Manager 

The Pedagogical Manager is the newest DTS component and is presently implemented in Java. 
The Pedagogical Manager’s primary roles are to maintain the model of learner proficiency and to 
specify high-level preferences for tailoring.  

The Dynamic Tailoring System’s proficiency model is derived from the classic work on 
SHERLOCK (Katz et al., 1998). Learner proficiency is modeled via a “fuzzy variable” with five 
discrete but overlapping states, which map loosely to progressive learning/mastery of the 
concept/skills. The Dynamic Tailoring System’s proficiency model extends the original 
SHERLOCK approach to enable multiple levels of learning objectives, different responses to 
individual learning objectives deriving from one action assessment, and an algorithm for updating 
variables that is sensitive to the learning context (see Section 3.2.3). 

After each learner action and assessment, the Pedagogical Manager updates the fuzzy variable. 
The fuzzy variable is represented by a vector: <none, limited, partial, non-automated, fully-
developed> where the values of the indices always total 100. The semantics of each value in the 
vector corresponds nominally to the likelihood of the learner’s proficiency for the learning 
objective corresponding to that index. This approach offers a simple, well-defined operational 
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semantics of the fuzzy variable (i.e., instead of a theoretical commitment to some externally 
measured or validated level of proficiency). As the learner acts and the Monitor assesses those 
acts, the Pedagogical Manager then updates the estimates for each learning objective node in the 
proficiency model. Because individual proficiency vectors are tracked for each learning objective, 
tailoring responses can target these fine-grained estimates, as well as an aggregate estimate of 
proficiency. 

Rather than mapping proficiency directly to tailoring actions, the Pedagogical Manager instead 
specifies “tailoring preferences” for each learning objective. The current implementation supports 
three kinds of preferences (HELPFULNESS, SIMPLICITY, and PREDICTABILITY), which the 
Pedagogical Manager specifies for each learning objective and can change at any time. For 
instance, for a student who is demonstrating increasing competence with respect to some learning 
objective, the Pedagogical Manager may choose to reduce HELPFULNESS and SIMPLICITY 
for that learning objective, supporting a rough approximation of cognitive apprenticeship 
(Collins, Brown, & Newman, 1989). However, as we discuss further in Section 3.2.3, the 
Pedagogical Manager’s design anticipates multiple instructional approaches and the ability to 
choose and dynamically switch the instructional approach. 

One motivation for moving to a Soar implementation of the Pedagogical Manager is that the 
complexity of the decisions that the Pedagogical Manager needs to make is growing more 
complex in two ways: 1) mediating between extrinsic stimuli (such as explicit instruction or 
warnings provided by an ITS) and the intrinsic adaptations of tailoring and 2) mediating between 
affective and domain tailoring actions. For example, when a novice learner makes a mistake, it 
may be more beneficial to the learner to receive direct feedback from an ITS or “Coach” (Lane & 
Johnson, 2008) than to receive intrinsic feedback. However, for a more experienced learner, 
receiving cues from “within the environment” may be more appropriate. The Pedagogical 
Manager is the component that makes such decisions.  

2.1.3  Experience Manager 

The Experience Manager receives tailoring preferences from the Pedagogical Manager and 
chooses an action or plan based on the learning context. For example, a tailoring action that 
provides few contextual cues (HELPFULNESS=LOW) and introduces uncertainty in feedback 
(PREDICTABILITY=LOW) can be used to challenge a proficient learner. 

The Experience Manager is implemented in Soar and uses Soar as a plan execution system, 
roughly following Magerko’s (2007) Interactive Drama Architecture design, which tailors user 
experience for games and learning. Tailoring actions are represented by preconditions that specify 
applicability. Using Soar’s decision process, available tailoring actions (what options can be 
brought to bear) can be sorted according to current tailoring preferences using Soar’s built-in 
preference representation. The choice (or collection of a series of choices) is initiated via 
communication with the simulation. Although currently the implementation is limited to choosing 
pre-defined tailoring actions/plans, longer-term, we plan to extend the Experience Manager to 
construct new tailoring actions (via, e.g., planning as in Thomas & Young, 2011). 
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2.2  Example Applications 

The implementation of the Dynamic 
Tailoring System supports reuse of the 
core components across multiple 
applications. As we discuss further in the 
next section, one advantage of working 
within a cognitive architecture to 
implement tailoring capability is that we 
can draw on representations and processes 
at the fixed, architectural level to guide the 
implementation of specific decision 
making processes in the individual components. We then expect that the architectural foundation 
will then enable efficient reuse across different practice domains. To highlight this aspect of the 
implementation, we briefly introduce three applications of the Dynamic Tailoring System. 

