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Abstract
In this paper, we advocate the position that research efforts working towards solving human-level AI
necessarily have to rely on general mechanisms and (models of) cognitive capacities, with domain-
specific systems or task-dependent approaches only being of minor help towards the final goal. We
revisit psychological research on intelligence and the application of psychometric methods in AI,
before discussing IGOR2 and HDTP under the light of the previous considerations as examples
of systems respectively implementing a general mechanism or modeling a general capacity. In
the conclusion, we summarize our considerations and point out three characteristics we consider
suitable candidates for serving as generally recommendable properties of HLAI systems.

1. Introduction: Intelligence, Cognition, and Computer Systems

When asked for a definition of what AI as a field of study is and what its aims are, one possible
answer would be the following variation of a definition originally to be found in the preface of
(Nilsson, 2009): AI is that science devoted to making machines intelligent, and intelligence is that
quality that enables an entity to function appropriately and with foresight in its environment. This
implies an understanding of AI which is very inclusive, introducing a continuum of capacity levels
ranging from fairly low-level technological systems and lower animals at the one end to humans
(and possibly beyond) on the other end.

So called “strong” or human-level AI (HLAI) research is commonly situated at the latter end
of the just described spectrum, ultimately aiming at developing machines which can meaningfully
be considered to be on par with humans in that they are similarly able to — among many others
— reason, pursue and achieve goals, perceive and respond to different types of stimuli from their
environment, process information, or engage in scientific and creative activities. The history of
this line of investigation goes back to the origin of AI research. In his 1956 Dartmouth proposal,
McCarthy et al. (2006) famously laid out the program for generations of researchers to follow:

The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it.
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And although there might be disagreement about the detailed interpretation of “precisely described”
or “simulate”, and some researchers might want to expand the original phrasing in one way or
another, HLAI as a field still rests on the assumption that the (re)creation of human higher-level
cognitive or intellectual capacities by artificial means is possible and will eventually be achieved by
scientific means (Besold, 2013; Kühnberger & Hitzler, 2009).

Researchers in “weak” or standard AI and computational cognitive modelling, on the other
hand, usually work on the weaker assumption that computability provides an appropriate concep-
tual apparatus for theories of the mind. That is, computational models can be used to simulate
human information processes thereby either providing tools which take over specific functions or
tasks previously requiring certain mental capacities, or allowing detailed and consistent generative
descriptions of different areas of cognition (Johnson-Laird, 1988).

As we will show, these differences in focus and ambition must have significant ramifications
also for the type of methods and approaches, as well as for the conceptualization of what cognition
and intelligence mean in the respective research context: While standard AI can confine itself to
the modelling and study of individual mental capacities as isolated subparts of the mind, HLAI
necessarily has to take a general holistic interpretation of intelligence and cognition as foundation.

The first step in proving this claim will be to have a look at the definition(s) and ways of assess-
ing human intelligence, and subsequently examine their relation to recent developments in HLAI.

2. Intelligence: Definition(s) and Ways of Assessment

While the term intelligence is commonplace in many different situations, contrary to popular inter-
pretation no unanimously accepted definition exists (Sternberg & Detterman, 1986). In scientific
contexts, the question for a characterization and ways of measurement of intelligence has been
delegated to the field of psychometrics, generally tasked with the study of theoretical approaches
to psychological measurement as well as with the active development and implementation of the
corresponding concrete instruments and procedures.

Starting out with Binet and Simon (1916)’s development of test-based means for distinguishing
behaviorally challenged from intellectually disabled children, numerous tests quantitatively mea-
suring intelligence (or some closely related constructs) have found their place also in the standard
repertoire of different psychology-related sciences as, for example, the learning sciences. For these
purposes, intelligence is defined as the aggregate or global capacity of the individual to act purpose-
fully, to think rationally, and to deal effectively with the environment (Wechsler, 1944). Specific
test batteries are designed to capture intelligence by assigning an intelligence quotient to a human
based on his or her performance in a series of tasks. There is a wide variety of psychometric tests
of intelligence, ranging from tests with only one type of item (as, e.g., Raven (2000)’s Progressive
Matrices) to varied batteries of different questions or items (as, e.g., employed in the Wechsler Adult
Intelligence Scale (Kaufman & Lichtenberger, 2006)). In the latter type of test, normally verbal and
non-verbal items are combined, addressing different aspects of intelligence, such as visual-spatial,
verbal-linguistic, and logical-mathematical abilities (Sternberg, 2000).

