
Proceedings of the Second Annual Conference on Advances in Cognitive Systems ACS-2013 (91-108)

CRAMm —
Memories for Robots Performing Everyday Manipulation Activities

Jan Winkler WINKLER@CS.UNI-BREMEN.DE

Moritz Tenorth TENORTH@CS.UNI-BREMEN.DE

Asil Kaan Bozcuoğlu ASIL@CS.UNI-BREMEN.DE

Michael Beetz BEETZ@CS.UNI-BREMEN.DE

Institute for Artificial Intelligence, Universität Bremen, 28359 Bremen, Germany

Abstract
Agents that learn from experience can profit immensely from memorizing what they have done,
why, how, and what happened. For autonomous robots performing complex manipulation tasks,
these memories include low level data, such as perceptual snapshots of relevant scenes that influ-
enced decision making, detailed complex motions the robot performed, and effects of these mo-
tions. They also include high level representations of the intended actions and the belief-dependent
descisions that led to the chosen course of action. In this paper, we propose CRAMm, a memory
management system that can record very comprehensive and informative memories without slow-
ing down the operation of the robot. CRAMm offers a query interface that allows the robot to
retrieve the kinds of information stated above. This is done using a first-order logical language that
provides predicates concerning the beliefs and intentions of the robot, its physical state, perceptual
information, and action effects and their relations at various different levels of abstraction.

1. Introduction

Consider a robot that is supposed to prepare meals, set the table, clean up, load and unload the
dishwasher, and so on. Such activities are commonly called “everyday activities”. Anderson (1995)
defines an everyday activity as “a) a complex task that is both common and mundane to the agent
performing it; b) one about which an agent has a great deal of knowledge, which comes as a result
of the activity being common, and is the primary contributor to its mundane nature; and c) one at
which adequate or satisficing performance rather than expert or optimal performance is required.”
In this article, we investigate how robotic agents can be equipped with memories of previous activity
episodes in order to build up the “great deal of knowledge” for competently performing everyday
activities and to learn from their experience.

We propose CRAMm, a software infrastructure which equips robotic agents with a comprehen-
sive memory of their experiences that allows a-posteriori reasoning, diagnosis and reconstruction of
the believed world states at different points in time. CRAMm is an extension of CRAM (Cognitive
Robot Abstract Machine), a framework for the implementation of cognition-enabled robot control
systems (Beetz, Mösenlechner, & Tenorth, 2010). In the context of CRAMm we consider memories
to be the information gained from past experience, i.e. from everyday manipulation episodes, that

c© 2013 Cognitive Systems Foundation. All rights reserved.

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

robotic agents can access and use to improve their future activities (Wood, Baxter, & Belpaeme,
2012). As such, the information content of the memories can be measured in terms of the queries
that can be answered based on the information contained in the memory.

CRAMm enables the robot to answer queries such as the following ones: Which fetch tasks failed
because the object could not be found?, Which kinds of failures could the “place” sub-plan not
recover from?, Which items in the refrigerator often stand at the same position? and Did the robot
block its view of the pot with its own arm when it put down the mug? The questions above require
the robot to memorize its poses, the images it has taken, its beliefs and intentions, information about
objects in the world when executing its plan and the relation between these pieces of information.
A robot capable of answering these questions is a robot that knows what it has done, how, and
why, and what the results of its activities were (Brachman, 2002). The capability of answering such
queries can inform robots to make better execution-time decisions and to revise plans to improve
their expected performance.

In cognitive psychology, memories are categorized into short-term (STM) and long-term mem-
ory (LTM), where the STM is a small-capacity memory that provides the context for accomplishing
the current task. The LTM is a high-volume memory that provides comprehensive information for
all kinds of tasks. Wood et al. (2012) further categorize artificial memory types along other di-
mensions, for instance procedural versus declarative memories, where the declarative memory is
often considered as the consciously accessible information, while the procedural memory is seen
as compiled or subconscious information. Episodic memories are experienced event information
that is temporally and spatially organized and combined with context information. In this paper, we
focus on declarative, episodic, long-term memories for robot manipulation episodes.

Functionally, memorization can be divided into three distinct processes: encoding, storage, and
retrieval. The encoding is concerned with observing the state of plan execution and the data streams
that are sent between the different components, and mapping this data into memory structures that
allow the answering of the queries above. The storage is concerned with accumulating the encoded
data in a long-term memory while not affecting the overall system performance. Retrieval is con-
cerned with how to answer queries using the data stored in the memory.

The contributions of this paper are (1) expressive memory representations that combine sym-
bolic plan events with subsymbolic sensor data, (2) methods for temporal, spatial, diagnostic and
causal reasoning operating on the symbolic and subsymbolic memory structures, and (3) efficient
and scalable logging mechanisms that can build up these structures during task execution without
negatively affecting the robot’s performance. We evaluate the system on log data collected in three
different tasks (object perception, picking and placing an object, continuous arm movements) that
pose different challenges to the sensor- and plan logs. To measure the information contained in the
memories, we present a set of queries that cover a range of inference capabilities.

2. Cognition-enabled Robot Control and the CRAM system

Before introducing CRAMm, we would like to briefly explain the particularities of CRAM and our
robot control systems and the consequences and opportunities of artificial memory design. The
CRAM Plan Language CPL (Beetz, Mösenlechner, & Tenorth, 2010; Beetz, 2000) is a concurrent

92

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

reactive programming language that provides all the comfort of typical high level programming
languages including a rich set of control structures that help to make the program robust and flexible
as well as modular and transparent. The control program takes control decisions based on (possibly
complex) inference processes. To this end, control decisions are often formulated as logical queries
that evaluate to true or false or that compute values for parameterizing actions. To execute a task on
the robot, the plans activate, parameterize, and deactivate modules of the robot’s distributed control
system that provide different kinds of functionality such as object perception, robot navigation and
localization, etc.

