

Unsupervised Entity-Relation Analysis in IBM Watson

Aditya Kalyanpur ADITYAKAL@US.IBM.COM
J. William Murdock MURDOCKJ@US.IBM.COM
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

Abstract

Text paraphrasing algorithms play a fundamental role in several NLP applications such as

automated question answering (QA), summarization and machine translation. We propose a novel

paraphrasing approach based on an entity-relation (ER) analysis of text. The algorithm uses a

combination of deep linguistic analysis (part of speech, dependency parse information) and

background resources (NGram, PRISMATIC KB, domain dictionaries) to detect and match

entities and relations. We evaluate the ER approach in a QA setting by adding it to the suite of

passage scoring algorithms in IBM Watson, a state-of-the-art question answering system. We

show a statistically significant improvement in the ability of IBM Watson to identify justifying

passages.

1. Introduction

Recently, the field of textual paraphrasing and entailment has received a lot of interest

(Androutsopoulos & Malakasiotis, 2010). Paraphrasing methods play a crucial role in several

NLP applications such as automated question-answering (both, in scoring answers and in

providing justifying passage evidence), text summarization, document clustering and machine

translation.

 These algorithms are typically given two pieces of text (or a question and a passage in the QA

setting), and they output the extent to which the two text fragments mean the same thing (or

whether the passage entails the question). Several paraphrasing algorithms have been described in

literature, including approaches based on bag-of-words (BOW) representation, vector-similarity

computations, kernel-based methods (Moschitti et al, 2007), machine-translation inspired

techniques (Finch et al, 2005) and logical/semantic form based analysis (Murdock, 2011).

 In this paper, we describe a novel text paraphrasing algorithm based on an entity-relation

analysis (ER) of the text. The idea behind ER analysis is to detect noun-centric-phrases in the

text, each of which corresponds to a singleton entity / concept / instance, and verb-centric-phrases

which correspond to relations between these entities.

 A key point of this approach is that the entities and relations do not need to be typed, i.e., no

pre-existing ontology or taxonomy is required to specify the types and relations of interest.

Instead, the algorithm relies mainly on a combination of part-of-speech and dependency-parse

information (both of which are provided by standard language parsers), along with background

statistical information such as from an NGram KB of the corpus, to detect untyped entities and

relations. With that said, however, the algorithm can also benefit from pre-existing dictionaries

Proceedings of the Third Annual Conference on Advances in Cognitive Systems ACS-2015 (Article 12)

© 2015 Cognitive Systems Foundation. All rights reserved.

A. KALYANPUR AND J. WILLIAM MURDOCK

2

of known entities and relations to provide insights into what combinations of words form

coherent meaningful units. This is a key contribution of this work: the ER scorer can benefit

from structured knowledge of entities and relations when they exist but it is not helpless when

dealing with instances of texts that are outside the scope of its structured knowledge.

 The approach is based on a combination of linguistic rules and background knowledge. It does

not require statistical training data. This makes it easier to deploy in new domains: you do not

need labeled instances of correct and incorrect paraphrases to make this scorer work. In the event

that domain-specific ontologies/type-systems are available, or training data for entity/relation

detection is provided, the algorithm can incorporate this knowledge to do better analysis. In

addition, if you do have statistical training data, you can train a model that combines this

algorithm with other passage scoring algorithms, as described in the evaluation section of this

paper.

 In this paper, we describe how the ER approach is used for scoring text passages in the IBM

Watson QA system (Murdock et al, 2012) though the underlying concepts are applicable in other

paraphrasing applications as well.

2. Related Work

An in-depth survey of textual paraphrasing and entailment methods is provided in

(Androutsopoulos & Malakasiotis, 2010). The IBM Watson QA system also employs a diverse

suite of text similarity checking algorithms, which have been described in (Murdock et al, 2012).