As can be expected, individuals rarely perform equally well over all the different items included
in a complex test battery but rather have their subject-dependent strengths and weaknesses. Roughly
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speaking, it seems that the overall range of possible items clusters into groups of correlation-coupled
subtests as, e.g., spatial items as opposed to verbal ones. Still, also these subtests tend to be pos-
itively correlated amongst each other and subjects scoring high on one are also fairly likely to be
above average on others. There is disagreement where the appropriate level of interpretation should
be located: Theorists following Spearman (1927) strongly emphasize the importance of an all-
encompassing general factor g, while some researchers in the tradition of Thurstone (1938) would
rather focus on more specific subgroups corresponding to individual high-level cognitive capacities
as, for instance, memory or number facility. The present majority view corresponds to an integrative
middle between both extremes, envisaging a hierarchical structure of factors with g at the top.

3. The Use of Psychometric Tests in AI as of 2015

One of the longest standing questions in HLAI research is the search for adequate means of as-
sessing and deciding the achieved level of intelligence of a computational system, starting out from
the discussions surrounding the publication of a human-computer variant of the imitation game in
(Turing, 1950). Over the last years, approaches proposing the use of psychometrics-like evaluations
(either suggesting to directly apply human intelligence tests, or advocating the development of cor-
responding tests for machines) have become more and more popular and even lead to a challenge to
the entire field of AI issued in (Detterman, 2011), asking for the development of a system capable
of solving an a priori unknown set of arbitrary IQ test problems selected by psychometrics experts
and presented in arbitrary ways.

3.1 Psychometric AI and the Many Island Solutions

Probably the most noted and ambitious research program suggesting to apply tests from psychomet-
rics to developing HLAI is “Psychometric AI” (Bringsjord & Schimanski, 2003):

Psychometric AI is the field devoted to building information-processing entities capa-
ble of at least solid performance on all established, validated tests of intelligence and
mental ability, a class of tests that includes not just the rather restrictive IQ tests, but
also tests of artistic and literary creativity, mechanical ability, and so on.

This approach seems to offer sufficient coverage in terms of addressed mental faculties as to assure
that the passing HLAI would really match human-level standards, the standardized nature of the
tests would allow the outcomes of different runs to be easily comparable, and the quantitative nature
assessed on a continuous scale allows to not only measure success or failure but to also provide an
indication of whether (and how quickly) the system is advancing towards meeting the test criteria.

But while Psychometric AI since its inception has gained popularity and given rise to several
interesting results (as, e.g., collected in (Bringsjord, 2011)), among others Besold (2014a) lately
pointed out a severe conceptual shortcoming of the approach: Psychometric measures of intelli-
gence are correlational measures testing the performance of traits commonly associated with what
is interpreted as intelligence (with the inclusion of a necessarily finite set of additional tasks outside
of the range of “classical” IQ test batteries not bringing about a qualitative change in this regard).
In consequence, also Psychometric AI does not train its systems on human-level intelligence but
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on correlated capacities without clear evidence that the resulting measure turns out to actually ad-
dress intelligence in a reliable way. Similar to a patient suffering from savant syndrome, a system
excelling on the scale of Psychometric AI could still be limited to strong performance on particular
cognitive tasks rather than exhibiting the desired general human-level intelligence.

Leaving this general criticism of a flaw in the conceptual setup of Psychometric AI aside, we
now want to address another weakness: Although aiming for the (re-)creation of human-level intel-
ligence on a general scale, Psychometric AI does not put any constraints on the nature of the mecha-
nisms or capacities at work in the corresponding computational model. While we are convinced that
the successful (re-)creation of human mental capacities necessarily has to rely on a limited number
of general mechanisms and capacities, Psychometric AI as it stands does not rule out the possibility
of attempts employing patchwork systems with many specialized “island solutions”, each of these
sub-modules solving only one narrowly defined task at a time.