An important concept of the language are descriptions of entities such as objects, motion, grasps,
or poses, which are called designators and which are first-class elements of the language. In the be-
ginning of the plan execution, these descriptions are often vague, such as “the cup on the table”,
leaving out situational context or detailed properties of what exactly is described. Plans are param-
eterized using such vague information and refine it when necessary. This way, plans can have qual-
itative parameters that allow much flexibility in how the task is executed, which are only quantified
when the information they provide is really necessary for execution. Designators are refined when-
ever more information becomes available, for example when an object has been perceived. Since
this information is not necessarily correct nor complete, designators can be revised with newer, more
correct information as the result of reasoning processes or failures. When a designator is extended
with further information, a new designator is created, holding the new, possibly more specific, de-
scription. Those two stages of description are then equated, i.e. linked together, to track the change
of parameterization over time. The robot’s current belief about the world is described in terms of
such designators. Especially the poses of objects in the environment and the robot’s own position
are described in exactly this way.

The execution of a plan generates a tree of tasks, which are interpretation records of subplans
and very similar to stack frames in program execution. When robot agents are assigned goals to
achieve during plan execution, they must perform one or more tasks in order to do so. An arc from
task t to task tsub roughly represents that t called tsub as a subplan. The data structures of the
tasks include the local variables and their time-stamped value changes (see (McDermott, 1993) for
a detailed description of this mechanism). Using these data structures we can define what the robot
“believes”. For example, we can specify as logical rules that the robot believes to pick up a blue
object if the plan parameter for the object acted on has an object description as its value where the
color attribute has the value “blue”.

3. An Overview on CRAMm

The power of this plan language imposes requirements on the memory apparatus to be provided by
CRAMm. CRAMm has to remember the relationship between plans and their subplans, it has to be
able to reconstruct how a particular entity description looked like at a given state of plan execution,
and it has to be able to reconstruct why the robot made a particular decision during plan execution. It
equips robots with a comprehensive memory of their experiences that allows a-posteriori reasoning,
diagnosis and reconstruction of the believed world states at different points in time. To enable such
functionality, robots using CRAMm record

93

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

Figure 1: The proposed system architecture for recording live robot data includes logging mech-
anisms for continuous sensor data into a MongoDB database, and symbolic plan events into a
KNOWROB knowledge base. A virtual knowledge base interface integrates continuous data with
the symbolic knowledge base. A specialized query interface allows reasoning on the stored infor-
mation.

1. their symbolic beliefs and intentions, the intended course of action (i.e., the task tree of the
plan execution),

2. events and data from the perception system, and lower-level information like their position in
the environment, their poses, etc, and

3. the relations between them. This includes the temporal synchronization using global time
stamps, how sensor data and changes in data structures cause changes in the beliefs and
intentions of the robot, and how the interpretation of plans causes changes in the world.

This information, coming from different sources, is combined to a timeline of events in the robot’s
knowledge base that allows ontological, teleological, causal and temporal reasoning. Figure 1 de-
picts the main components of the system which will be explained in more detail in the following
sections. During task execution, the robot records comprehensive action logs. Symbolic plan events
are directly asserted to the knowledge base (Section 5.1), including the task tree of the robot’s con-
trol program, described as instances of the respective action classes, information about start and
end times, references to manipulated objects, success and failure states, etc. Continuous data like
sensor data or the frequently updated robot pose are stored in an efficient and scalable database
which supports high-volume and high-frequency data recording without slowing down the robot
(Section 5.2). Both data sources are described using the same representation language, explained
in Section 4. The sensor data is integrated as a “virtual knowledge base” that provides an abstract
query interface similar to the rest of the knowledge base. The representation forms the basis for
sophisticated inference methods that can help the robot to take control decisions or diagnose plan
failures which are described in Section 6.

The CRAMm system builds upon the functionality of existing components like the CRAM exec-
utive, the KNOWROB knowledge base, the robot self-model in the SRDL language (Kunze, Roehm,
& Beetz, 2011), and a tool for logging sensor data into a database. In this work, we have integrated
these components and have added new modules for logging high level plan events and designators
from the CRAM executive, for accessing the logged sensor data from the KNOWROB knowledge
base, for computing spatial transformations based on the logged data, as well as predicates to reason
about the combination of all this information.

94

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

4. Formal representation of experiences

The representation of logged actions builds upon the action ontology of the KNOWROB robot knowl-
edge processing system (Tenorth & Beetz, 2013) that provides structures to represent tasks as well
as their spatial and temporal context, including events, objects, environment maps, and robot com-
ponents. KNOWROB is implemented in PROLOG and represents knowledge using the Web Ontology
Language OWL (W3C, 2009). As mentioned earlier, our memory consists of a knowledge base of
logged plan events (stored in terms of OWL statements in the KNOWROB knowledge base) and a
large-volume database with continuously-valued sensor data. To integrate both in a coherent rep-
resentation that the robot can reason about, we use a special feature of the KNOWROB system that
allows the definition of “virtual knowledge bases” on top of sub-symbolic data. Conceptually and
from a query point of view, they appear like any other information stored in the knowledge base.
However, instead of storing the information in preprocessed symbolic form, it is extracted on de-
mand at query time from the stored data. This has several advantages: The same data can be used
to compute different relations that do not have to be selected at recording time, the extracted sym-
bols are inherently grounded, and the large-volume data can be recorded and stored using optimized
databases, processing only what is needed to answer a query.

The KNOWROB ontology provides a conceptualization of the robotics domain as well as for-
malized background knowledge about the relation between actions, agents, goals, etc. For example,
the “action” branch of the ontology contains about 130 action classes that form the building blocks
for describing robot tasks. In addition to existing classes in the ontology that have so far been
focused on the robot’s behavior in the outer world, we have added classes for describing control
structures during task execution in order to be able to also reason about these aspects. The memory
consists of assertions about occurrences of actions, represented as instances of these action classes,
and assertions about the task context. The transitive subAction predicate links actions in the task
hierarchy; references to objects and locations can be described using properties from KNOWROB

such as objectActedOn, fromLocation, toLocation, etc. Due to the class–instance relationship be-
tween the robot’s plans and its logged experiences, it becomes very easy to retrieve examples of
previous executions of an action from the memory.