 The algorithms discussed in literature broadly fall into three main categories:

 Surface String similarity – compute word overlap (often taking word stems or lemma

forms to normalize tokens) between the two pieces of text, but ignore grammatical

relationships and word order. (e.g. Bag-of-words scorers)

 Syntactic similarity – construct syntactic parses of the two pieces of text and check

similarity between the parse trees (e.g. dependency tree edit distance)

 Symbolic meaning representations – construct semantic/logical representations of the two

pieces of text and determine equivalence/entailment between the meaning representations

(e.g. FrameNet based)

 While surface-form based and syntactic similarity techniques have broad coverage, they can be

easily confused by superficial similarity. On the other hand, symbolic meaning techniques can

perform much deeper analysis of the text, but tend to be a lot more brittle, breaking down on

cases that the system has not been trained on or seen before. Much of this brittleness comes from

the challenge of taking natural language inputs and converting them into formal knowledge; this

can be done (Wang et al., 2012) but only with a modest degree of precision and recall and logical

deduction generally requires that inputs be entirely correct. Furthermore, curated knowledge

bases can provide very comprehensive and reliable information for a narrow task in a specific

domain but generally do not have extensive coverage over broad, open-ended domains.

 There also exist machine-learning (ML) based systems, such as the IBM Watson QA system,

which combine the various types of text similarity checking techniques mentioned above into a

single model. This is done by transforming the various algorithm outputs into feature scores in the

model, and using pre-compiled training data to learn how to appropriately weigh and balance the

 UNSUPERVISED ENTITY-RELATION ANALYSIS IN IBM WATSON

3

different features/approaches. Through experiments, such ML systems typically outperform

individual techniques (Murdock et al, 2012). Still, there remains the potential to add new and

useful, complementary approaches into such a machine learning based system, and demonstrate

impact over and above the existing techniques.

 The proposed ER-based technique is a novel hybrid between syntactic similarity measures and

measures operating on symbolic meaning representations. While the approach uses dependency

parse information for text matching, it operates on the notion of entities and relations in a

semantic graph. The resultant solution provides a compromise between these extremes, gaining

some of the breadth of syntactic methods and some of the depth of symbolic meaning methods; a

point reinforced by our evaluation (Section 5). The evaluation also shows the additional impact of

the ER-based scorer in an ML system that previously contains a large set of state-of-the-art text

similarity techniques.

3. Motivating Example

In this section, we describe how the ER analysis is used in an automated QA setting to compare a

question and a passage.

 Table 1 shows a sample question and passage taken from the medical domain. The underlined
phrase in the passage, “Kidney Amyloidosis”, is the candidate answer that is being scored. The

passage provides a strong justification that this answer is correct, especially if it is known that

“proteinuria” is the medical term for abnormal urine albumin and that Kidney Amyloidosis is a
disease.

 The ER algorithm starts by detecting entities and relations in the question and passage. Entities

are not necessarily contiguous terms (e.g. QE2, QE3). Detection involves merging noun phrases

to create more coherent entities (e.g. merging “abnormal quantities”, “urine albumin”). The
entity detection algorithm also associates a confidence score with each entity (not shown above),

that is used in the final score computation.

Question: "What kidney disease causes swelling around wrist and knee joints and

gradually leads to abnormal quantities of urine albumin?"

Passage: "Kidney Amyloidosis manifests as peripheral joint swelling, cysts in bones,
and proteinuria”

Entities detected in Question:
QE1: kidney disease
QE2: swelling around wrist joint

QE3: swelling around knee joint

QE4: abnormal quantities of urine albumin

Entities detected in Passage:
PE1: Kidney Amyloidosis

PE2: peripheral joint swelling
PE3: cysts in bones

A. KALYANPUR AND J. WILLIAM MURDOCK

4

PE4: proteinuria

Relations detected in Question:
QR1: QE1 – causes – QE2

QR2: QE1– causes – QE3

QR3: QE1– gradually leads to – QE4

Relations detected in Passage:
PR1: PE1 – manifests as – PE2

PR2: PE1– manifests as – PE3
PR3: PE1– manifests as – PE4

Entity Matches Found:
QE1 – PE1; QE2 – PE2; QE3 – PE2; QE4 – PE4

Relation Matches Found:

QR1 – PR1; QR2 – PR1; QR3 – PR3

Table 1: Motivating Example of ER Analysis

 Relation detection follows entity detection and uses heuristics based on POS and parse

information (see next section) to detect 'relation-bearing' phrases between a pair of entities. As in

the case of entities, relations are also associated with a detection confidence score.
 After the detection phase, the ER algorithm attempts to match the entities and relations found

between the question and the passage. The information to do entity matching comes from a

variety of techniques such as a statistical (e.g. distributional similarity between “wrist joint” and

“peripheral joint” from a large medical corpus), or a knowledge based method (e.g. definition of
“proteinuria” from a medical KB). The entity match scores reflect the confidence of the matching

algorithm.