3.2 Specialized AI Systems Solving IQ Test Problems

The just diagnosed opening of the floodgates to arbitrary sub-division and modularization in system
design might seem like a shortcoming particular to Psychometric AI as one approach among several,
but a look at the current landscape of AI systems for solving IQ tests rather indicates the contrary:
While there is a significant amount of work going into developing computational solutions to IQ test
problems, many of them specialize on one particular type of item or task in employing task-specific
mechanisms or in modelling domain-specific capacities.

For instance in (Strannegard, Amirghasemi, & Ulfsbäcker, 2013; Strannegard, Cirillo, & Ström,
2013), methods for respectively solving number sequence problems and Raven’s Progressive Ma-
trices are presented, using a description language specialized for the domain and the task (number
sequences) or applying problem-specific representations and structure computations (matrix prob-
lems). Further examples are the rule-based approach of Siebers and Schmid (2012), which relies on
a domain-specific rule selection heuristic for number series induction, or Ragni and Klein (2011)’s
model using artificial neural networks specifically trained for predicting the next number for a given
integer sequence — while backpropagation in a connectionist network is a general mechanism, the
resulting capacity model is highly task-specific and needs to be re-trained for different applications.

Clearly, these approaches and solution methods to certain types of IQ test items can provide
valuable contributions to studies in cognitive psychology and cognitive modelling, allowing to
develop and test hypotheses about particular computational-level (and possibly even algorithmic-
level) theories for specific cognitive tasks. Still, when considering an HLAI context, their value
seems limited: Very often, due to intrinsic limitations of the applied techniques or the very domain-
specific capacity model employed, there is little hope of generalizing and integrating these isolated
solutions into a computational system (re-)creating general domain-independent human-level intel-
ligence. Instead, what seems to be needed, is the study and development of a priori domain-general
mechanisms and computational models of cross-domain cognitive capacities.
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4. Towards General Mechanisms: IGOR2 and Program Learning

In this section, IGOR2 is presented as an example of an AI system which originally was intended as a
standard (weak) AI approach to a specific domain, namely, learning (recursive) functional programs
from small sets of input/output examples. In the following, first an overview of the system is given,
then some characteristics of the system are discussed which might make it a candidate for a system
which is capable to solve induction problems over a variety of domains. After giving an example
how IGOR2 solves inductive programming problems, in the last two sub-sections, we demonstrate
that IGOR2 can be applied ’off the shelf’ to two rather different domains: learning policies for
problem solving and solving number series problems.

4.1 IGOR2: An Overview

IGOR was developed as a system for inductive programming. Inductive programming (IP) is an area
of research concerned with the development of algorithms which can automatically generate com-
puter programs from incomplete specifications, typically input/output examples (Flener & Schmid,
2010). Since program construction from examples is based on inductive inference, IP can be seen
as a special area of machine learning: The input/output examples constitute the training data, the
hypothesis language is a – usually declarative – programming language. Algorithmic approaches
are based either on generate-and-test, such as the inductive logic programming (ILP) system FFOIL

(Quinlan & Cameron-Jones, 1995) and the program enumeration approach of MAGICHASKELLER

(Katayama, 2005), or on example driven, analytical strategies, such as the classical THESYS system
(Summers, 1977). IGOR (Schmid & Wysotzki, 1998; Kitzelmann & Schmid, 2006) initially was
designed as an extension of the latter, before the current version, IGOR2, got rid of several inherent
restrictions of this approach and integrated state-of-the art concepts of functional programming, es-
pecially pattern matching, as well as concepts introduced in ILP, such as the possibility to make use
of background knowledge for induction and invention of sub-programs (Kitzelmann, 2009).