Actions are represented as special kinds of events initiated by agents to achieve a desired effect.
This makes it possible to describe these endogenous events using the same structures as exogenous
events like sensor readings or utterances of a dialog partner. Figure 2 visualizes the representation
of actions and external events using a pick-up task as example. The overall task PickingUpAnObject
had the goal to bring object Cup93 into the robot’s gripper. This task started at time point T1 and
ended at time point T12. Intermediate subtasks for perceiving, reaching, grasping, and lifting the
object are described as subAction within the task tree and are therefore directly associated with the
overall goal. Each event is characterized by its startTime and, if its duration is finite, its endTime.
The KNOWROB system provides methods for reasoning about the timelines using Allen’s interval
algebra (Allen, 1983). Events that are produced by other components of the robot’s distributed
control system are usually not synchronized (e.g. the exogenous events in the lower part of Figure 2),
but can be associated with the logged actions using temporal reasoning on the time stamps.

95

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

Figure 2: Example timeline of events for a pick-up task including its subtasks and a few external,
instantaneous events. Temporal relations can be computed based on the start- and end times of the
actions.

5. Encoding and Storage of Memory Contents

We distinguish between symbolic plan events and continuous-valued sensor signals which are logged
using different mechanisms. Section 6 explains how information from both kinds of storage struc-
tures can be retrieved and combined in queries.

5.1 Logging Plan Events

As a modern robot plan language, the CPL allows splitting up complex goals into subgoals and plan
primitives. CRAM provides mechanisms for defining goals, implementing the reasoning processes
necessary for their parameterization, and ultimately performing these parameterized tasks. High
level goals correspond to the intentions of the current plan execution while the sub-actions executed
to achieve these goal reflect the progress and the dynamically inferred parameterization of the task
at hand. This approach allows the distinction between different contexts in which each component
is executed, for example which goals are currently active at different levels of the hierarchy.

CRAMm records the task tree including the task parameterizations, failures that arose during
execution, the start and end times, success states of single subgoals, and the reported progress
feedback from intermediate tasks. In addition, it stores when a designator is created (e.g. an object’s
occurrence in the world is first mentioned) and when its information is updated, resulting in a change
of belief about the world. This information is stored in the OWL representation language in the
knowledge base.

Figure 3 shows a simplified example of a perceive and pick action, depicting several hierar-
chically connected tasks. The original task tree comprises roughly 250 actions and events, and 34
designators at 44 different timepoints, which we have pruned to improve readability. The top-level
task to achieve the object-in-hand goal is decomposed into a task for perceiving the object
and another one for actually grasping it. Task parameters are described by designators, as well as
the perception results. The white box in the upper left visualizes the contents of the designator de-
scribing the detection of an object of type CONTAINER. This symbolic log is linked to sensor data
recorded during the task, for example camera images, which are stored at important times during
the task execution, or the robot’s pose.

96

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

Figure 3: Simplified plan event log for an object-in-hand goal achievement. A perception
algorithm is employed to find the correct pose for the object in question, the robot agent navigates
towards that pose, and grasps the object.

5.2 Logging Sensor and Robot Pose Data

The abstract information from the plan logs is complemented with recorded data from sensors,
information about the robot’s position in the environment, its pose, etc. in order to be able to
reconstruct the world from the viewpoint of the robot as accurately as possible at a later point in
time. This can lead to quite a significant amount of data that needs to be recorded without slowing
down the task execution.

Our robots are running the ROS communication middle ware (Quigley et al., 2009) in which
sensor data and robot pose information are broadcast on so-called “topics” – an asynchronous com-
munication channel that other components (such as the logger) can listen to. This gives the logger
access to virtually all pieces of information that are sent around in the robot’s system. For recording
this information, we use a modified version of the mongodb_log software (Niemueller, Lakemeyer,
& Srinivasa, 2012) that stores the data in a MongoDB database. While this “NoSQL” database does
not support sophisticated SQL queries, it is a fast and scalable storage solution that allows recording
robot data with little overhead.

The extensions developed for this logging software include an interface for logging designator
communication between different components, as well as methods for limiting the amount of data
that is recorded. The former enables exact reconstruction of the high level communication between
the plan execution system and for example the perception system (requests, results), storing the
designators as nested key-value lists in the MongoDB database. The second kind of extensions is
necessary to keep the log databases in a manageable size and consist of different methods. First,
sensor data like images are only stored for particular points in time, like the beginning and end of
a grasping action. Point clouds are stored as depth images, which contain the same information,
but consume much less memory. In addition, the tf transformations, which represent positions of
objects in the world and especially the position and orientation of every joint of the robot, are only

97

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

Meta-Predicates (belief state or ground truth) Reasoning about events
holds(occ, Ti) Occasions in the real world loc_change(Obj) Object changed its location
belief_at(event, Ti) Occasions in the belief state object_perceived(Obj) Object has been perceived
occurs(event, Ti) Events in the belief state Reasoning about occasions

Reasoning about the logged task tree loc(obj, Loc) Location of an object
task(Task) Tasks on interpretation stack object_visible(Obj) Object is visible to the robot
task_goal(Task,Goal) Goal of task object_placed_at(Obj, loc) Object was placed at location
task_start(task, T) Start time of task Reasoning about logged poses and designators
task_end(Task, T) End time of task desig_type(Desig, Type) Type of designator
task_status(Task, Status) Status of task (not started, on-

going or finalized)
desig_prop(Desig, Prop, V al) Property values of designator

subtask(Task, Subtask) Task is a parent of Subtask obj_pose_by_desig(Obj, Pose) Object pose from perceived
designator

subtask+(Task, Subtask) Task is an ancestor of Subtask lookup_transform(Src, Tgt, T, Tf) Logged transform from Src
returned_value(Task,Result) Result of task (success or fail) to Tgt at time T

failure_task(Error, Class) Failure of task transform_pose(Pi, Src, Tgt, T, Po) Transform Pi from frame Src
to frame Tgt at time T

failure_class(Error, Class) Class of failures visible_in_cam(Obj, Cam, T) At time T, Obj was in the field
of view of Cam

failure_attribute(Err,Name, V al) Attribute of failure blocked_by_in_cam(Obj,Blk, Cam, T) At time T, Blk was blocking the
view of Cam on Obj