 Note that the algorithm only matches relations when their corresponding entity arguments also
match. As in the entity matching case, a variety of techniques (e.g. distributional similarity,

thesaurus-lookup etc) are used to match relation phrases, and a score between 0 and 1 is assigned

to each relation-pair match.
 The final score computed by the ER algorithm is a combination of the entity and relation

detection and matching scores. The algorithm creates a “question graph” (where entities are nodes

and relations are edges) and a corresponding “passage graph.” It then computes the extent to

which both the question and passage graphs align/overlap, considering the matching nodes and
edges. In our example, the algorithm finds many relation matches between question and passage

relation pairs, resulting in a strong overlap between the question and passage graphs, and thus

outputs a high similarity score.

4. ER Algorithm

In this section, we briefly summarize the four main modules of the algorithm. None of these
steps require statistical training; they involve a combination of rules and background knowledge

sources.

 UNSUPERVISED ENTITY-RELATION ANALYSIS IN IBM WATSON

5

4.1 Entity Detection Module

The entity detection module uses linguistic characteristics to generate a large set of candidate
entities and then uses background knowledge to provide evidence for whether those candidate
entities are semantically important. For example, consider the noun “pain” in the sentence “The
patient reported remarkably severe pain in the knee last week.” We can think of “pain” as an
entity by itself or in combination with any or all of the words or phrases that modify it, e.g.,
“severe pain”, “remarkably severe pain”, “pain in the knee”, “pain in the knee last week”, etc.
However, some of these entities are more important than others semantically; for example, a
medical lexicon may list “pain in the knee” as an entity but is unlikely to list “pain in the knee last
week” as an entity. Syntactic structure can identify combinations of words that could be an

important entity, and background knowledge can help determine which ones actually are.

Entity Detection
Input: Text (e.g. sentence, passage, document)

Output: Entities found in the text, each associated with a score reflecting the detection

confidence

Algorithm:

1. Detect noun phrases found by a dependency parser (McCord et al, 2012)
 Consider denominal verbs and adjectives when forming noun-centric phrases

2. Generate potential entities as follows:

 Merge adjacent / contiguous nouns in the text (e.g. “urine albumin”)

 Use noun-adjective syntactic modifier relationships in the parse analysis to attach

adjectival modifiers when the head noun is common (e.g. “knee joint”), where

commonality is determined by corpus frequency statistics

 Use noun-preposition syntactic modifier relationships in the parse analysis to

attach prepositional phrases when the head noun is common (e.g., “swelling
around wrist joint”), again using corpus frequency

 Use domain-specific knowledge about syntactic and semantic representation of

entities to detect potential entity spans. For example, in the medical domain,

symptoms are characterized by attributes such as body-part, severity, onset etc.
This information can be encoded as rules to formulate complete symptom spans

using part-of-speech and semantic type information on neighboring words.

3. Compute support for potential entities using several background resources:
 Standard N-gram corpus of the domain – check frequency of entity mentions
 PRISMATIC (Fan et al, 2012) KB – check frequency of syntactic parse structures.
 Domain dictionary – check if entity mention is a concept in the dictionary

The output of this step is a background support vector, where each dimension is the support
value from each of the different knowledge bases

4. Final Score Computation: Use a rule-based or statistical model to transform the

background support vector into a final confidence score for each entity (essentially this
means determining appropriate thresholds/weights for support)

Table 2: Entity Detection Algorithm

A. KALYANPUR AND J. WILLIAM MURDOCK

6

 Some notes on the module:

 Step 3 can employ a wide variety of resources including statistical information about

word sequences (an NGRAM index or similar), a knowledge-base extracted from a large

body of text (such as PRISMATIC) or a curated dictionary (such as UMLS).While both

an NGRAM index and PRISMATIC can be used to extract statistical information
(frequency, PMI etc) about words and phrases in the corpus, the key difference is that

NGRAMS operate on the surface form of the text, while PRISMATIC operates on parse

information, and hence can capture longer distance dependencies between words. For

example, given the entity: “pain in the knee”, which can be expressed syntactically as:
<noun:”pain”, prep:”in”, obj-prep:”knee”>, we can obtain frequency counts of this

particular syntactic structure in the corpus from PRISMATIC. For the corpus sentence:

“The patient experienced pain and discomfort in the hands, legs and knees”, a 4-gram
index will not find a match for the entity, but PRISMATIC would.