An empirical comparison of IGOR2 with several state-of-the-art IP systems showed that IGOR2
is highly efficient (typically in milliseconds) and has a broader scope than most systems, it can
learn correct functional (MAUDE or HASKELL) programs from few input/output examples, e.g.,
for insertion sort, reverse, odd/even, multiplication by addition, or Fibonacci numbers (Hofmann,
Kitzelmann, & Schmid, 2009). For induction of a linear recursive function – that is, a function with
one recursive call, usually as argument of a collector function (arithmetic operation or inserting new
elements in a list) – IGOR2 typically needs only four examples. An illustration is given in Figure 1:
Input are examples for reversing a list. The output is a generalized program. The program returns
the empty list if the input is an empty list. For non-empty lists, with x as first element of a list and
xs as a (possibly empty) rest of the list, the last element of this list is inserted (operator ’:’) in front
of the already reversed init list, i.e., the list without the first element. The sub-functions last and init
are themselves automatically induced.

In the following, the basic ideas of IGOR2’s induction algorithm are illustrated for the reverse
example. Formal details are given in Kitzelmann (2010). Besides the input/output examples, the
algebraic data type for the target function has to be specified. For reverse, this is the data type
list defined over arbitrary elements a. Algebraic data types are specified using constructors, i.e.,
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Specification of Data Types and Target Function
data [a] = [] | a:[a] reverse :: [a]-> [a]

I/O Examples
reverse [] = [] reverse [a,b] = [b,a]
reverse [a] = [a] reverse [a,b,c] = [c,b,a]

Generalized Program
reverse [] = [] reverse (x:xs) = last (x:xs) : reverse(init (x:xs))

Automatically Induced Functions (renamed from f1, f2)
last [x] = x init [a] = []
last (x:xs) = last xs init (x:xs) = x:(init xs)

Figure 1. Inductive Programming with IGOR2: Generalizing reverse from Examples

a minimal set of functions from which arbitrary instances of this type can be built. In the case of
lists these are the empty list [ ] and the function ’:’ (cons) which inserts an element in front of a
list. The target function reverse is specified to have a list as input and to return a list as output. For
the example, we omit the additional specification of background knowledge. However, it would be
possible to define, for example, the last function in advance and use it during program construction.

Hypothesis construction in IGOR2 is based on anti-unification or least-general generalization
of sets of equations. Hypotheses in form of (partial) programs are constructed by applying induc-
tion operators introduced below. Hypotheses are generated based on a best-first search with the
preference bias that hypotheses with fewer equations are preferred.

The anti-unification of the four examples in Figure 1 results in an overly general expression
reverse x = y. The body of this function contains an unbound variable y which is the cue for
IGOR2 that program induction has not yet terminated. IGOR2 applies three induction operators to
generate successor hypotheses: Partitioning of examples resulting in sets of equations divided by
case distinction, replacement of the right-hand side of an equation by a program call (recursive or
background), and replacement of sub-terms with unbound variables by to be induced sub-functions.

A successful path of best-first search is based on the following induction steps: Partitioning
examples such that the first example is treated differently than the others, resulting in
reverse [] = [] reverse (x:xs) = (y:ys).

Replacing the unbound variables y and ys by to be induced sub-functions together with abducted
input/output examples for these functions:
reverse [] = [] reverse (x:xs) = f1(x:xs):f2(x:xs)

where last(x:xs) = y and init(x:xs) = ys has to hold for all given examples. This constraint results in
the abduction of new training examples for the new functions:
f1 [a] = a f1 [a,b] = b f1 [a,b,c] = c
f2 [a] = [] f2 [a,b] = [a] f2 [a,b,c] = [b,a].