2.2.1  Intercultural Conversation Skills 

An early application of the Dynamic Tailoring System is within an intercultural skills training 
system called the Cultural Meeting Trainer (CMT). The CMT is a lightweight 2D graphical user 
interface to the Institute for Creative Technologies’ bi-lateral negotiation (BiLAT) training 
system (Kim et al., 2009). The learner engages in a simulation of social and business interactions 
with virtual Iraqi counterparts, enabling practice of intercultural communication. 

The CMT focuses on the cultural aspects of “small talk” and trust building during social 
periods of meetings. The goal of each interaction is to “chat” with an individual character and 
gain his/her trust sufficiently to move into a formal negotiation. Five tailoring strategies were 
designed and implemented for this domain, using the Dynamic Tailoring System to organize the 
different methods and to deliver them as appropriate during individual practice sessions. For 
example, as shown in Figure 2, via a “character affect tailoring” strategy, the DTS modulates the 
appearance of emotional responses of the character depending on pedagogical context. 

2.2.2  Observational Skills 

A second application of the DTS is within a training application in which US Marines observe a 
village from a Virtual Observation Platform (VOP). The VOP is inspired and informed by 
successful “live” training programs (e.g., Schatz et al., 2010) in which Marines learn to construct 
a general “baseline” of understanding from sustained attention to activities in a “village” 
(populated by human role players). Needed skills range from low-level signals (recognizing the 
proxemics and kinesics of individual villagers), to recognizing and categorizing quotidian and 
unusual events, to developing an abstract mental representation of the “patterns of life” (Schatz et 
al., 2012) within the village. 

The VOP itself is being developed by DSCI MESH and includes sensors that detect gaze and 
the visual attention of learners, as well as an immersive simulation environment (Schatz, et al., 
2012). In this domain, we are using not only the core DTS software implementation, but also 
several of the previously developed tailoring strategies from the CMT. New tailoring strategies 
are also being applied, such as the injection of narrative events and systematic variation of signal-
to-noise in perceptual cues (Schatz, et al., 2012). A major difference in this domain, versus the 

 
Figure 2. Modulating Character Affect for Pedagogy.  
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conversational domain, is that a learner is 
much less visibly “active” than in other 
domains, needing to observe and interpret 
over several minutes. As a consequence, 
we are supplementing the Dynamic 
Tailoring System with Learner 
Instrumentation Middleware designed to 
support system understanding of attention 
and other latent factors (Wray, Folsom-
Kovarik, & Woods, 2013). We will return 
to this design requirement in Section 
3.2.4. 

2.2.3  Tactical Piloting Skills 

The most recent application of the DTS is for training of aircraft pilots in simulation. The 
application focuses on the training of platform capabilities and tactics for US Navy aviators, after 
they have mastered basic flight skills. Some of this training takes place in advanced, immersive 
flight simulators, integrated with distributed simulation engines that model aircraft flight 
dynamics, sensors and weapons, and the behavior of simulated entities (Semi-Autonomous 
Forces, or SAFs) in a scenario. The goal of dynamic tailoring in this environment is to provide a 
realistic and pedagogically appropriate training experience while ensuring that mandated training 
situations are presented during the training, minimizing the need for human intervention during 
the scenario.  

As an example, in the situation illustrated in Figure 3, the learner (viper01) aircraft missed a 
mission-critical coordination event that leaves viper01 and viper02 vulnerable to attack from the 
red aircraft (golf1 and golf2). If the red aircraft successfully attack the learner (as they have 
initiated in this illustration), the learner will miss a required training event designed to occur in 
this scenario subsequent to this initial engagement. In response, the DTS dynamically modifies 
the mission of the red SAFs, directing them to attempt to fly thru the learner’s defense, rather 
than to engage. 