 The final step involves determining suitable thresholds for background support, which

can be done using some default metrics (e.g. frequency>some reasonably large number),
or by leveraging examples of domain entities (if available) in order to train a model to

learn the thresholds. Most domains have dictionaries or glossaries that can be used to

bootstrap this process. For example, in the medical domain, we use the UMLS Meta-

thesaurus (http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html).

4.2 Relation Detection Module

The relation detection module finds combinations of terms that collectively indicate how entities
are connected to each other. As with entity detection, relation detection uses syntactic structure to
identify relations, however it drops the notion of background support as we assume there is a
much wider variety in relation expression.

Relation Detection

Input: Pair of Entities

Output: Relations between input entities (if any)

Algorithm:

1. Find path linking the input entities in the dependency parse of the text

 Limit path length to a certain value, e.g. 10 elements, where an element is a node

or edge

 Return no relation if no path found within specified distance limit

2. Check that the path is a valid relational path as follows:

 Case 1: If the dependency path is bidirectional: Let the path be {P1, P2} where P1

is sub-path from one entity to the root (the point at which the path changes

direction) and P2 is the sub-path from the root to the other entity.

o Return valid if P1 contains a verb-subject relation and P2 contains an
verb-object or verb-predicate relation (or vice versa, in which case the

entity arguments are reversed)

o Return valid if P1 contains an verb-object relation and P2 starts with a any

adverbial construct (e.g., adverb, adverbial prepositional phrase)

 UNSUPERVISED ENTITY-RELATION ANALYSIS IN IBM WATSON

7

modifying a verb.

 Case 2: If the path is unidirectional: return valid if there are no conjuncts (e.g.,

and, or) in the path (i.e. the two entities are not part of the same conjunction)
3. If valid relational path found in step (2), generate the complete relational phrase by

adding adverbs and other modifiers in surrounding text (e.g. “..gradually leads to...”)

4. Final Score computation: Compute a confidence score for the relation considering the
length of the path (shorter the path, higher the confidence) and which validity checking

heuristic fired (case 1 has higher confidence than case 2)

Table 3: Relation Detection Algorithm

Some notes on the module:

 The underlying intuition of step (2) is that relation-bearing phrases typically involve
verbs or predicates, and thus the dependency path linking the entities must involve some
verb-centric dependency relations such as subject, object, predicate, and adverbial
modifiers (which are recognized by dependency parsers).

 Within step (2), case 2 applies when the phrase is a prepositional phrase that wasn't
deemed to be part of an entity span – e.g., “pain in the knee over the weekend”, where the
underlined phrases represent entities found by the entity detection module and the
italicized phrase represents the relational phrase (in this case, it has a temporal semantic)

4.3 Matching Modules

The algorithm employs two matching modules:

 Entity matching module – which determines the extent to which entities appear to be

equivalent or opposites

 Relation matching module – which determines the extent to which connections between
entities appear to be equivalent or opposites

 Both modules use a combination of word and phrase matchers to determine similarity between

sets of terms; in the former case, it is the terms that comprise the entity span, while in the latter, it

is the terms that make up the relation expression.

 Examples of term matchers are shown in the table below:

Matching Approach Examples

String / Lexical Levenstein distance between terms; Word overlap between phrases

Dictionary/

Thesaurus

WordNet distance between terms; Abbreviation-expansions from a

glossary

Distributional

Similarity

LSA similarity between terms; PMI from a corpus index

Semantic Types Check if one term is an instance/type of the other

Table 4: Term Matching Approaches

A. KALYANPUR AND J. WILLIAM MURDOCK

8

 Note that each of the term matchers above produces a score between -1 to 1 (where -1 indicates

opposites, 0 indicates no match, and 1 indicates synonyms/equivalent terms). The current version
of the algorithm ignores scores less than 0, though we are working on extending the framework to

handle mismatch information. Also, we have experimented with various strategies for merging

the various term-matching scores, and in our experience, the default of Max absolute score works

well in most cases.

