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Abstract
A Multi-Strategy Architecture improves the efficiency of on-line learning of robotic behaviours
by taking inspiration from approaches humans use for learning complex behaviours. The hybrid
approach first learns the qualitative dynamics of a robotic system from which a symbolic planner
constructs an approximate solution to a control problem by qualitatively reasoning over the discov-
ered dynamics. The parameters of the approximate solution are refined by numerical optimization,
into a policy for a reactive controller. The hybrid approach is demonstrated on a multi-tracked robot
intended for urban search and rescue.

1. Introduction

A cognitive architecture for developing complex robotic behaviours faces numerous challenges.
To solve complex robotic tasks, such as locomotion, it is desirable to learn the appropriate low-
level control (or actuator) actions, rather than use hand-crafted approaches. This robotic learning
task is difficult when it is conducted on large continuous domains, using robotic systems that have
noisy sensors, inaccurate actuators and are difficult to correctly model. We also pose an additional
research challenge of on-line learning, that is, learning as the robot operates. In this paper, we detail
a Multi-Strategy architecture for the on-line learning of control actions (Figure 1), that is inspired
by approaches that humans typically take to learning complex control behaviours.

Control tasks are typically solved by some form of reinforcement learning, To learn a con-
trol policy, the system performs a succession of trials, which initially fail frequently. As more
experience is gained, the control policy is refined to improve its success rate. In its early formu-
lations (Michie & Chambers, 1968; Watkins, 1989; Sutton & Barto, 1998), reinforcement learning
worked well as long as the number of state variables and actions was small. For larger domains
and more complex tasks, such as visual AUV navigation (El-Fakdi & Carreras, 2013), or teaching
a dog-like robot to jump (Theodorou, Buchli, & Schaal, 2010), hand-crafted computer simulations
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Figure 1: Multi-Strategy Architecture
for learning robotic behaviours, using
Qualitative Reasoning.

Figure 2: iRobot Negotiator platform
for Urban Search and Rescue. The
robot is shown climbing a step.

of a robot allow a large number of trials to be run, which are improved by a second stage of on-line
learning. Alternatively, Behavioural Cloning learns control policies by first observing the actions
of an expert human (Michie, Bain, & Hayes-Michie, 1990), and has been applied to tasks such as
aircraft flight (Šuc, Bratko, & Sammut, 2004), helicopter flight (Ng et al., 2006), and a controlling
a non-linear container crane (Šuc & Bratko, 1999).

Unlike humans, these reinforcement learning approaches are generally incapable of making use
of background knowledge about the domain to reduce the number of trials required to converge
to a solution. For example, if a human is learning to drive a car that has a manual gear shift, the
instructor does not tell the student, “Here is the steering wheel, the gear stick, and the pedals. Play
with them until you figure out how to drive”. Rather, the instructor will be quite explicit, providing
a qualitative sequence of actions to perform. To change gears, the instructor might tell the student
to simultaneously depress the clutch while releasing the accelerator, following by the gear change,
and so on. However, the instructor cannot impart the quantitative “feel” of the pedals and gear stick,
or control the student’s muscles so that the hands and feet apply the right pressure and move at just
the right speed. This can only be learned by trial-and-error. So despite the qualitative knowledge,
the student will still make mistakes until the parameters of their control policy are tuned. However,
with no prior knowledge, learning would take much longer since the student has no guidance about
what actions to try, and in what order to try them. The qualitative constraints also give the learner
what might be described as “common sense” in that it can reason about the actions it is performing.
In the example above, the background knowledge was provided by a teacher but some or all of it
could also be obtained from prior learning.

Applying a similar hybrid approach to learning robotic behaviours will speed up the trial-and-
error learning of the low-level control policies. We describe a Multi-Strategy architecture (Figure 1),
that extends earlier work in on hybrid learning systems (Ryan, 2002; Sammut & Yik, 2010). which
incorporated a symbolic planner to reason about the background knowledge. However, the hybrid
learning architecture must address challenges in building robotic systems.

The three-layer hierarchy of the ICARUS architecture (Bonasso et al., 1997; Gat, 1998) is a
typical representation of a robotic system. The lowest reactive layer reads from a robot’s sensors,
and produces immediate controller actions sent to the robot’s actuators. The intermediate sequenc-
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ing layer configures the parameters of the reactive commands, and the upper deliberative layer is
responsible for long-term planning. Thus a hybrid learning architecture must easily allow for rep-
resentations that are suitable for both the low-level, numeric reactive commands, and high-level,
deliberative symbolic planning

Our three-stage hybrid system (Figure 1), detailed in Section 2, first builds background knowl-
edge of the robotic system at the reactive layer using a qualitative representation. Secondly a delib-
erative layer symbolic planner that incorporates Qualitative Reasoning (de Kleer & Brown, 1984;
Forbus, 1984), produces a parametrised sequence of actions, which provide only an approximate
solution to the control task. Finally, the parameters are quickly optimized at the reactive layer
by trial-and-error learning. We demonstrate our architecture on a multi-tracked robot intended for
Urban Search and Rescue (Figure 2).