For both sub-functions IGOR2’s induction process is called recursively. Function f1 corresponds to
the function last in Figure 1. Function f2 will be elaborated to a recursive call of the target function
reverse and the induction of another sub-function corresponding to init during best-first search.
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4.2 IGOR2 as a General Approach to the Acquisition of Productive Rules by Regularity
Detection and Generalization

Although IGOR2 was designed specifically as an inductive programming system, the underlying
algorithmic approach can be seen as a generic mechanism for generalizing productive rules from
example experience by observing regularities and generalizing over them. We use the term ’produc-
tive rule’ following Chomsky’s characterization of human competence with respect to the grammar
of their first language (Chomsky, 1959): A set of rules is productive when it can be applied to input
of arbitrary complexity. For example, the reverse program given in Figure 1 represents the com-
petence to revert lists of arbitrary length. This competence was learned by generalization over the
regularities observed in four simple examples. The human ability to learn from few – or even from
a single – example, is discussed in the context of language learning (Marcus, 2001). It demonstrates
the existence of a powerful inductive bias which allows to extract the “right” regularities.

Contrary to Chomsky, we propose that this human ability to generalize productive rules from
few observations is not restricted to language but applies to all areas where productive knowledge
can be obtained by detection of regularities. Besides the construction of recursive programs from
input/output examples, induction problems of this type can be found in domains such as problem
solving – with Tower of Hanoi as the most famous example –, reasoning over transitive relations
– such as ancestor –, as well as in intelligence test problems such as number series. If IGOR2 is
a generic approach to induction of productive rules, it should be applicable to problems from such
different domains without any adaptation of the algorithm. That IGOR2 meets this requirement will
be demonstrated in the following sub-sections.

Of course, IGOR2 is not the only possible algorithmic approach which can be in principal able
to be applied to generalization over regularities. But is has some characteristics which make it
a better candidate than many other approaches from machine learning and knowledge discovery:
First, IGOR2 learns on the symbol- or knowledge level (Rosenbloom, Laird, & Newell, 1987). This
corresponds to typical approaches in the domain of cognitive modeling where it is assumed, that
information in working memory can be inspected and verbalized. For a generic system, applicable
to diverse domains, the representation language and the pragmatics of how to represent a problem
to the system are crucial. In the case of IGOR2, the representation language of the examples is
the same as for the hypotheses, that is, HASKELL or MAUDE programs. In addition, semantic
information over the problem domain is given by the definition of algebraic data types. In the
reverse example, only the data type list with empty list and list construction as constructors was
necessary. For problems involving natural numbers, zero and the successor function are sufficient
for a constructive definition.

Second, IGOR2’s learning strategy is not based on a generate-and-test strategy but on a mecha-
nism which builds hypotheses based on regularities detected in the given observations. It is clearly
not plausible to assume that a cognitive system would generate large sets of arbitrary hypotheses
and check them against examples and it is much more plausible to assume that a cognitive system
analyzes the examples as a basis for generalization. The mechanism realized in IGOR2 is anti-
unification (Schmid, Burghardt, & Wagner, 2003) which was originally developed in the context
of computational logic as dual process to the unification of terms. The same mechanism is to the
core of the HDTP system which is the second system discussed in this paper. While anti-unification
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allows for an elegant algorithmic treatment of generalization learning, it presupposes that the given
examples are without noise. This brittleness is a drawback with respect to cognitive plausibility as
well as to practical applicability. However, the IGOR2 algorithm could be modified to be able to
deal with noisy input – at the cost that more examples would be necessary for learning.

Third, IGOR2 has no built in heuristics which are tuned to a specific domain of application. It
only uses a simple preference bias to guide best first search. This bias prefers hypotheses with fewer
rules and fewer recursive calls.

4.3 IGOR2 for Problem Solving

In problem solving as studied in cognitive psychology and as one of the initial areas of interest in
cognitive modeling (Newell & Simon, 1972) many problem domains contain problems with differ-
ent complexities but similar solution policies. The most prominent example is the Tower of Hanoi
where the number of discs to be transferred from one peg to another can be three or more. While
the problems become significantly more complex with a growing number of discs (the number of
states as well as the length of shortest solution sequence are growing exponentially), the policy for
solving Tower of Hanoi problems remains the same for an arbitrary number of discs. Likewise,
blocks-world problems such as building a tower of alphabetically sorted blocks, or transportation
problems such as Rocket (Veloso & Carbonell, 1993) come with different numbers of objects (blocks
to be stacked or boxes to be transported); and likewise, policies for shortest path solutions apply to
all problems (Schmid & Kitzelmann, 2011).