Table 1: Predicates for reasoning about the memorized experiences.

logged when the data has changed. These transformations are updated very frequently (at around
30-40 Hz), which is needed for motion control, but not necessarily to reconstruct the approximate
motions from the log files. We therefore introduce a threshold and only store transformations which
have changed more than this value with respect to the previously logged version. This reduces the
resulting tf file size from around 200 MB to around 30 MB for a regular pick and place task since
only actual movement data is recorded. The thresholds have been chosen as 0.005m euclidean
and 0.005rad angular distance. In addition, we log each transformation at least once a second to
facilitate the retrieval of the last transformation before a given time point from the database.

6. Retrieval of Information from stored Memory Data

The vaguely structured plan event logs recorded in the memory can hold substantial amounts of
information about the tasks and the events that happened during their execution. Taking a seemingly
simple pick and place task as example, questions such as “How long did the pick and place task
take?” and “How many tries did the agent need to find a suitable pose to stand at when grasping?”
become answerable.

These queries can be formulated using the predicates listed in Table 1. The first set of meta-
predicates is used to ask for information at a given time and to distinguish between the robot’s
uncertain belief and ground truth data about the state of the world. While all information in the
memory originates from sensor data, some is much more reliable than others. The proprioceptive
sensors measuring the robot’s joint angles and thus producing information about its pose, for exam-
ple, are very accurate and reliable and are thus considered as ground truth. Visual object recognition
and pose estimation, in contrast, is a comparatively brittle and unreliable source of information that
only updates the robot’s belief about the world. The other predicates can be used as arguments
to the meta-predicates to reason about the logged task tree, recorded events, occasions (similar to
situations), designator values and robot poses over time.

The task tree is logged directly to the knowledge base, i.e. the respective predicates can be
implemented by normal PROLOG queries. In contrast, the predicates for reasoning about events,
occasions, designators and robot pose information are evaluated on the data logged in the MongoDB
database. To the user, they span a kind of “virtual knowledge base” that is computed on demand

98

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

Figure 4: Simplified illustration of the implementation of reasoning predicates that are evaluated
based on logged perception data. The set of these predicates spans a “virtual knowledge base” over
the recorded memory data.

at query time. Figure 4 explains how the PROLOG predicate obj_pose_by_desig is implemented,
which computes the pose of an object at a given time based on detections of that object described
as designators. The PROLOG implementation reads the designator attached to the object at hand,
and calls a Java method using the Java Prolog Interface (JPL) to read its pose information. This
Java method translates the call into a query to the database and returns the results to the PROLOG

predicate.

7. Experiments

The presented techniques are applied to a pick-and-place scenario, featuring a PR2 robot that trans-
ports an object from one arbitrary position on a counter to another. The experimental setup is as
follows. A cylindrical object is placed on a kitchen counter. The robotic agent is equipped with
only the information that the object is somewhere on this counter and that it should pick it up and
transport it to a random new position on the counter. The top-level plan structure

1 (l e t ∗ ((l o c−d e s i g (a l o c a t i o n ‘ ((on Cupboard) (name k i t c h e n _ i s l a n d)))))
2 (ob j−des ig (an o b j e c t ‘ ((t y p e c o n t a i n e r) (a t , l o c−d e s i g))))
3 (a c h i e v e ‘ (l o c , ob j−des ig , l o c−d e s i g))))

supplies information about the object itself, but leaves out situational data. The (achieve ‘(loc

,obj-desig ,loc-desig)) call ultimately starts the plan performance, ordering the robotic
agent to move the object obj-desig from its current location (on the counter) to the new loca-
tion loc-desig, also being on the kitchen counter. The designator loc-desig used herein has a
two fold use. It generally describes all locations on the counter, without stating an explicit pose. It
is applied to the current object location, which is somewhere on the kitchen counter, making all ex-
plicit poses on the counter valid search regions for this object. Also, it is used as the target location
for putting down the object, which in turn makes all (free) poses on the table valid putdown poses
during object placement. At no point, the high level structure log-desig is replaced in the high
level plan, but rather resolved to actual 6D poses in the lower level modules.

Figure 5 shows images automatically taken during plan execution as part of the plan log. Three
situations are depicted – detecting, approaching, and grasping the object in question. Several more
situations were encountered in which the agent failed to perceive the object, and had to try out sev-
eral positions to stand at before being able to grasp or place the object. We elaborate on this scenario
using different queries we developed in order to gain knowledge from recorded experimental data.
The information acquired this way spans over all kinds of data the robot is recording: plan events,
motion and pose data, communication with other components, and images taken. The knowledge

99

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

resulting from inquiries like why certain tasks mostly fail or if certain positions to stand at are bad
for grasping nearby objects, are key information for enabling cognitive abilities like reflection about
how a task is performed.

7.1 Recorded Experimental Data

The experimental evaluation for the presented techniques covers the examination of three distinctly
different logging subjects. In a low level sense, we record the motion data of the robot. For this
purpose, we let it perform a mundane movement sequence over a long period of time that shows the
efficiency of low level data logging and storage. Another type of sensor event to record during many
experiments is the image stream from the robot’s cameras. To comprehend each respective situation
throughout an experimental trial and to be able to post-process imagery from such an experiment,
visual evidence from key moments (grasping, navigation, perception) is collected. In order to find
a feasible mechanism for this, we conducted a multitude of experiments for table top inspection
(i.e. finding all objects on a table) to validate that the data recording mechanism can handle such
data streams. The most complex type of data stream to collect is the actual task and parameter
description of any high level plan the robot is performing. In order to enable the proposed system
to reliably assemble this information, we ran several large pick and place experiments.