1.1 Related Work

Qualitative Reasoning was used as the basis of planning actions by Hogge (1987) and Forbus (1989).
Alternatively, Drabble (1993) and DeJong (1994) designed reactive monitoring systems with plan-
ning to predict and react to the next state of a system. These authors used similar versions of
STRIPS-like actions to modify a qualitative model of the system, which in turn changed the quali-
tative behaviour of the system. Such representations of an action work well for systems like water
tank with in-flow and out-flow valves, where the action of opening or closing a valve have discon-
tinuous sudden affects. On a robotic system, actions, such as moving an actuator, are more subtle.
An action changes the value of a variable of the system, but does not change the qualitative model
of the system.

More recently, Troha and Bratko (2011) successfully performed planning using QSIM (Kuipers,
1986) within the robotics domain. The system first learns the qualitative behaviour of a robotic
system and then plans a sequence of actions. However, their system was specialised to learning the
effects of pushing objects with small two-wheel robots.

Mugan and Kuipers (2012) developed QLAP also for using qualitative reasoning in solving
robotic tasks. QLAP learns a hierarchy of small quantitative controllers at the reactive ICARUS

layer, that allow a set of variables to reach specified qualitative values. However, we prefer to learn
a model that allows for symbolic planning of actions, as this model is reusable for planning different
control tasks, and the low-level controllers we learn are optimised for their specific tasks.

1.2 Application Domain: Terrain Traversal in Urban Search and Rescue

The task of traversing rough terrain typically found in the field of Urban Search and Rescue, such
as steps, staircases and loose rubble, is a complex control task. The iRobot manufactured Negotia-
tor (Figure 2), typical of those used in the field, contains a main set of tracks to drive the robot and
sub-tracks, or flippers, that can re-configure the geometry of the robot to climb over obstacles. The
planner must choose the best sequence of actions to overcome the terrain obstacles.

Solving autonomous terrain traversal through learning is an active field of research (Gonzalez
et al., 2010; Tseng et al., 2013; Vincent & Sun, 2012). Following these approaches, we apply
our planner to the step climbing task. This task is more complex than it may appear and requires
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Figure 3: Representation of Negotiator and the step climbing task with the two broad approaches to
climbing the step, driving forward (Approach 1) and reversing (Approach 2).

skills essential to traversing other terrain such as stairs and rubble. The Negotiator must configure
itself to climb an obstacle that is higher than its main tracks using two broad approaches (Figure 3),
sometimes requiring a lengthy sequence of actions. In Approach 1 the flippers are raised above the
step before the robot drives forward. Approach 2 is significantly more complex. The robot reverses
up to the step then, by supporting the its weight on the flippers, the base is raised and placed on
the step. The flippers are reconfigured and the robot reverses onto the step. Taking Approach 1
is favourable to Approach 2 as the process of supporting the robot’s weight on the flippers is very
unstable. However, Approach 1 cannot be used if the step is too high. Thus, a learning system
should prefer Approach 1 when possible, but also be able to determine when Approach 2 is the only
viable way to climb the step.

2. Multi-Strategy Architecture for Learning Robotic Behaviours

Our three-stage hybrid architecture learning robotic behaviours (Figure 1), inspired by how humans
learn to solve complex tasks, is based on the Multi-Strategy Architecture of Sammut and Yik (2010).

The first stage builds a qualitative representation for the background knowledge of the robotic
system. A qualitative model of the dynamics of the robot and its interaction with the environment
is learnt from numeric training data collected by on-line sampling. We extend Padé (Žabkar et al.,
2011), which is an existing tool for learning qualitative models from numeric data, suitable for use
with noisy domains such as robotics. Our extensions to Padé make the learnt qualitative model
suitable for qualitative task-planning.

The second stage uses the background knowledge and our qualitative planner find a sequence
of qualitative actions, forming the approximate solution that solves a given task. Our planner (Wi-
ley, Sammut, & Bratko, 2013; Wiley, Sammut, & Bratko, 2014a) uses the Qualitative Simulation
(QSIM) algorithm (Kuipers, 1986) to predict the outcome of performing a qualitative action. Each
qualitative action is only an approximation of the precise actuator movements, and is constrained to
a range of quantitative values. The quantitative regions are the parameters of the plan.