To demonstrate that the inductive programming system IGOR2 can be applied to policy learning
in problem solving domains, the Tower of Hanoi example will be used (Schmid & Kitzelmann,
2011). In Figure 2 three problem solving traces – for solving the one-disk, the two-disks, and the
three-disks problem – are presented in the form of input/examples. The arguments of the to be
learned target functions are: the number of discs (with 0 representing a 1-disc problem, s 0 a 2-disc
problem and s s 0 a 3-disc problem), the name of the source peg, the name of the auxiliary peg, and
the name of the destination peg, and a situation variable S which holds a description of the current
problem state. For the one-disc problem, the solution consists of one move-action from source to
destination. For the two-disc problem, three moves are necessary – the smaller disc is moved to
the auxiliary peg, the larger disc to the destination, and finally the smaller disc is moved to from
the auxiliary to the destination peg. For the three-disc problem, seven moves are necessary. Given
these three examples, IGOR2 induces the recursive solution policy for Tower of Hanoi in less than
a second.

While this is a convincing demonstration for the generality of scope of the IGOR2 approach, it is
obvious that induction success is dependent on a suitable representation of examples. In the domain
of inductive programming, as shown for the reverse function, the representation on which IGOR2
depends is quite natural for stating examples for the input/output behavior of a program. However,
in the case of the Tower of Hanoi, a human problem solver with no previous experience with the
Tower of Hanoi will most probably not have such a complete and systematic representation. That
coming up with a suitable representation is one of the most challenging problems of AI as well as for
cognitive systems was already stated by Kaplan and Simon (1990). Nevertheless, not only IGOR2
but most cognitive systems have strong demands on the way in which problems are presented to the
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Input Examples (1, 2, 3 discs)
eq Hanoi(0, Src, Aux, Dst, S) =

move(0, Src, Dst, S) .
eq Hanoi(s 0, Src, Aux, Dst, S) =

move(0, Aux, Dst,
move(s 0, Src, Dst,

move(0, Src, Aux, S))) .
eq Hanoi(s s 0, Src, Aux, Dst, S) =

move(0, Src, Dst,
move(s 0, Aux, Dst,
move(0, Aux, Src,

move(s s 0, Src, Dst,
move(0, Dst, Aux,
move(s 0, Src, Aux,
move(0, Src, Dst, S))))))) .

Induced Tower of Hanoi Rules (0.076 sec)
Hanoi(0, Src, Aux, Dst, S) =
move(0, Src, Dst, S)

Hanoi(s D, Src, Aux, Dst, S) =
Hanoi(D, Aux, Src, Dst,
move(s D, Src, Dst,
Hanoi(D, Src, Dst, Aux, S)))

Figure 2. Induction of the Problem Solving Policy for the Tower of Hanoi Problem with IGOR2

system: For example, for the analogy system SME (Falkenhainer, Forbus, & Gentner, 1989), it is
crucial that problems in base and target domain are described with the same relational expressions,
and similar constraints also hold for other models in cognitive architectures such as ACT-R (Ander-
son & Lebière, 1998). Currently, neither IGOR2 nor these systems can refute Kaplan and Simon
(1990) and meet the aforementioned Detterman (2011) challenge.

Besides applications of IGOR2 to a variety of problems studied in cognitive psychology and in
AI planning, IGOR2 can learn simple phrase structure grammars from example sentences as well
as recursive relations, such as ancestor or detect the transitivity of the is-a relation in a concept
hierarchy (Schmid & Kitzelmann, 2011).

4.4 IGOR2 for Number Series

A typical kind of problem used in many intelligence tests is the continuation of number series. This
problem type is defined to measure the ability of inductive reasoning which some researchers claim
to be a crucial component of general intelligence (Sternberg, 2000). There are different possible
ways to represent such number series problems to IGOR2 and we explored three of them which are
illustrated in Figure 3 for the simple series 1, 2, 3, 5, 7 which generalizes to f(n−1)+2 (Hofmann,
Kitzelmann, & Schmid, 2014). Again, IGOR2 is given input/output examples in form of equations
as input. Output of IGOR2 is the generalized function which can calculate the next element of
a sequence following one pattern presented in arbitrary length. As usual, values are represented
constructively based on a pre-specified algebraic data type, in this case for natural numbers. Please
note, that sequences are given in reverse order which is more natural for induction of recursive
functions.