This domain has required novel tailoring strategies, although the primary DTS components 
were applied with relatively minor changes. An exception was the tailoring systems’ response 
time. This domain requires much faster responses than the previous two example domains, which 
led to some performance optimizations for highly dynamic domains (Section 3.2.2). 

3.  Cognitive System Requirements for Adaptive Learning Systems 
Having introduced the functional requirements for dynamic tailoring and a summary of an 
implementation of dynamic tailoring within a cognitive architecture, this section discusses the 
advantages and rationales for taking a cognitive-systems approach to the dynamic tailoring 
problem. We first summarize some of the characteristics of dynamic tailoring that make it 
representative of the class of problems for which integrated cognitive systems are targeted. We 
then outline additional functional requirements for dynamic tailoring which further highlight the 
role of cognitive systems approaches in extending and refining an implementation of dynamic 
tailoring that is general enough to be applied to many different classes of learning domains.  

 
Figure 3. Adapting opponent tactics in response to 

learner errors. 
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Table 2: Dynamic tailoring environments and tasks manifest cognitive architecture requirements. 

Characteristic Dynamic Tailoring Implications 
C1 Complex 

Environment 
The simulation-based environment is complex, requiring understanding and 
interpretation of simulation events, learner actions, and estimation of latent states. 
The complexity of the environment is managed via large stores of symbolic 
knowledge (R1, R3), multiple levels of abstraction and generality (R4), rich action 
representations (R7) and multiple modes of deliberation and reflection (R8, R9). 

C2 Dynamic 
Environment 

Both the simulation and the learner act independently of the tailoring system. 
Modularity in the knowledge representation (R2), multiple levels of abstraction (R4), 
rich action representations (R7), and multiple modes of deliberation (R9) help the 
DTS be responsive to a dynamic domain.  

C3 Task-
relevant 
Regularities 

Learner activity is often episodic (scenarios) and, by instructional design, learner 
tasks recur resulting in similar situations for interpretation and tailoring. Modular, 
multi-layered, symbolic knowledge (R1,R3, R4, R5) enables codification, 
recognition, and response to these regularities. Although not implemented today, 
long-term, as discussed further below, we expect the DTS will also have the 
capability to learn to recognize regularities autonomously. 

C4 Other 
Agents 

Other agents include not only individual learners, but also instructors (who may 
sometimes be present). One of the advantages of general, symbolic representations 
(R1, R3) is that these representations can be presented readily to an instructor, to 
support transparency and rationales for tailoring actions. 

C5 Complex, 
Diverse, 
Novel Tasks 

Task diversity is relatively narrow but includes interpretation and assessment and 
selection (and composition) of tailoring actions (R3, R5, R7). The DTS is designed 
with encapsulated domain-specific and domain-general knowledge components, so 
that diversity of applications (different learning domains) can be supported via a 
common/reusable software environment. 

C6 Complex and 
Limited 
Interactions 

The environment is only partially observable. Although software engineering can 
make the simulation state transparent, key latent variables include proficiency 
estimates and the learner’s affective state. This complexity is primarily addressed via 
large, modular stores of symbolic knowledge (R1,R3,R4,R5) although we are also 
exploring the use of modality-specific representations (R2) for assessing affective 
state and estimating proficiency. 

C7 Limited 
Agent 
Resources 

Because the learner is taking action in the environment with the tailoring system, the 
system must respond very quickly, requiring it to sometimes trade diagnostic 
specificity (exactly why the student made an error) for a more shallow interpretation 
(e.g., the class of error). The available spectrum of deliberation (R9) within the 
cognitive architecture in particular supports evaluation of these trade offs. 

C8 Long-term 
Existence 

This criterion is less critical for dynamic tailoring. However, dynamic tailoring must 
follow a learner across multiple practice experiences and changing learner 
capability. The changing abilities of the learner require meta-cognitive knowledge 
(R8), in addition to other symbolic knowledge, to reflect on learner state and system 
action in response to that state. 
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3.1  Cognitive System Requirements for Adaptive Learning Systems 

As outlined above, we are using Soar as a capable functional substrate on which to build these 
capabilities but we are not attempting to use Soar to model the way in which a human tutor would 
recognize and classify student actions or deliver feedback. However, we maintain that the basic 
challenge of dynamic tailoring is consistent with the environment, task and task characteristics 
that motivate cognitive architectures. 