The resulting data that is recorded during the execution of a robot plan includes information
about performed high level tasks, low level motion, and images taken in key moments. Such key
moments are triggered before and after travelling to a new position, before and after grasping an
object, and when running perception attempts. The images taken during this consist of single JPG
encoded, compressed image files, which take up around 45kb per file. This keeps the amount of
drive space used for visual evidence during the plan logging in reasonable ranges. The symbolic
reasoning data recorded during a complete pick and place task as examined in this work, covering
symbolic high level reasoning data such as a task description, as well as object, action, and location
definitions, sums up to about 200–250kb.

The most drive space intense part of logged experiment data is actual low level motion infor-
mation (tf link transformation data). Figure 6 shows the amount of data recorded for a reference
motion. During this motion, the robot moves one arm from one position to another 25 times with
different inverse kinematics solutions. This way, differences in inverse kinematic solutions can be
neglected and different filter settings for the tf throttling can be compared. The figure shows that
throttling greatly decreases the data to store, at the cost of accuracy. During the conducted pick
and place tasks, a threshold of 0.005m and 0.005rad was used. These thresholds still allow for
qualitative reasoning as noise of perception systems and the actual robot base localization introduce

Figure 5: Camera images taken during execution of a pick and place task.

100

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

Figure 6: Stored transformation data over time. The different lines represent different throttling
thresholds, as shown in the Figure. The experiments were conducted over a timespan of 370s.

similar uncertainties. Therefore, the slightly lower accuracy can be neglected in favor of a smaller
storage size.

7.2 Queries on the Recorded Data

We assess the performance of the system by the range and diversity of queries it is able to answer
based on the memorized information. The following queries are exemplary for different kinds of
reasoning problems that occur when reasoning about logged execution data: Durations of tasks,
types and probabilities of failures to occur, spatial reasoning to compute relations between objects
and between objects and the robot’s pose at different points in time, as well as the use of these in-
ferences for diagnostic purposes. For being able to answer these queries, the system has to combine
information from the high level task tree, low level data like the robot’s pose over time, detected
objects, and background knowledge like the robot’s self model. While some of these queries could
directly be integrated into the robot’s decision making procedures, their main purpose will probably
be to retrieve training data and annotations for learning statistical models of the robot’s plans and
its performance in different situations.

7.2.1 How long does a pick-up task take on average?

The average duration of certain tasks can be important when analyzing time requirements of plans.
For example, the following query returns the average time needed for a pick-up action by counting
how many tasks with the goal OBJECT-IN-HAND ?OBJ have existed and how many seconds each
of these tasks took.

?− bagof (Dur , (t a s k _ g o a l (Tsk , ’GOAL−PERCEIVE−OBJECT ’) ,
t a s k _ s t a r t (Tsk , StT) ,
t a s k _ e n d (Tsk , EndT) ,
Dur i s EndT − StT) , Durs) ,

s u m l i s t (Durs , Sum) ,
l e n g t h (Durs , Num) ,
Avg i s Sum / Num.

Durs = [7 , 7 , 9 , 7 , 9 , 7] ,
Sum = 46 ,

101

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

Num = 6 ,
Avg = 7 .6667

7.2.2 Tasks failed due to an undetected object

The robot can investigate which tasks have failed due to ObjectNotFound failures using the query
below which can be answered based on the recorded task tree. CRAMm can also return all images
captured by the robot in the context of perception tasks that did not detect matching objects (return
value nil). These images serve programmers as diagnostic material or, in an autonomous learning
context, can be used by a robot to test alternative perception methods offline.

?− t a s k (Task) ,
f a i l u r e _ c l a s s (E r r o r , k r : ’ Objec tNotFound ’) ,
f a i l u r e _ t a s k (E r r o r , Task) .

Task = l o g : ’node_E3dONaOC ’ ,
E r r o r = l o g : ’ node_E3dONaOC_fai lure_0 ’

7.2.3 How likely are instances of a task class to fail due to a certain failure?

Using the logged memories, robots can compute success probabilities for their tasks. The probabil-
ity that a task fails due to a given reason can be computed by the number of failed tasks divided by
the total number of tasks of this kind. This probability can help to model the expected behavior of
the plans and to determine whether refinements are necessary.

?− bagof (Err , (t a s k _ c l a s s (Task , k r : ’ R e s o l v e A c t i o n D e s i g n a t o r ’) ,
f a i l u r e _ c l a s s (Err , k r : ’ M a n i p u l a t i o n P o s e U n r e a c h a b l e ’) ,
f a i l u r e _ t a s k (Err , Task)) , E r r o r s) ,

l e n g t h (E r r o r s , NumErr) ,

bagof (Task , t a s k _ c l a s s (Task , k r : ’ R e s o l v e A c t i o n D e s i g n a t o r ’) , Tasks) ,
l e n g t h (Tasks , NumT) ,

P r o b a b i l i t y _ o f _ f a i l u r e i s NumErr /NumT .

NumErr = 2 ,
NumT = 36 ,
P r o b a b i l i t y _ o f _ f a i l u r e = 0 . 0 5 5 6 .

7.2.4 Which objects did the robot believe to be on the counter top at a certain time?

Remembering which objects were at a certain location in the past can save robots from carrying out
additional perception tasks. An example would be to query what objects the robot believed to be on
the table before it tried to grasp an object:

?− t a s k _ g o a l (T , a c h i e v e (’ (OBJECT−IN−HAND ?OBJ) ’)) ,
t a s k _ s t a r t (T , S) ,
b e l i e f _ a t (l o c (O, L) , S) ,
o n _ P h y s i c a l (O, k r : ’ CounterTop208 ’) .