A first possibility (Figure 3(1)) is to give the number series up to a specific length as input
and the subsequent value as output. For a sequence (1), consisting only of the number 1, output is
3; for (1, 3) output is 5, and for (1, 3, 5), output is 7. In Figure 3 only three example inputs are
given. In practice, for finding a minimal generalization for a number series, at least 5 values are
necessary and IGOR2 is presented with the minimal number of examples necessary to identify a
regularity for each problem. This representation of the form sequence/next-value seemed to us the
most natural. However, additional formats are possible: A second way to represent number series
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(1) Input List – Output Successor Value
eq Plustwo((s 0) nil) = s^3 0
eq Plustwo((s^3 0) (s 0) nil) = s^5 0
eq Plustwo((s^5 0) (s^3 0) (s 0) nil) = s^7 0

(2) Input Position – Output List
eq Plustwo(s 0) = (s 0) nil
eq Plustwo(s^2 0) = (s^3 0)(s 0) nil
eq Plustwo(s^3 0) = (s^5 0)(s^3 0)(s 0) nil
eq Plustwo(s^4 0) = (s^7 0)(s^5 0)(s^3 0)(s 0) nil

(3) Input Position – Output Value
eq Plustwo(s 0) = s 0 eq Plustwo(s s s 0) = s s s s s 0
eq Plustwo(s s 0) = s s s 0 eq Plustwo(s s s s 0) = s s s s s s s 0

Figure 3. Different Ways to Represent Number Series Problems for IGOR2 (successor sequences partially
abbreviated for readability)

Table 1. Sample of Series Tested With IGOR2

Constant 15 15 16 15 15 16 15 f(n− 3)
Arithmetic 2 3 8 11 14 f(n− 1) + 3

1 2 3 12 13 14 23 f(n− 3) + 11
Fibonacci 1 2 3 5 8 13 21 34 f(n− 1) + f(n− 2)

3 4 12 48 576 f(n− 1)× f(n− 2)

Geometric 3 6 12 24 f(n− 1)× 2
6 7 8 18 21 24 54 f(n− 3)× 3
5 10 30 120 600 f(n− 1)× n
3,7,15,31,63 2 ∗ f(n− 1) + 1

problems (Figure 3(2)) is to give a position in the sequence as input and the enumeration of the
sequence from the start up to this position as output. Alternatively (Figure 3(3)) for each position
the value of the sequence at this position can be given.

In a detailed evaluation based on 100 number series with different structural complexity, it
could be shown that IGOR2 can solve number series problems with all three representation formats.
However, representation format (2) is significantly slower (on average over a minute in contrast
to just above 30 seconds for the other two formats) (Hofmann, Kitzelmann, & Schmid, 2014). A
selection of problems presented to and successfully solved by IGOR2 is given in Table 1 (some of
the series correspond to series explored by Strannegard et al. (2013)).

5. Towards General Capacities: HDTP and Analogy

Next to the generality in mechanisms exemplified by the program learning approach in the previous
section, the second dimension along which generality seems to be required in approaches to HLAI
is the choice of cognitive building blocks to be modelled. Instead of relying on domain-specific
conceptualizations of mental faculties, accounts of cross-domain and, thus, general capacities are
necessary in order to also guarantee generalizability and domain-independent functionality and to
avoid the scattering into many inflexible “island solutions”. A paradigmatic example for such a high-
level capacity is analogy-making and (forms of) analogical reasoning as modelled, for instance, by
the Heuristic-Driven Theory Projection (HDTP) framework (Schmidt et al., 2014).
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Figure 4. A schematic overview of HDTP’s generalization-based approach to analogy.