To illustrate, Laird and Wray (2010) summarize eight environment and task characteristics that 
lead to the derivation of eleven cognitive-architecture requirements. They then map individual 
requirements to specific environment and task characteristics. Table 2 lists the environment and 
task characteristics from the analysis and outlines how these characteristics are manifest in 
computational approaches to dynamic tailoring and some of the cognitive architectural 
requirements that are important in realizing a solution (the R labels represent the requirements as 
identified in their analysis). Although the current implementation does not learn from observation 
or experience (requirements R10 and R11), all the non-learning cognitive requirements outlined 
in the analysis are reflected in the task characteristics imposed by dynamic tailoring. 

Because the individual components of the DTS were developed somewhat independently of 
one another and have different functional and knowledge representation requirements, it was 
convenient, from a software engineering perspective, to encapsulate these functions into distinct 
Soar instances. It is an open question whether one instance of the architecture would be preferable 
to three distinct instances for Monitor, Experience Manager, and Pedagogical Manager. 

3.2  Emerging Requirements for Dynamic Tailoring 

As we investigate the ways in which dynamic tailoring can be used to support learners, we have 
experienced the need to support and extend the basic DTS software architecture to meet 
additional requirements. This section details some of these “new requirements” and the ways in 
which cognitive architecture has provided or is providing insights and capability for meeting the 
requirements. We begin with two requirements not explicitly considered in the early design of the 
DTS, which have largely been addressed in the implementation presented above. We then discuss 
a third requirement that is being actively developed and another emerging requirement, which we 
are exploring via on-going design and prototyping. The intent is to survey the way in which some 
software functional requirements, which may not be evident when a system is first designed, can 
be more readily and conservatively met using a cognitive systems approach.  

3.2.1  Supporting Learning in “Ill-Defined Domains” 

Many of the most successful and well-known Intelligent Tutoring Systems were applied in 
domains such as math and physics, where problems can be clearly and unambiguously stated and 
there exist well-defined procedures for solving the problems. The first application of the DTS was 
in a medical triage domain that largely fit these criteria (Magerko, Stensrud, & Holt, 2006). 
However, many interesting learning domains include unpredictability and ambiguity, partial 
observability, and may often lack well-defined rules for interpreting a domain state or taking 
action. Applying traditional ITS approaches to these so-called “ill-defined domains” has proven 
challenging (Fournier-Viger, Nkambou, & Mephu, 2010; Ogan, Wylie, & Walker, 2006). 

The approach we have taken to expert models reflects the challenges of interpretation of 
behavior in an ill-defined domain. Constraints in the expert model form an implicit “envelope” 
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that bounds behavior. As long as learner behavior remains within the envelope, the system allows 
a wide-range of learner actions. For example, in the cultural meeting domain, many different 
student utterances are allowed at each phase of the meeting. Some of these utterances can be 
associated with specific phases of the meeting; for example, formal greetings and signs of respect 
typically occur in the introductory phase of the meeting. The expert model expresses constraints 
that certain kinds of utterances should occur in this phase of the meeting, but does not directly 
forbid (mark as an error) the use of introductory utterances at later phases of the meeting. If the 
learner failed to remove the avatar’s sunglasses on entering the meeting (a sign of respect), then 
removing them after formal introductions have concluded is still likely acceptable. This approach 
allows the DTS to track student progress and note errors, but not force the learner into a rigidly 
enforced sequence of steps. This approach also potentially mitigates the frustration and loss of 
engagement learners experience when a learning system scaffolds based on improper diagnoses 
of an error (Puntambekar & Hübscher, 2005).  

The limitation of this approach, of course, is that the learner may need more guidance and the 
system may need better diagnostic power in order to choose the most apt tailoring option(s). 
Working around this limitation is where the advantages of using the cognitive systems approach 
became more apparent. The Monitor’s constraint checking could be performed by purpose-built 
algorithms or simpler pattern-matchers. However, because the Monitor is implemented in Soar, 
we can readily extend its overall capability by immediately taking advantage of additional 
capabilities available within the architecture.  