T = l o g : ’ CRAMAchieve_4aOJNJBZ ’ ,
S = 1378119171 ,
O = l o g : ’ V i s u a l P e r c e p t i o n _ W b r S G 1 1 j _ o b j e c t _ 0 ’ ,
L = kr : ’ RotationMatrix3D_vUXiHMJy ’

The result of such a query is obtained from which objects were in the belief state at that time
instance. Moreover, the last predicate checks whether this object is on top of the counter by check-

102

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

Figure 7: Left: Outside view of the scene with robot camera coordinate frame. Right: In camera-
local coordinates, the computation of the bearing towards the objects can be decomposed into two
two-dimensional problems.

ing the location of the island with the semantic map of the environment. This query integrates
the recorded designators (perception results), the symbolic task tree and prior knowledge from the
robot’s environment model.

7.2.5 Check if camera was facing the object to be detected

If an object cannot be detected, it may be that the robot did not look at the right location. If a
subsequent detection succeeds, we can analyze if this was the problem by computing whether the
position of the object was in the robot camera’s field of view before. To compute what the camera
was looking at during some point in time, we need to know where the camera is positioned and how
large its field of view is.

The former information can be obtained from the recorded robot pose data. In the context of the
ROS robot software system, the tf library facilitates the management of 3D coordinates by offering
methods for transforming any pose into any coordinate frame at a given time. While the original
tf only keeps data from the past 10 seconds, we have extended the system to operate on the full
memory of poses such that it allows arbitrary transformations between all coordinate frames at all
times for which data is available. The latter information can be obtained from the robot model
in the Semantic Robot Description Language (SRDL, (Kunze, Roehm, & Beetz, 2011)). SRDL
describes the geometry of robot parts, their kinematic structure and, for special components like
sensors, semantic properties like their resolution or field of view of a camera.

Being able to transform poses into other coordinate frames at arbitrary times makes the prob-
lem of computing the camera’s view very simple. Using the logged pose data, we can transform
the object pose, which is stored with respect to the robot’s environment map, into the local camera
coordinates (Figure 7). Instead of having to solve a three-dimensional problem, we can now decom-
pose the problem into the computation of the bearing towards the object in horizontal and vertical
direction and compare the angle to the camera’s field of view.

φ = atan(
yobj
xobj

) < HFOV ψ = atan(
zobj
xobj

) < V FOV

This computation is implemented in the obj_visible_in_camera predicate that can be used to ask
whether an object was visible for some specific camera at a given time (e.g. the beginning of a
perception action), or in which cameras it has been visible.

?− t a s k _ s t a r t (l o g : ’ CRAMPerceive_uocvmivw ’ , _S t) ,
o w l _ i n d i v i d u a l _ o f (p r2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k , s rd l2comp : ’ Camera ’) ,
o b j _ v i s i b l e _ i n _ c a m e r a (l o g : ’ V i s u a l P e r c e p t i o n _ Z 9 f X h E a e _ o b j e c t _ 0 ’ ,

103

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

pr2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k , _S t) .
t rue .

?− t a s k _ s t a r t (l o g : ’ CRAMPerceive_uocvmivw ’ , _S t) ,
o w l _ i n d i v i d u a l _ o f (Cam , s rd l2comp : ’ Camera ’) ,
o b j _ v i s i b l e _ i n _ c a m e r a (l o g : ’ V i s u a l P e r c e p t i o n _ Z 9 f X h E a e _ o b j e c t _ 0 ’ , Cam , _St) .

Cam = pr2 : p r 2 _ h i g h _ d e f _ f r a m e ;
Cam = pr2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ i r _ l i n k ;
Cam = pr2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k ;
[. . .]
f a l s e .

7.2.6 Check if the camera’s view of an object was blocked by a robot part

A common problem in object manipulation tasks is that the robot cannot see an object because one
of its arms is blocking the view. This problem could be avoided by retracting both arms out of
the scene, but this is very inefficient. To analyze if a perception failed because a robot part was in
the view, we can again use the logged pose and object position data, but instead of computing if
the bearing towards the object is smaller than the camera’s field of view, we compute whether the
bearings to the object and some robot part are close enough together. This exploits the hierarchical
nature of the SRDL model by backtracking over all sub_components of the robot’s arm and checking
for each of them if they block the view.

?− t a s k _ s t a r t (l o g : ’ CRAMPerceive_uocvmivw ’ , _S t) ,
sub_component (p r2 : p r 2 _ r i g h t _ a r m , P a r t) ,
o b j _ b l o c k e d _ b y _ i n _ c a m e r a (l o g : ’ V i s u a l P e r c e p t i o n _ Z 9 f X h E a e _ o b j e c t _ 0 ’ ,

P a r t ,
p r2 : p r 2 _ h e a d _ m o u n t _ k i n e c t _ r g b _ l i n k , _S t) .

P a r t = pr2 : p r 2 _ r _ w r i s t _ r o l l _ l i n k ;
P a r t = pr2 : p r 2 _ r _ f o r e a r m _ c a m _ o p t i c a l _ f r a m e ;
P a r t = pr2 : p r 2 _ r _ g r i p p e r _ p a l m _ l i n k ;
[. . .]

This query is an approximation of the object’s visibility since it neither takes the volume of the
robot’s arm nor the object into account. We are working on methods for geometrically reconstruct-
ing the recorded scenes so that we can apply more sophisticated techniques like off-screen rendering
of the scene (Mösenlechner & Beetz, 2013).

8. Related Work

Episodic memories similar to the ones recorded by CRAMm have been investigated in the area of
cognitive architectures, though often with a focus on modeling human cognitive processes rather
than implementing a scalable architecture for robots systems. One of the earlier cognitive architec-
ture that mimics humans’ working memory (WM) is Soar (Laird, Newell, & Rosenbloom, 1987).
Soar’s working memory contains procedural, declarative and episodic knowledge. Namely, it con-
textualizes i) a context stack, which specifies active goals, problem spaces, states and operators of
the embodied agent; ii) objects, which are denoted with attributes called values; and iii) prefer-
ences that give the procedural search-control knowledge. ACT-R (Anderson et al., 2004) is another
cognitive mechanism that is built upon a memory concept. In contrast to Soar, it has two different
memories for declarative and procedural knowledge which contain facts and things respectively. It

104

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

was adapted for different cognitive applications such as choosing among the competing associations
of a concept (Anderson & Reder, 1999), list memory paradigm (Anderson et al., 1998) and creat-
ing a memory based on the theory of serial memory in psychology (Anderson & Matessa, 1997).
ICARUS (Langley & Cummings, 2004), an integrated cognitive architecture for physical agents,
has two different memory hierarchies. On the one hand, the conceptual memory contains knowl-
edge about general features of things and their relationships. On the other hand, the skill memory
stores knowledge about how to accomplish goals. Each of these hierarchies has a long-term memory
(LTM) and a short-term memory (STM).