4.4 Final Scoring

Entity detection and relation detection produce a graph of entities and relations for both the
question and the passage. Entity matching and relation matching determine how well the nodes
and edges of the question graph match those of the passage graph. Final scoring combines the
results of entity matching and relation matching to draw a final conclusion about how well the
entities and relations of the question align with the entities and relations of the passage.
 The algorithm used to match the graph is similar to the one used in LFACS (Murdock, 2011),

which is based on the Structure Mapping algorithm of the Structure Mapping Engine
(Falkenhainer et al., 1989). The main difference between LFACS and the ER algorithm described
in this paper is that LFACS operates at the level of individual lexical elements (nouns, adjectives,
verbs, etc.). In contrast, the ER algorithm operates at a higher level of abstraction: entities and
relations that may consist of multiple syntactic units and whose semantic significance is validated
by background knowledge.

5. Evaluation

In order to compare the ER paraphrasing technique to other state-of-the-art paraphrasing methods,
we manually created a benchmark dataset. The data was taken from the medical domain, as that is
our current domain of interest.

 Two annotators manually inspected triplets of the form: <question, candidate answer, answer-
bearing-passage> and provided a binary judgment of whether the passage provides a justification
for the candidate answer being the correct answer to the question. Partial justifications (e.g. when
the passage provided evidence for only a part of the question) were treated the same as full
justifications.

 As noted earlier, the ER scorer does not require training data since it is based on rules and
background knowledge. However, IBM Watson’s method for integrating multiple distinct
scoring features (Gondek et al., 2012) does depend on statistical training data.

 The instances (triplets) were obtained using a set of training questions, each of which was of
a multiple choice format with five answer choices (and only one correct answer), and a medical
corpus which included resources such as DynaMed (2015), Elsevier and Wikipedia. Relevant
passages from the corpus were found by issuing queries using the Indri search engine (Strohman

et al, 2005); query terms included the candidate answer (compulsory) and all keywords from the
question (optional). The generation and execution of the query is completely automated and uses
the same core mechanisms used in the IBM Watson system to find evidence for scoring answers
to questions.

 Only instances with inter-annotator agreement were selected in the final dataset as our ground
truth (Kappa score was 0.8). In all, the ground truth contained 1200 instances, of which 86% were
negative examples, reflecting the fact that a large proportion of passages to a given question are
not justifying.

 UNSUPERVISED ENTITY-RELATION ANALYSIS IN IBM WATSON

9

 We then used this data to train and test a logistic classifier over a set of paraphrasing features.
The train and test set sizes were 800 and 400 instances respectively (randomly sampled from the
full ground truth).

 For evaluation purposes, we trained two separate model configurations – C1: a baseline
model using the full suite of paraphrasing (also called passage scoring) algorithms in IBM
Watson, a state-of-the-art QA system (Murdock et al, 2012), and C2: a new model in which we

added the ER feature to the baseline feature set. The results are shown in Table 5.

System AuC Pearson's R Correct Ratio Incorrect Ratio

C1: Baseline .618 0.603 2.93 0.696

C2: Baseline + ER .715 0.649 3.36 0.616

Table 5: Impact of ER Passage Scoring on Complete System

 Since this is a binary classification task, we report results for Area under the Precision-Recall
curve (AuC) and correlation with correctness (Pearson's R). As shown, adding the ER scorer to
the baseline results in improvement across all three metrics. We assessed statistical significance
using Fisher's randomization test and found that the improvement in AuC and Person’s R were
statistically significant (p=0.01 and p=0.04, respectively). As the baseline IBM Watson system
already uses 20 state-of-the-art paraphrasing/passage scoring features, strong across-the-board
gains for this crucial text-analytic task implies that the ER scorer is providing considerable new
value.

We also report results for two less common metrics that may provide additional insights into
the behavior of the system. The “Correct Ratio” is the mean score on passages labeled as
“correct” (i.e., that the passage does justify the answer) divided by the mean score on all
passages. The “Incorrect Ratio” is the mean score on passages labeled “Incorrect” divided by the
mean score on all passages. A system with a high correct ratio and a low incorrect ratio is
particularly effective in the degree to which it awards higher overall confidence scores to correct
answers than to incorrect answers. This trait is particularly important in applications where the
degree of confidence is exposed to an end user either explicitly (e.g., showing a numerical
confidence or a slider) or implicitly through behavior (e.g., only showing high confidence

We also looked at how the ER scorer alone compares to each of the existing passage scoring
features in IBM Watson and how it compares to the combination of all together. In both AuC and
Pearson’s R, the ER scorer outperforms each of the other scorers in IBM Watson but still falls

well short of all of them combined. In Table 6, we show how the ER scorer compares to two
other scores: LFACS (Murdock, 2011) and Passage Term Match (Murdock et al., 2012).