For example, the modeling language features design patterns for switching between learning 
contexts (introductory phase of a meeting vs. small-talk phase). We designed these patterns to be 
simple and authorable by instructors, who typically lack programming skills; thus, the system 
trades model expressivity for authorability. In other applications, such as the tactical air domain, 
the limited expressivity requires enumeration of many individual contexts. For this application, 
we are exploring richer knowledge of changing learner context in a more general way than the 
fixed rules in the language. Because the constraints and context-switching knowledge is already 
embedded in the Monitor, this research can bring the full power of the architecture to bear on the 
problem. We take a similar approach, supplementing the knowledge from constraint errors and 
satisfactions using the expert model with additional knowledge to provide dynamic guidance 
during learning (Wray, Woods, & Priest, 2012). 

Longer-term, we expect that some combination of “surface evaluation” and fine-grained 
assessment of the learner’s process will be desirable (Fournier-Viger, Nkambou, & Mephu, 
2010). Finer-grained diagnosis could be achieved within the DTS using model-tracing methods 
(e.g., Anderson, Corbett, Koedinger, & Pelletier, 1995), which have often been developed within 
cognitive architectures. Similarly, the existing coarse-grained error diagnosis of the current DTS 
could be coupled with domain-specific knowledge that responded directly to model-defined 
procedural error patterns (e.g., Brown & Van Lehn, 1980) or domain misconceptions (e.g., 
Vosniadou, Skopeliti, & Gerakaki, 2007) to strengthen the instructional response of the system 
when more refined diagnosis is available. Thus, rather than requiring a complete process model 
(which is often prohibitively expensive) or a constraint-based model (which limits diagnosis), 
using the cognitive architecture supports inclusion and integration of both, depending on 
application and model requirements. Additionally, in the context of a complete instructional 
system, direct assessment and reflective practice can be used to improve proficiency estimates 
(e.g., Wray & Munro, 2012). Thus, using multiple techniques to estimate learner state may reduce 
the need for a detailed process model of learning state for use in tailoring practice. 
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3.2.2  Adapting to Learners in Highly Dynamic Domains 

Another feature of many practice domains, in comparison to traditional ITS domains, is the 
highly interactive and dynamic aspect of the domains. Both the observation domain and the 
tactical air domain have many actors taking action and interacting with the learner in a way that 
sometimes requires near-immediate responses from the learner. An obvious example in the 
tactical air domain is the maneuvering of aircraft that intend to shoot one another down 
(“intercepting”).  

The high-frequency dynamics of the environment impose additional constraints on dynamic 
tailoring because the tailoring system may wish to intervene before the learner or the simulation 
takes an action. In Figure 3, for example, a red aircraft has launched a missile a moment after 
reaching the effective range of its weapon. Dynamic tailoring must be fast enough to respond to 
this condition if delaying missile launch is a better option for the learner. The response time 
required for dynamic tailoring thus reinforces the need for integrated approach. All three stages of 
the decision making process must be efficient and sufficiently integrated that information can 
pass quickly and succinctly from one component to another. 

As an example of what happens when decision-making is not responsive enough, we recently 
performed a series of redesigns and performance optimizations for the Monitor. Early 
implementations of the Monitor placed the contents of the expert model directly into Soar’s 
working memory. This strategy is convenient from a development perspective and not necessarily 
computationally expensive, as suggested in recent evaluations of Soar performance (Laird, 
Derbinsky, & Voigt, 2011). However, the Monitor implementation, due to similarity in the 
structures that were being placed into memory and constraint evaluation approaches that required 
searching for particular substructures in the constraint set, began to experience performance 
limitations attributable to expensive matching (Tambe, Newell, & Rosenbloom, 1990). We 
refactored so that less constraint structure was available in working memory at all times and 
additional information about a constraint could be retrieved deliberately when needed. This 
situation was a reminder of Newell’s (1990) maxim to “listen to the architecture” when facing 
design tradeoffs in implementation. 

A more recent example of optimization focused on reducing the size of the memory needed by 
the Monitor. The Monitor marked satisfied constraints but left those structures in memory to give 
the system access to a learner history. The short-term solution was to move this history out of 
agent memory, which eliminated issues with unbounded memory size. This solution was practical 
from an engineering perspective but, from an integrated cognitive systems perspective, inefficient 
and inelegant, because the history is no longer (readily) available to the Monitor when it may 
need it. Our longer-term plan, which also reflects “listening to the architecture,” will be to record 
these events via Soar’s episodic learning and memory (Laird, 2012). The advantage of this 
approach would likely be that the storage and retrieval of episodes is already highly optimized 
within the architecture (Laird & Derbinsky, 2009), requiring no external memory access or 
specialized storage interfaces to achieve this capability. 