The third stage uses an on-line numeric trial-and-error learner to refine (or optimize) the precise
quantitative values for each action of the plan. We formalise the trial-and-error approach of Sammut
and Yik (2010), by phrasing the trial-and-error learner as a Semi-Markov Decision Problem (SMDP)
using Options (Sutton, Precup, & Singh, 1999). At present, we focus on refining the parameters
to a satisficing solution which allow the plan to be successfully executed. However, the SMDP
representation allows for optimisation, such as finding the fastest plan.
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In this paper, we present an overview of each stage of the Multi-Strategy architecture with
sample results for solving the step-climbing task on the Negotiator (Figure 3). Section 3 gives a brief
introduction to qualitative modelling (used throughout the stages), Section 4 details the learning of
the qualitative model, Section 5 gives an overview of our qualitative planner, and Section 6 details
the formalisation of the trial-and-error parameter refinement.

3. Qualitative Modelling

In a qualitative representation of a robot (and its interaction with the environment) the variables of
the system are described relative to distinguished symbolic landmarks within the domain of each
variable (Equation 1). The qualitative value of a variable, described in (2), is the variable’s mag-
nitude (either at a landmark or between two landmark) and a direction of change (the magnitude
is increasing, steady or decreasing over time). The landmarks may optionally include positive and
negative infinity. The symbol Q denotes qualitative representations, as distinguished from quan-
titative representations, denoted with T. For example, the x-position of Negotiator (posx) may
be qualitatively described as increasing between the robot’s starting position and a feature of the
environment, such as a step.

varQ := [l0, l1, . . . , ln] (1)

varQ = li . . . li+1/dec varQ = li/std varQ = li . . . li+1/inc (2)

Variables in the representation of the robot map to actuator settings (such as θf ), sensor read-
ings (such as θb), or calculated values (such as posx, posy, etc. calculated by position-tracking).
Variables are divided into two categories: control and state variables. A Control Variable, (cvar)
corresponds to an actuator, and when changed causes actions to be invoked on the robot, such
as driving forward. A State Variable, (svar), is any other variable. On the Negotiator, the con-
trol variables are heading (hd), velocity (v), and the flipper angle (θf ). The Qualitative State
Space, SQ (Equation 3), of the robot is defined by the qualitative domains of all state and control
variables. Each qualitative state, sQi ∈ SQ, assigns a qualitative value to each variable.

SQ := svarQ1 × . . .× svarQm × cvarQ1 × . . .× cvarQn (3)

A Qualitative Model combines the qualitative description of the robot, rules governing the legal
operation of the robot, and features of the environment such as rubble, walls or steps. A quali-
tative model, MQ (Equation 4), is specified by the qualitative state space of the robot, and a set
of Rules (Equation 5) that define the legal qualitative states in SQ which the robot can take. If a
qualitative state matches the precondition of a rule, then the qualitative constraints of the rule are
applied. Qualitative constraints are specified as Qualitative Differential Equations (QDEs). Table 1
lists common QDE constraints. For example, on the Negotiator the relationship between the angle
of the base (θb) and the angle of the flipper (θf ) varies between M+, M−, or no relation.

MQ :=
〈
SQ, Rules

〉
(4)

Rules := {{Preconditions} → Constraint} (5)
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Table 1: Common types of QDE Constraints.

QDE Description
M+(x, y) Monotonicity - the rate of change of x and y match.
M−(x, y) Inverse monotonicity - the rate of change of x and y are inverted.
sum(x, y, z) z = x+ y
mult(x, y, z) z = x× y
deriv(x, y) y is the derivative of x with respect to time.
const(x, k) x = k/std
qnull The qualitative state is invalid.

4. Learning a Qualitative Model

The first stage of the Multi-Strategy Architecture learns a qualitative model of the robotic system
from numeric training data. We extend the Padé tool (Žabkar et al., 2011) for inducing qualita-
tive models with a variety of techniques necessary for learning qualitative models suitable for task
planning in robotic domains. Padé learns a qualitative model of a target function with respect to
the arguments of the function. In a robotic system, the qualitative dynamics of the state variables
is a function of the control variables over time (Wiley, Sammut, & Bratko, 2013). Therefore, we
learn a target function, svars = f(cvars), being the set of state variables, (svars), as a function of
the set of control variables, (cvars). However, the labelling process of Padé can only estimate the
qualitative Q-behaviour of a ‘single’-valued target function. Therefore, we use a pair-wise decom-
position to learn a set of target functions, as a set of partial derivatives representing theQ-behaviours
between each pair of state and control variables (Equation 6).