In the context of robotics, a memory system needs to consider the properties of physical robotic
agents, scalability issues due to storage constraints, and processing speeds of the memorized data.
Prior work in this field, which is extended in the presented approach, was done by Beetz (2000)
using a simulated robot in a simpler environment performing navigational tasks. Our work con-
tributes by extending the domain of application to mobile manipulation, which covers much more
complex manipulative and perceptive tasks, and applying the principles to an actual, real robot. The
mechanisms shown are deeply anchored in the robot’s control system and can handle high volume
low level data without disturbing the plan execution. For such low level logging, Niemueller et al.
(2012) have presented a comprehensive, dynamic logging system for low level sensor signals into
a MongoDB database. We build upon this work and have extended it with methods for logging
plan events and designators and have integrated it with our knowledge processing system to allow
semantic reasoning about the data. To keep the amount of logged data in a manageable size, we
implemented techniques for throttling high-frequency data like the stream of robot pose informa-
tion before recording. Hilbert and Redmiles (2000) describe the benefits of event logging and event
stream transformation into streams of interest by selecting, abstracting, and storing them according
to current requirements. They make use of this technique to summarize sequences of actions into
tasks and to characterize sequences based on probability matrices. As Coad (1992) points out, such
an “Event Logging Pattern” consists of a “device” triggering an event remembering message which
adds a certain sensor event to a database of events with historical values when surpassing a given
threshold value. In our case, these messages might be generated when a plan event starts and when
it ends, putting everything in-between into its context. Our assumption is that a certain context is
active as long as it is not revoked by an active trigger or by the absense of a previously active trigger
signal. In the case of plan-logging, a task-context is started at the beginning of its subroutine and
ends when the subroutine is left again. Subtasks of this task may show the same behavior, making
them hierarchical children.

On the basis of such high level information, Brachman (2002) describes the necessity of sys-
tems that can reflect on their current task and their own performance. Benefits gained from more
reflective systems would be the ability to take a step back from the current situation and getting out
of a mental box, but also to be able to explain why a certain task is being performed in the way it
is done by a cognitive agent. Our proposed approach aims at gaining this kind of knowledge from
observing the (internal) state of the agent and the state of the surrounding environment, thus being
able to reconstruct any situation during the performance, as well as build up the causal connection
between events and their consequences. With this information at hand, Kaelbling and Lozano-Pérez
(2012) elaborated on the point of having a complete belief state available for replanning and rea-

105

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

soning purposes. They harness this information as basis for dynamic decision making. Planning
actions based on this, and taking a robot’s possible courses of actions into account, they plan ahead
based on the current situation in order to get an impression about the nature of future situations. The
process they perform in a live scenario relies on quick processing times and on inexpensive compu-
tation mechanisms to not slow down the ongoing task. We build upon this principle by making a
complete belief state available offline. This enables our approach to use more computationally ex-
pensive algorithms to generate more insights about the respective situation and perform a-posteriori
reasoning about the characteristics of the robotic behavior.

9. Discussion and Conclusions

In this paper, we presented a comprehensive memory system for cognitive agents acting in the real
world. Within this context, we made efforts to clearly distinguish between the agent’s current belief
about the state of the world and the actual state, as well as the robot’s intentions that led to this state.
When performing an action, the agent expects a certain outcome – this makes up its believed world
state. Sensor readings, such as camera images, can result in contradictory information, and can yield
knowledge about how well a task was performed and even what went wrong when comparing the
expected and the actual outcomes. Taking the intentions of the current task into account, the agent
can answer questions about why it performed a certain task in a certain way, and can store informa-
tion about possible failures and common pitfalls during this type of action, making improvement of
future executions of the same or similar tasks feasible.

The memory of the robotic agent is filled from two streams of events. The first, being of low vol-
ume, consists of symbolic event data describing the hierarchical task structure of the executed robot
plans. This data also includes symbolic, qualitative parameterizations of tasks described by desig-
nators, allowing for logical reasoning. These designators can be extended over time and made more
precise when more information becomes available or old information gets retracted and replaced.
The second stream holds quantitative data from the robot’s sensors, including camera images and the
robot pose and position. Both streams are synchronized using time stamps of the start and end times
of plan events. This approach allows to reason about what information was gained through which
measures. Perception tasks that have limited a priori information about the objects they are looking
for yield their requesting and resulting designators. Comparing both may conclude that an object
somewhere on a table is at a specific 3D coordinate, and therefore changing vague information into
more specific details.

The proposed representation forms the basis for the definition of higher-level concepts like
which action causes which effects and what the current beliefs are. For example, taking an arm
movement of the robot into account, this action might be signaled by a plan event VoluntaryBody-
Movement as it is part of a grasping action. On the basis of this high level concept, low level data
about the robot’s pose and the actual reaching motion of the arm can now be connected and reasoned
about. Assuming all movements to be connected to the current plan event is sufficient here as the
plan triggering the motion takes exclusive control over the arm through a semaphore mechanism.
Coming to the agent’s belief, information about real-world entities is available to internal reasoning
processes through the designator representation as well. Taking two designators embodying objects

106

CRAMM— MEMORIES FOR ROBOTS PERFORMING EVERYDAY MANIPULATION ACTIVITIES

in the real world, their positions might be concluded to be near each other as the designators indicate
physical proximity – on a quantitative level, e.g. being near to each other, or on a qualitative level,
residing on the same supporting surface.