System AuC Pearson's R Correct Ratio Incorrect Ratio

PassageTermMatch .434 .451 1.92 0.850

LFACS .300 .289 3.71 0.559

ER .540 .523 3.89 0.553

Table 6: Comparison of Passage Scoring Components

A. KALYANPUR AND J. WILLIAM MURDOCK

10

As noted earlier, LFACS uses Structure Mapping to align a graph of the question terms to a
graph of passage terms; the ER scorer uses a similar alignment strategy but at a higher level of
abstraction: entities and relations. In contrast, Passage Term Match is a very simple bag-of-words
matcher that completely ignores the structure of the text and the order of the words. Table 6
shows that Passage Term Match dramatically outperforms LFACS in AuC and Pearson’s R; this
reflects the fact that LFACS is very brittle and thus falls far short of Passage Term Match in terms

of overall coverage. The brittleness of LFACS is a result of the extremely fine granularity of the
graphs it uses; to get a high LFACS score, a passage must use terms that match many question
terms and have those terms connected to each other in precisely the same way (either by the
dependency parser or by semantic relation detectors that use a rigid pre-defined ontology). These
requirements limit the applicability of LFACS, but they also ensure that a particularly strong
score for LFACS is a very strong indicator of a passage being correct. This is reflected by the
“correct ratio” and “incorrect ratio” scores for LFACS, which shows that it does much better than
Passage Term Match in the degree to which it prefers right answers over wrong ones. A passage
for which Passage Term Match has a very high score matches most or all of the question terms in
any order and in any configuration; that alone is not enough to be highly confident that the
passage actually justifies the answer.

The ER scorer is designed to combine the strengths of Passage Term Match (broad

applicability) with the strengths of LFACS (ability to be highly confident in conclusions). Table
6 shows that it does succeed remarkably well at combining these strengths. It provides
comparable (slightly better) correct and incorrect ratios, reflecting the fact that, like LFACS, it is
verifying that not only are the concepts in the question present in the passage but also that they
relationships among those concepts are aligned. However, because the entities and relations in
the ER scorer are at a higher level of abstraction, it can match them using less brittle, more
broadly applicable methods (as described in Sections 4.3 and 4.4). As a result, it dramatically
surpasses both LFACS and Passage Term Match in AuC and Pearson’s R. In fact, none of the
other passage scorers in Watson exceed 0.5 for either of these metrics (putting the ER scorer’s
0.540 and 0.523 comfortably in first place). However, the full system (as shown in Table 5) does
substantially better than the ER scorer alone. Thus while the ER scorer outperforms any one of
the other scorers in Watson it is more effective as a complement to the other scorers than it would

be replacing all of them.

6. Conclusion and Next Steps

In this paper, we describe a novel unsupervised text analytic technique that is based on the idea
of identifying untyped entities and relations in the text. Results based on the ER approach provide
a significant performance improvement over a baseline state-of-the-art passage scoring system
(IBM Watson) on a justifying passage task, which is a core task in automated QA for both,
scoring answers and providing evidence. We also demonstrate via our evaluation how the ER
approach combines the best aspects of syntactic similarity measures (breadth/recall) with
semantic representations based techniques (depth/precision). We believe that the ER text analytic
can play a crucial role in natural language processing applications such as QA, paraphrasing,

summarization and language translation.
 There are two extremes that often arise among systems that perform cognitive tasks:

 Systems based on statistical correlations often perform reasonably well but they are
inherently limited by the lack of deeper understanding. We can build a system that does

 UNSUPERVISED ENTITY-RELATION ANALYSIS IN IBM WATSON

11

a good job extracting the statistical signal that is available in a large quantity of data,
and it works fairly well. However, once we have that system it is hard to make it any
better because there is only so much signal to be pulled from the data; progress
asymptotically approaches a limit that is still well short of acceptable for many
applications.