F =

{
fi,j =

δsvari
δcvarj

∀ svari ∈ svars, cvarj ∈ cvars
}

(6)

Padé uses a three-step process for inducing a qualitative model from numeric training data. First,
a numeric training data set of the robotic system is collected. Secondly, each learning example
in the training data is labelled by the local qualitative behaviour (Q-behaviour), of the learning
example. Finally, a general-purpose machine learning algorithm induces the qualitative model from
the labelled data.

4.1 Sampling the Robotic System

The first step of Padé generates the training data set, D shown in (7), by random sampling of
the execution of the robot as it moves about the environment. For each learning example in D,
cvarsT and svarsT are the sets of observed quantitative values of the control and state variables
respectively. A variable for passage of time, timeT, is included in the sampled data set as this
improves the accuracy of Padé’s labelling. Only one training data set is collected, which is used to
induce a qualitative model for each pair-wise decomposition, fi,j ∈ F .

D
(
timeT, cvarsT, svarsT

)
(7)
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Table 2: Sampling bias of the Negotiator data in Figure 4a, for the θf -θb relationship.

Region Percentage of samples
θf ≤ 12 82.8%
12 < θf ≤ 136 4.8%
136 < θf ≤ 180, 0.5 < θb 5.3%
136 < θf ≤ 180, θb ≤ 0.5 7.1%

4.2 Labelling

The second stage of Padé estimates the qualitative behaviour of each target function fi,j ∈ F ,
that is the qualitative partial derivatives, using the sampled data set D. A labelled data set, DL

shown in (8), is produced for each fi,j ∈ F where, subscript L denotes a labelled data set, and q
is the label for the local Q-behaviour of each learning example (cvarj , svari). A Q-behaviour
is the local qualitative partial derivative. A label may be svari = Q(+cvarj) which states that
the value of svari is increasing with cvarj , or svari = Q(−cvarj) which describes a decreasing
relation with cvarj , or svari = Q() which states there is no relation between svari and cvarj .
The local Q-behaviour of each learning example is estimated by Tube-Regression (Žabkar et al.,
2011). Tube-regression estimates theQ-behaviour from a ‘tube’ of neighbouring learning examples
centred around the example under consideration. Tube-regression also accounts for noise in D. We
additionally enforce that when estimating a local Q-behaviour of one target function in F , tube-
regression takes into account all state, control and time variables, as all of these variables may
impact the Q-behaviour.

DL

(
cvarTj , svar

T
i ,q

)
for fi,j ∈ F (8)

The pair-wise labelled data produces models which are over-generalised. For example, consider
learning a qualitative model for the behaviour of the Negotiator on flat ground. Figure 4a shows the
pair-wise labelling DL(θ

T
f , θ

T
b ,q), which describes the relationship between the angles of the base

and flippers. The qualitative model induced from this labelling is shown in Figure 5a. We use a
variety of techniques to improve the results of labelling.

Sampling from the robot causes the sampled data set D to contain severe sampling bias towards
regions of the state space the robot frequently visited. Table 2 details the sampling bias of the
data sampled in Figure 4a, broken down into four key regions of the θf -θb function. To avoid
the sampling bias, DL is re-sampled which first requires DL to be discretised. The labelled data
set is discretised, denoted as Disc ◦ DL, using Entropy Discretisation (Fayyad & Irani, 1993),
producing a mapping between each learning example of to one bin of the discretisation. Some
bins may be empty. Thus, the re-sampled data set DLR (denoted by subscript R) is constructed by
choosing r (Equation 9) random labelled learning examples with replacement from each non-empty
bin of Disc ◦ DL. Re-sampling equalises the number of learning examples in each bin.

r =
|DL|

no. non-empty bins(Disc ◦DL)
(9)
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(d) QSIM simulations. Trajectory (1) is
without any post-processing, (2) is after re-
moving unsupported states, and (3) is after
corresponding values are added.

Figure 4: Labelled Data Sets for the θf -θb relationship on the Negotiator

The training data set D contains ‘positive’-only learning examples. Figure 4a shows large re-
gions of the state space without any learning examples. These empty regions, due to the physical
limitations of the Negotiator or obstacles in the environment, are the key reason for the induced mod-
els being over-generalised. To correct for ‘positive’-only learning examples, we seed the resampled
labelled data set with additional learning examples labelled by qnull, to produce a null-seeded
data set DLRN (denoted by subscript N ). Every empty bin of Disc ◦ DL, is seeded with n (Equa-
tion 10) random learning examples. The quantitative values for variables of the sample are randomly
chosen within the bounds of the bin. To avoid introducing sampling bias towards the seeded learning
examples, the value of n is dependent on the size of the bin, and a ratio of the number of learning
examples in DL. Figure 4b shows DLRN (θTf , θ

T
b ,q), seeded with a ratio of 75%.

n = ratio× |DL| ×
area(empty-bin ∈ Disc ◦DL)

area(DL)
(10)

4.3 Inducing the Qualitative Model

For each re-sampled, seeded, labelled data set DLRN , a qualitative model is induced. As suggested
by Žabkar et al. (2011), we use C4.5 (Quinlan, 1993) to induce a pair-wise qualitative model in the
form of a decision tree, MQ

P , for each pair-wise target function. Tube-regression deals with some
noise of the robotic system, however, learning examples may be incorrectly classified. Therefore,
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(a) MQ
P ◦DPL (θf , θb) (b) MQ

P ◦DPLRN (θf , θb)

Figure 5: Induced Qualitative Models on data sets from Figure 4. The majority class percentage for
each leaf is provided.