We presented a comprehensive robot memory system, featuring an extensive encoding scheme
for symbolic and subsymbolic experience data collected from real-world robot plan executions. An
integrated storage approach for both kinds of data was introduced and logical queries for informa-
tion retrieval from this memory were developed to make use of the resulting knowledge possible for
plan improvement mechanisms. The queries presented up to now picture the conceptual setup of the
system, forming the base for more elaborate reasoning mechanisms and query types. Taking more
information into account and running exhaustive analysis algorithms on the collected experience
data offers much potential when it comes to a-posteriori reasoning and analysis, especially in terms
of life long learning concepts. Collecting large amounts of data over many trials can form the basis
for substantial improvements during planning and plan execution. Possible results of such learning
processes include heatmaps that reflect the utility of robot and object poses for certain tasks, and ap-
propriate failure handling for failed tasks under specific situational context. Experiences collected
by robotic agents in different situations can not only hold information about single task types cur-
rently performed, but open up possibilities to reason about general knowledge that applies to many
situations and tasks. We are developing an open source software framework1 around the presented
techniques that implement plan logging capabilities. For sensor data storage, we rely on the mon-
godb_log ROS package, which is available as open source, and the reasoning capabilities shown
in our example queries for knowledge acquisition are implemented into the KNOWROB knowledge
base system, which is being developed as open source as well.

Acknowledgements

This work is supported in part by the DFG Project BayCogRob within the DFG Priority Programme
1527 for Autonomous Learning and the EU FP7 Projects RoboHow (grant number 288533) and
SAPHARI (grant number 287513).

References

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM,
26, 832–843.

Anderson, J. E. (1995). Constraint-directed improvisation for everyday activities. Doctoral disser-
tation, University of Manitoba.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An
integrated theory of the mind. PSYCHOLOGICAL REVIEW, 111, 1036–1060.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of list
memory. Journal of Memory and Language, 38, 341–380.

Anderson, J. R., & Matessa, M. (1997). A production system theory of serial memory. Psychologi-
cal Review, 104, 728–748.

1. http://www.github.com/code-iai/planlogging

107

http://www.github.com/code-iai/planlogging

J. WINKLER, M. TENORTH, A. BOZCUOĞLU, AND M. BEETZ

Anderson, J. R., & Reder, L. M. (1999). The fan effect: new results and new theories. Journal of
Experimental Psychology: General, 128, 186–197.

Beetz, M. (2000). Concurrent reactive plans: Anticipating and forestalling execution failures, Vol.
LNAI 1772 of Lecture Notes in Artificial Intelligence. Springer Publishers.

Beetz, M., Mösenlechner, L., & Tenorth, M. (2010). CRAM – A Cognitive Robot Abstract Machine
for Everyday Manipulation in Human Environments. IEEE/RSJ International Conference on
Intelligent Robots and Systems (pp. 1012–1017). Taipei, Taiwan.

Brachman, R. (2002). Systems that know what they’re doing. IEEE Intelligent Systems, 67–71.
Coad, P. (1992). Object-oriented patterns. Commun. ACM, 35, 152–159.
Hilbert, D. M., & Redmiles, D. F. (2000). Extracting usability information from user interface

events. ACM Comput. Surv., 32, 384–421.
Kaelbling, L. P., & Lozano-Pérez, T. (2012). Integrated task and motion planning in belief space.

Submitted. Draft at http://people. csail. mit. edu/lpk/papers/HPNBelDraft. pdf.
Kunze, L., Roehm, T., & Beetz, M. (2011). Towards semantic robot description languages. IEEE

International Conference on Robotics and Automation (ICRA) (pp. 5589–5595). Shanghai, China.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: an architecture for general intelligence.

Artif. Intell., 33, 1–64.
Langley, P., & Cummings, K. (2004). Hierarchical skills and cognitive architectures. Proceedings

of the Twenty-Sixth Annual Conference of the Cognitive Science Society (pp. 779– 784 (pp. 779–
784).

McDermott, D. (1993). A reactive plan language (Technical Report). Yale University, Computer
Science Dept.

Mösenlechner, L., & Beetz, M. (2013). Fast temporal projection using accurate physics-based geo-
metric reasoning. IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe,
Germany.

Niemueller, T., Lakemeyer, G., & Srinivasa, S. S. (2012). A Generic Robot Database and its Appli-
cation in Fault Analysis and Performance Evaluation. Proc. of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems 2012. Vilamoura, Algarve, Portugal: IEEE/RAS.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng,
A. (2009). ROS: an open-source Robot Operating System. In IEEE International Conference on
Robotics and Automation (ICRA). Kobe, Japan.

Tenorth, M., & Beetz, M. (2013). KnowRob – A Knowledge Processing Infrastructure for
Cognition-enabled Robots. Part 1: The KnowRob System. International Journal of Robotics
Research (IJRR), 32, 566–590.

W3C (2009). OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syn-
tax. World Wide Web Consortium. http://www.w3.org/TR/2009/REC-owl2-syntax-20091027.

Wood, R., Baxter, P., & Belpaeme, T. (2012). A review of long-term memory in natural and synthetic
systems. Adaptive Behavior, 20, 81–103.

108

	Introduction
	Cognition-enabled Robot Control and the CRAM system
	An Overview on CRAMm
	Formal representation of experiences
	Encoding and Storage of Memory Contents
	Logging Plan Events
	Logging Sensor and Robot Pose Data

	Retrieval of Information from stored Memory Data
	Experiments
	Recorded Experimental Data
	Queries on the Recorded Data
	How long does a pick-up task take on average?
	Tasks failed due to an undetected object
	How likely are instances of a task class to fail due to a certain failure?
	Which objects did the robot believe to be on the counter top at a certain time?
	Check if camera was facing the object to be detected
	Check if the camera's view of an object was blocked by a robot part

	Related Work
	Discussion and Conclusions