 Systems based on knowledge and deduction are virtually limitless in theory; when we

encounter a particularly challenging example we can always add new background
knowledge and/or inference rules to address that example. However, complex open
domains generally provide a more diverse variety of requirements than a knowledge-
base engineer can cover. Reasoning over knowledge provides very precise, reliable
conclusions when it is applicable but frequently it does not apply at all.

 In general, IBM Watson addresses this conundrum using an “all of the above” strategy in which
a variety of statistical and knowledge-based subcomponents are all applied to all inputs and
conventional machine learning methods are used to integrate these subcomponents. This
compromise allows IBM Watson to produce correct answers with very high confidence when its
more deductive components are applicable while still being able to produce an informed guess
when they are not. However, when all the subcomponents lie on either extreme they are
collectively still limiting because it is prohibitively expensive to get very broad coverage from the

very precise components. Thus highly confident answers backed by deduction are very
infrequent and a large proportion of the system outputs are driven by broadly applicable but
imprecise correlations. Our ER scorer addresses this challenge by not going to either extreme. It
is not limited to only considering types of entities and relations for which it has deep semantic
knowledge. However, it is able to benefit from background knowledge and it does reason at a
higher level of abstraction than simple co-occurrence of words. The ER scorer represents just one
point on a broad spectrum of capabilities that are neither extremely deep nor extremely shallow.
Our results with it suggest that it is a valuable contributor to a broad collection of scorers.

 We continue to explore improvements to the ER approach, namely:

 Support for multiple distinct interpretations of the text (the same phrase can act as an

entity or relation depending on neighboring interpretations)

 Support for n-ary relations (currently all relations are binary)

 Considering negated entity and relation spans, along with opposite/antonymy
information, to produce a text mismatch score

A. KALYANPUR AND J. WILLIAM MURDOCK

12

References

Androutsopoulos, I., Malakasiotis, P. (2010). A survey of paraphrasing and textual entailment

methods. Journal of Artificial Intelligence Research. Volume 38 Issue 1, Pages 135-187.

Dynamed. (2015). DynaMed Overview. Available: https://dynamed.ebscohost.com/about/about-
us

Falkenhainer, B., Forbus, K.D. and Gentner, D. (1989). The Structure Mapping Engine:

Algorithm and examples. Artificial Intelligence, 41, 1-63.

Fan, J., Kalyanpur, A., Gondek, D., and Ferrucci, D. (2012). Automatic Knowledge Extraction

from Documents. IBM Journal of Research and Development, Volume:56, Issue: 3.4.

Finch, A., Hwang, Y-S, and Sumita, E. (2005). Using machine translation evaluation techniques

to determine sentence-level semantic equivalence. In Proc. of the 3rd Int. Workshop on
Paraphrasing, pp. 17–24, Jeju Island, Korea.

Gondek, D.C., Lally, A., Kalyanpur, A., Murdock, J.W., Duboue, P.A., Zhang, L., Pan, Y., Qiu,

Z.M., and Welty, C.. (2012). IBM Journal of Research and Development, Volume:56, Issue:
3.4.

Moschitti, I., Quarteroni, S., Basili, R., and Manandhar, S.. (2007). Exploiting syntactic and

shallow semantic kernels for question/answer classification. In Proc. 45th ACL Conf., Prague,

Czech Republic. Available: http://www.ist-luna.eu/pdf/ACL07.pdf.
Murdock, J.W., Fan, J., Lally, A., Shima, H. and Boguraev, B. (2012). Textual evidence

gathering and analysis. IBM Journal of Research and Development, Volume:56, Issue: 3.4.

Murdock, J.W. (2011). Structure Mapping for Jeopardy! Clues. International Conference on
Case-Based Reasoning, ICCBR 2011, London, UK, September 12-15, 2011. pp 6-10

McCord, M., Murdock, J.W., and Boguraev, B. (2012). Deep parsing in Watson. IBM Journal of

Research and Development, Volume:56, Issue: 3.4.
Strohman, T., Metzler, D., Turtle, H., Croft, W.B. (2005). Indri: a language-model based search

engine for complex queries. Proceedings of the International Conference on Intelligent

Analysis, 2005
Wang, C., Kalyanpur, A., Fan, J., Boguraev, B.K., Gondek, D.C. (2012). IBM Journal of Research

and Development, Volume:56, Issue