C4.5 is configured to stop splitting nodes if a percentage of the majority class drops below 90%, or
the number of instances in a node is less than 5% of the total learning examples.

Each tree-based induced qualitative model is converted into qualitative rules (Equation 5). Fur-
ther, each Q-behaviour between a pair of state and control variables is converted to a monotonic
QDE (Table 1). For example, the Q-behaviour svari = Q(+cvarj) equates to M+ (svari, cvarj).
To construct the complete qualitative model of the robot, MQ (Equation 4), the set of qualitative
states and the list of qualitative rules must be defined. The qualitative rules of MQ, described
in (11), are the combination of all rules from all induced qualitative models for every pair-wise tar-
get function. The qualitative states, SQ of MQ, are ultimately defined by the ordered landmarks of
each qualitative variable. Thus, for SQ we choose the landmarks for each qualitative variable as the
collection of values used in each split of the induced qualitative trees.

Rules of MQ =
⋃

∀fi,j∈F

{
MQ

P ◦DLRN

(
cvarTj , svar

T
i ,q

)}
(11)

Using the splits of the induced decision trees to define the qualitative states of SQ creates a
discrepancy with how the decision trees from C4.5 divide the state space. Figure 4c highlights this
issue. The decision tree of C4.5 recursively breaks down sub-regions of the state space. However,
in SQ the bounds of each sub-tree are extended. This partitioning of SQ creates regions which
contain zero ‘supporting’ examples, which causes QSIM, used in the planner, to produce incorrect
trajectories. This problem is resolved by assuming that any state of SQ without at least one sup-
porting learning example is an invalid region. A qnull rule is added for each unsupported state.
The extended model MQ

U , is denoted by subscript U . Figure 4d shows how detecting unsupported
qualitative states alters the trajectories that QSIM produces.
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Table 3: Comparison between induced and hand-crafted qualitative models on the number of rules
and size of the qualitative state space of each model.

Induced Hand-crafted
Model Rules State Space Rules State Space
θf vs θb 13 1215 4 891
Flat ground 25 3.5× 107 14 5.9× 106

Pole-cart 25 1.9× 109 7 1.7× 109

Figure 4d further shows the trajectory from QSIM still may not follow the sampled data, as it is
not enforced that the end-points of monotonic constraints are to be reached. However, monotonic
constraints may specify corresponding values, pairs of landmarks where the qualitative variables
are known to ‘correspond’. Therefore, we add corresponding values to each monotonic constraint
to create an extended model MQ

UC , denoted by subscript C. The corners of the bounding box of
the qualitative state where a monotonic constraint applies, define corresponding values. Figure 4d
shows an example QSIM trajectory where corresponding values have been added.

4.4 Preliminary Results

We have applied Padé with our extensions to learning a qualitative model of the Negotiator as it
operates on flat ground. This model was compared to a qualitative model of the same domain that
was hand-crafted by an expert familiar with the Negotiator. We also made the same comparison on
the common pole-and-cart balancing domain. Table 3 compares the models in terms of the number
of rules and the size of the qualitative state space that each approach produces.

In general, the learnt qualitative models use a larger number of rules, however only on the
Negotiator domain did we observe a larger qualitative state space. There are two key reasons for
these differences. First, experts introduce auxiliary variables, simplifying the specification of the
model. Auxiliary variables do not correspond to sensor measurements, but are calculated from other
variables in the system. For example, the hand-crafted model of Negotiator contains the sum of the
angles of the flipper and base, that is θfb = θf + θb. Padé does not introduce new variables. Instead
C4.5 must use a large number of partitions in the model, and hence more rules. For example, ‘long’
M+/M− relations are sub-divided in order to accurately partition around null-regions. Secondly,
dynamics between different pairs of state-control variables may change at similar (but not exactly
the same) points. An expert can identify these similarities and compress the model, whereas the
pair-wise decomposition that we employ cannot infer such compressions.