3.2.3  Enabling Flexibility in Instructional Approach 

There are presently competing theories about the best ways to structure and to organize practice 
to support learning (e.g., Tobias & Duffy, 2009). Further, active research attempts to identify 
ways to support the development of learner skill in a domain as well as maintaining affective 
states that promote or support that learning (Woolf et al., 2009). However, the vast majority of 
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computer-aided learning systems assume a few (often one) instructional approaches in their 
approach to delivering instruction. Rather than committing the Dynamic Tailoring System to one 
instructional paradigm versus another, we hypothesize that instructional flexibility is key 
requirement for adaptive learning systems. That is, the system should be able to respond to 
different learners (or the same learner in a similar situation at a different time) with different 
instructional strategies and instructional actions, chosen by the system for that moment. 

The Pedagogical Manager is the component in the DTS that makes the decision about what 
instructional approach is most apt for the current situation. We are currently investigating how to 
support an approach styled on cognitive apprenticeship, mentioned previously, and another based 
on “preparation for future learning” (Bransford & Schwartz, 1999).  

In the cognitive apprenticeship strategy, learners with low estimated proficiency for a learning 
objective receive simpler problems with predictable outcomes. The Pedagogical Manager 
specifies general preferences for tailoring that will explicitly help the learner connect actions and 
feedback to learning objectives, either through an extrinsic dialog or intrinsic feedback within the 
environment. For example, in the Virtual Observation Platform domain, a virtual observation 
team can be helpful to the learner and provide hints and fill in missed details that the learner may 
have missed. As the learner demonstrates increasing skill, these supports are faded, by preferring 
less helpful and more intrinsic feedback and by making the learning situation more complex (e.g., 
more individuals to monitor in the village) and less predictable (more ambiguity in the likely 
meaning of character behaviors). The “preparation for future learning” strategy offers much less 
scaffolding initially, allowing the learner to explore the environment without guiding feedback 
and with much more of the complexity and unpredictability of the real-world environment. 

At the implementation level, “listening to the architecture” helped us to encapsulate the choice 
of appropriate strategy from the way in which any specific tailoring action is carried out. To 
continue the example from above, the virtual observation team can be used to scaffold the learner 
and to make the situation more complex. For example, the virtual team can report an event that 
serves as a distraction from the learner (attempting to take attention from events of the primary 
narrative) or misinforms (attributing a reported action to the wrong actor). These different 
tailoring options are mapped to individual learning objectives (e.g., “maintaining situational 
awareness”) but are not directly connected to a specific instructional approach. As a consequence, 
the system can select and execute a tailoring option like “report a distracting event” under many 
different instructional contexts and student proficiencies. This design approach, which is 
deliberately modeled on Soar’s separation of operator proposals and operator applications, 
provides significant flexibility in choosing what tailoring options are appropriate for some 
specific learner at some specific point in the learning trajectory. 

Relatedly, we also plan to use the selected instructional strategy to modulate the impact of 
student actions on proficiency estimation. The notion is that positive evidence in highly 
scaffolded situations should be discounted in comparison to similar evidence without scaffolding. 
Similarly, negative evidence of proficiency under highly challenging circumstances may also 
need to be discounted. Thus, instructional and practice contexts will be considered together in 
order to gauge performance and proficiency more effectively. The cognitive systems approach we 
have taken is making this contextual interpretation challenge more manageable and scalable and 
reusable across domains. 
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3.2.4  Providing Richer System Understanding of Learner State 

Dynamic tailoring can be targeted to address the affective states of a learner, as well as domain 
content. Recent evidence suggests affective states, rather than a secondary concern, are 
comparable in importance to the resulting learning outcomes as the design of learning content 
itself (Woolf et al., 2009). Further, understanding learner affective states is especially important 
when a goal of the practice environment is to cause (manageable) overloads on attention and 
stress to attempt to suggest real-world conditions. 