5. Qualitative Planning

The second stage of the Multi-Strategy architecture takes a qualitative model, MQ, and plans a
sequence of actions to solve a desired task. MQ may be hand-crafted or learnt using the techniques
from Section 4. In previous work (Wiley, Sammut, & Bratko, 2013; Wiley, Sammut, & Bratko,
2014a) we have detailed various aspects of qualitative planning of robotic tasks, and applied the
planner to the step-climbing task on the Negotiator. This previous work used a hand-crafted model
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Pre-Condition: varQi = mag/roc || . . .
Effect (external event): cvarQi = mag/roc

Parameters: {vari, . . .}

Figure 6: STRIPS-like Qualitative Planning Action

of the Negotiator. We summarise this work, and integrate it with the first and third stages of the
Multi-Strategy architecture.

The qualitative planner uses the Qualitative Simulation (QSIM) (Kuipers, 1986) algorithm,
which predicts changes in the qualitative state of the robot over time. The prediction of QSIM
is a sequence of qualitative states, sQi ∈ SQ shown in (12), where each state transition occurs un-
der the influence of an external event, which may be empty. An external event, eQi shown in (13),
forces the value of the specified qualitative variables to the specified value, and QSIM predicts the
change to all other unspecified qualitative variables. QSIM is non-deterministic such that QSIM
may predict multiple qualitative states as the outcome of an external event.

sQ1
eQ1−→ sQ2

eQ2−→ . . .→ sQn (12)

eQi =
{
varQj = magnitude/direction of change, . . .

}
(13)

A Qualitative Action (Figure 6) used for planning, is a symbolic representation of moving an
actuator on the robot and is modelled on the parametrised STRIPS-like actions of Sammut and
Yik (2010). For an action, the pre-conditions define the qualitative states where the action may be
selected. The effects are a QSIM external event, which sets the value of one control variable. The
parameters are a list of one or more qualitative variables that the action ‘targets’, that is, the action
should be executed on the robot until the parameters reach desired values. The parameters may
include the action’s control variable. For example, on the Negotiator, qualitative actions for veloc-
ity (v) have the position of the robot (posx and posy) as parameters, while actions for moving the
flipper (θf ) are also parameterised by θf . Multiple qualitative actions may be executed in parallel.
A Parallel Qualitative Action, apQi , is a set of qualitative actions where the effects (external events)
of the multiple qualitative actions do not conflict.

The effect of choosing a parallel qualitative action is calculated by QSIM. Figure 7 illustrates
this relationship. For planning, a qualitative state is used to seed QSIM, and the chosen parallel
qualitative action sets the external events of QSIM. QSIM produces a sequence of one or more
qualitative states with the enforced external event, and the final qualitative state is the result of
performing the parallel qualitative action.

A Qualitative Plan, PQ shown in (14), is a sequence of qualitative state-action pairs from an
initial state sQ1 to a goal state sQg . A stage of the plan, pQi ∈ PQ shown in (15), is one state-action
transition. Importantly, in order to handle the non-determinism of QSIM, the qualitative plan does
not record the precise sequence of states QSIM predicted for each parallel action. Additionally,
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sQ1 sQ2 sQ3

sQ1,1 sQ1,n
. . . sQ2,1 sQ2,n

. . .

apQ1

seed QSIM equal

apQ2

seed QSIM equal

Figure 7: Qualitative Planning using QSIM to calculate successor states

the parameters of an action apQi are constrained by the qualitative values in sQi+1. Therefore, each
stage pQi states that: starting in sQi , the robot traversing any sequence of qualitative states (not
necessarily those predicted by QSIM) while maintaining the control value settings of apQi until the
parameters of apQi reach their target values as required by sQi+1.

PQ = sQ1
apQ1−−→ sQ2

apQ2−−→ sQ2 → . . .
appn−−−→ sQg (14)

pQi =
(
sQi , ap

Q
i , s

Q
i+1

)
∈ PQ (15)

Any form of classical state-action planning may be used to find a plan. We use two implemen-
tations. The first is implemented in Prolog (Wiley, Sammut, & Bratko, 2013) using an A* search,
and the second is implemented in ASP (Wiley, Sammut, & Bratko, 2014b) using the Clingo-4
solver (Gebser et al., 2011). The ASP implementation is more efficient and can handle larger qual-
itative models. However, the ASP implementation, unlike the Prolog implementation, is unable
to reason about quantitative constraints of the physical robotic system (Wiley, Sammut, & Bratko,
2014a). In some circumstances without reasoning about quantitative constraints, the planner may
not be able to rule out physically impossible qualitative states.