In keeping with these findings, the dynamic tailoring implementation includes tailoring 
strategies that employ narrative adaptation and user-interface manipulations to attempt to engage 
and to increase/decrease stress. For example, we took advantage of the turn-taking game 
mechanic of the Cultural Meeting Trainer to surprise a learner by having the learner’s 
conversational partner sometimes make a statement “out of turn” when the learner was 
inattentive. The specific utterances of the character are chosen based on the affective goal and the 
learner’s level of proficiency in the current stage of the meeting. For a novice learner who was 
observed to be inattentive, the character could interrupt with a benign utterance such as “May I 
offer you a cup of tea?” For more advanced students, the character’s interruption was more direct 
and referenced the inattention directly: “I see you have other things on your mind. Should we 
continue this meeting?” This latter statement could be coupled with an angry expression or 
aggressive posture.  

This type of tailoring strategy is predicated on being able to assess the affective state of the 
learner. A range of sensors (e.g., EEG, ECG, eye tracking) can provide real-time indicators of a 
learner’s cognitive state to enhance diagnostics and enable better tailoring (Reeves, Schmorrow, 
& Stanney, 2007; Woolf, et al., 2009). Explorations to-date use commercial EEG and a 
combination of psychophysiological sensors (ECG, EDR) to dynamically measure 
attention/arousal to support this strategy. 

The challenge from a cognitive systems perspective is to incorporate input from a range of 
sensors in a more principled and reusable manner than the purpose-built interfaces we have so far 
implemented. The current approach, as suggested in Figure 1, is a pre-processing and fusion 
component, the Learner Instrumentation Middleware. This component is designed to normalize 
and fuse individual sensor input channels into a high-level symbolic representation that can then 
be accessed by the Monitor and other components (Wray, Folsom-Kovarik, & Woods, 2013). The 
middleware design includes a semantic transform layer that brings to bear expectations about 
recent and current student activity from the Monitor to facilitate disambiguation. In other words, 
the process is designed to use the learning context as interpreted by other DTS components to 
simplify the fusion process. However, full-scale implementation and an assessment of the actual 
performance and utility of this capability have not yet been initiated. 

4.  Summary and Conclusions 
This paper presented an approach to dynamic adaption of learner practice implemented on a 
cognitive architecture foundation. We described how the challenge of dynamic tailoring, based on 
its requirements, would likely benefit from an integrated cognitive systems approach and then 
illustrated, in the form of review of one implementation, some of the capabilities and benefits 
provided by the cognitive architecture. The cognitive architecture helps meet the original 
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functional requirements for tailoring and new ones as they have arisen in researching dynamic 
tailoring and extending the software capability to new applications and domains. 

We have made significant progress in building a general dynamic tailoring capability and we 
illustrated with several example domains. Indeed, an advantage of the integrated cognitive 
systems approach, in comparison to solutions purpose-built for individual domains, is the reuse 
and reapplication of the underlying capabilities of the cognitive architecture as well as the 
knowledge components and algorithms realized via those fixed mechanisms and representations. 

Of course, cognitive architectures are themselves a subject of research and subsequent 
extension and refinement of the cognitive-architecture level. Since we began developing the 
dynamic tailoring system in Soar (version 8), Soar has undergone a major extension, Soar 9, that 
added new memories and learning mechanisms (Laird, 2012). We anticipate that migration of the 
Dynamic Tailoring System to Soar 9 would provide support in meeting existing requirements 
more efficiently and/or inexpensively and could facilitate addressing new requirements. A few 
examples include:  

• Using Soar 9’s semantic memory to encode declarative knowledge used in the expert and 
assessment models, which would further reduce working memory size and overall 
memory footprint; 

• Using Soar 9’s episodic memory to record learner actions and assessments, which will 
not only serve to reduce the size of working memory (as in Section 3.2.2) but could also 
enable access to fine-grained histories of learner behavior, which could in turn be used to 
more systematically vary learner experience and identify patterns of behavior across 
learners; and 

• Using Soar 9’s reinforcement learning to tune the performance of individual components 
and reduce knowledge engineering requirements, and potentially to learn contextually-
mediated proficiency models (as described in 3.2.3). 

Although there is a familiar tension in software development in deciding when to migrate to a 
newer version of the architecture, the important point is that these new capabilities and 
enhancements can be readily envisioned given the new version of the architecture. The new 
architecture thus shapes and guides the future development of the application. 
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