5.1 Example Qualitative Plan for the step climbing task

In previous works (Wiley et al. 2013, 2014a, 2014b) we have discussed various theoretical and
performance aspects of our qualitative planner and applied the planner to solving terrain traversal
tasks on the Negotiator. These works used a qualitative model of the Negotiator that was hand-
crafted by an expert. For the purposes of this paper, we consider finding a plan for the Negotiator
to solve the step climbing task (Figure 3), where the height of the step can vary. Table 4 shows
one suitable plan consisting of four stages, where the height of the step is low enough for the task
to be solved following Approach 1. The combined effect (external QSIM event) and constrained
parameters of each parallel action are also listed. The plan states the robot should drive towards the
step while raising the flippers, then the step is traversed without moving the flippers, next the robot
continues to drive forward as the flippers are lowered until, in the final action, the goal is reached
and all actuator movements are halted. Plans following Approach 2 are found in previous work.

The plan in Table 4 highlights two important aspects of the qualitative planner. First, the same
control variable (such as θf ) may be used for both the effect and parameter of a STRIPS-like qual-
itative action (Figure 6). For θf , we interpret the actuator movement to the the direction-of-change
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Table 4: Sequence of actions for solving the step climbing task following Approach 1.

Plan Stage Effect (External Event) Parameter Constraints
v θf posx θf

1 vmax/std −π2 . . . 0/dec x0 . . . xstep −π2 . . . 0
2 vmax/std −π2 . . . 0/std xstep . . . xgoal −π2 . . . 0
3 vmax/std −π2 . . . 0/inc xstep . . . xgoal −π2 . . . 0
4 0/std −π2 . . . 0/std xgoal 0

of the variable, and the magnitude as the constrained region of the parameters. Secondly, in some
situations the parameters may be constrained to exact values. This plan will be used in Section 6.2.

6. Trial-and-Error Parameter Refinement

The third stage of the Multi-Strategy architecture takes a qualitative plan, PQ, and refines (or op-
timizes) the constraints of the parameters of the plan using an on-line trial-and-error learner. The
parameters of the plan are under-constrained, such that some combinations of their quantitative val-
ues will not allow the plan to be successfully executed. Further, only specific quantitative values for
the parameters will give an optimal execution of the plan.

The parameter refinement of a qualitative plan, PQ, is phrased as a Semi-Markov Decision
Problem (SMDP) using Options. (Sutton, Precup, & Singh, 1999). An Option is a temporally ex-
tended (or abstract) action which takes a variable length of time to execute. The SMDP is defined
in Equation 16 where, X is the search space of the SMDP, O is the set of Options, T is the Tran-
sition Function, and R the Reward Function. The SMDP search space, X , is defined across the
quantitative states of the robot, and stages of the given plan.

SMDP := 〈X,O, T,R〉 where X := ST × PQ (16)

The Quantitative State Space, ST (Equation 17), is the discretised quantitative mirror of the
qualitative state space, SQ, used in planning. Each qualitative variable is discretised into equal-
width bins bounded by the minimal and maximal landmarks of each variable1.

ST := svarT1 × . . .× svarTm × cvarT1 × . . .× cvarTn (17)

The Transition Function, T (Equation 18), is a deterministic mapping, for each Option, between
a quantitative state and a stage of the plan. The stage of the plan is included in T as it is vital in
correctly defining each Option.

T : X ×O → X (18)

An Option, O, is an abstract action defined by the tuple in Equation 19 where, I is the set
of initiation states where the Option can be chosen, π is an action policy while the Option is in
force, and β is a termination function defining the probability of termination of the Option in each

1. Typically each variable is discretised according to the error margin of the corresponding sensor or actuator. Addi-
tionally, minimal or maximal landmarks of infinity are replaced by reasonable, domain specific values.
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state. We define Options (Equations 20 to 22) such that the policy π is the parallel action, apQi as
specified by the stage of the plan, pi, of the Option’s Initialisation State, I , and β tests if a specific
set of quantitative target values for the parameters of apQi have be reached and terminates the Option
accordingly. One Option is defined for each combination of quantitative target values.

O := 〈I, π, β〉 (19)

I = X (20)

π = apQi (21)

β(xi ∈ X) =

{
1 : varTi = target

(
varTi

)
∀ vari ∈ params

(
apQi

)
0 : otherwise

(22)

We are only interested in a satisficing solution. That is, a refinement of the parameter values
to a range which guarantees that the plan will be successfully executed. We define the reward
function, R(xi ∈ X, oj ∈ O) in three parts. R = 1 for a successful execution of the entire plan,
R = −1 if from state xi the Option oj fails to terminate, and R = 0 otherwise. Given the plan
is known to terminate, we define the Value Function, V (Equation 23), as the un-discounted sum
of future rewards (Mitchell, 1997). We have a satisficing solution as soon as, V (x1) = 1, that is,
the Value Function of the state of the SMDP corresponding to the first stage of the plan indicates a
successful plan execution. For an optimal solution, we need a measure of the cost of executing each
Option from its initiation state and set the reward for each stage such that R(xi ∈ X, oj ∈ O) is the
negation of the cost of Option oj when started in the initiation state xi.

V (xi ∈ X) = max
∀oj∈O

[R (xi, oj) + V (successor of xi given oj)] (23)

6.1 Deterministic Transition Function Assumption

We have chosen to use a deterministic transition function in our formulation of the SMDP, as typi-
cally, this requires a fewer number of trials to converge to a solution. For on-line learning, reducing
the number of trials is critical. However, moving an actuators on a physical robot is probabilistic.
However, we execute parallel qualitative actions on the robot using a PID controller for each actua-
tor, as the desired target value of each parameter is approached. We therefore assume that, the PID
controller will, deterministically, reach the targeted parameter values. This assumption permits the
use of a deterministic transition function.

6.2 Sample SMDP results for the step climbing task

We demonstrate the SMDP on the Negotiator and the step-climbing task following the qualitative
plan from Table 4, that solves the task using Approach 1. The Options are summarised in Table 5.

We conducted sample experiments on the Negotiator to find a satisficing solution for this plan.
For the purpose of the experiments: we represent distances in centimetres and angles in degrees; we
used the quantitative values for important landmarks as: x0 = 0, xstep = 100, and xgoal = 200. In
each experiment, trials were run until a satisficing solution was found. For each trial, a sequence
of Options were chosen, leading from the starting state to the goal state. The sequence of Options
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Table 5: Options for stages of the qualitative plan in Table 4.

I π β target values
Stage sTi ∈ ST posx θf

1 posx = 0, θf = 0 vmax/std, decrease θf 5 5
1 posx = 0, θf = 0 vmax/std, decrease θf 5 15
1 posx = 0, θf = 0 vmax/std, decrease θf 5 25
. . . . . . . . . . . .
1 posx = 0, θf = 0 vmax/std, decrease θf 15 5
. . . . . . . . . . . .
1 posx = 0, θf = 0 vmax/std, decrease θf 95 −85
2 posx = 5, θf = 5 vmax/std, steady θf 105 5
2 posx = 5, θf = 5 vmax/std, steady θf 115 5
. . . . . . . . . . . .
2 posx = 5, θf = 15 vmax/std, steady θf 105 −15
. . . . . . . . . . . .
. . . . . . . . . . . .
3 posx = 105, θf = 15 vmax/std, increase θf 185 5
. . . . . . . . . . . .
4 posx = 200, θf = 0 0/std, steady θf 200 0

constituted a proposed satisficing set of quantitative parameters. The Options where chosen to
maximise the number of Options whose reward function had not been observed in previous trials of
the experiment. The robot was placed at the initial state. The robot attempts to execute the proposed
sequence of Options until either one Option failed to terminate or the goal state was reached. If the
goal state was reached, a satisficing solution was found, and the experiment concluded.

We ran 20 experiments to find a satisficing solution. Across the experiments, a minimum of
1 trial, a maximum of 9 trials, and an average of 3 trials were required before a satisficing solution
was found. Importantly, the experiments demonstrated that invalid sets Options are ruled out. Fig-
ure 8 shows the three key cases for the step climbing task. Each trial started at the same location
shown in Figure 8a. In Figure 8b, the Option for stage 1 of the plan used a flipper angle is too low
and prevents the robot ascending the step. In Figure 8c, the flipper angle is too high and also pre-
vents the robot ascending the step. Further if an Option used a target value of posx that is too close
to the step, the robot dangerously “launches" itself forward coming close to tipping over backwards
when executing the next Option. In Figure 8d, the values of θf and posx for all Options formed a
satisficing solution.

7. Future Work

The experiments that we have demonstrated do not constitute an end-to-end application of the Multi-
Strategy Architecture. We have only learnt a qualitative model of the Negotiator on flat ground and
thus only applied the qualitative planner to basic tasks. To solve the task of climbing a step, we have
used a hand-crafted model, which was subsequently used by the qualitative planning and parameter
refinement stages. Therefore, our key research challenge is apply the end-to-end Multi-Strategy
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(a) Starting Position (b) θf < 25

(c) θf > 75 (d) Satisficing θf and posx

Figure 8: Trial stages showing aspects of finding a satisficing solution to the step climbing task.

architecture to not only solving the step-climbing task, but more complex tasks in Urban Search and
Rescue, such as traversing staircases or rubble.

8. Conclusion

We have proposed a three-stage Multi-Strategy Architecture for learning robotic behaviours for
control problems. For each stage of the architecture, we have presented a formalisation of the stage
which were demonstrated on a multi-tracked robot intended for urban search and rescue.
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