5.1 Heuristic-Driven Theory Projection: An Overview

HDTP is a generalization-based theory and model for computational analogy-making. It is similar
to the classical SME (Falkenhainer, Forbus, & Gentner, 1989) in that both approaches are symbolic
(i.e., operating on domain theories expressed in logic-based languages) and during the mapping
stage heavily rely on syntactical properties of the respective representation languages and domain
formalizations for pairing up domain elements. Still, HDTP explicitly computes a generalization of
the source and target domain theories into a least general subsuming theory which later determines
the transfer/evaluation phase of the analogy process.1 Conceptually, HDTP’s generalization-based
view on analogy-making can be understood as visualized in Fig. 4 and demonstrated in an example
below: Given source and target domain, a common generalization is computed, which establishes
correspondences between domain elements. These correspondences can then be used to transfer
and adapt knowledge from the better informed source to the less knowledge-rich target domain of
the analogy.

HDTP aims at being a mathematically sound framework for the computation of analogical
relations and inferences between domains which are given in form of a many-sorted first-order
logic (FOL) representation. Source and target domain are handed over to the system in terms of
finite axiomatizations and HDTP tries to align pairs of formulae from the two domains by means
of restricted higher-order anti-unification (Schwering et al., 2009): Given two terms, one from
each domain, HDTP computes an anti-instance in which distinct subterms have been replaced by
variables so that the anti-instance can be seen as a meaningful generalization of the input terms. As
already indicated by the name, the class of admissible substitution operations is limited. On each
expression, only renamings, fixations, argument insertions, and permutations may be performed
(see Fig. 5 for examples of all four admissible operations). By this process, HDTP tries to find
the least general generalization of the input terms, which (due to the higher-order nature of the
anti-unification) is not unique. In order to solve this problem, current implementations of HDTP
rank possible generalizations according to a complexity measure on the chain of substitutions — the
respective values of which are taken as heuristic costs — and returns the least expensive solution
as preferred one. HDTP extends the notion of generalization from terms to formulae by basically
treating formulae in clause form and terms alike. Finally, as analogies rarely rely exclusively on one
isolated pair of formulae from source and target domain, but usually encompass sets of formulae

1. Here, subsumption has to be understood in the following sense: The joint generalized theory subsumes the original
source theory and target theory in that each of the latter can be re-obtained by applying certain substitution operations
to the generalization. In this way the joint generalization encompasses both domain theories at a time as more specific
variants.

11
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Figure 5. Examples for all four operations admissible in HDTP’s restricted form of higher-order anti-
unification: (a) shows a renaming, (b) and (c) are fixations, (d) constitutes an argument insertion, and (e)
is an argument permutation.

(possibly completely covering one or even both input domains), a process iteratively selecting pairs
of formulae for generalization has been included. The selection of formulae is again based on a
heuristic component: Mappings in which substitutions can be reused get assigned a lower cost than
isolated substitutions, leading to a preference for coherent over incoherent mappings.

In order to exemplify HDTP’s analogy-making process, Table 2 and Table 3 reproduce — as
classical example from the literature — Rutherford’s famous analogy between the solar system
and the inner structure and governing principles of an atom, establishing a conceptual equivalence
between the atom’s nucleus and the solar system’s sun, the electrons and the planets, etc. (also see
(Besold, Kühnberger, & Plaza, 2015) for a perspective relating the analogy to concept blending as
discussed in Sect. 5.3). The enriched generalization as reproduced in Table 3 is used to re-instantiate
an enriched version of the original target theory, then also featuring some governing laws for the
atom model concerning the revolving movement of electrons in orbits around the nucleus.

Due to the use of many-sorted FOL as expressive representation language, and the purely
syntax-based generalization approach underlying HDTP, over the last years the framework has
shown remarkable generalizability and generality: Having originally been conceived and applied
for modelling the just demonstrated Rutherford analogy and poetic metaphors (Gust, Kühnberger,
& Schmid, 2006), as well as for providing an alternate account of Falkenhainer et al. (1989)’s heat-
flow analogy in (Schwering et al., 2009), without major changes to the model HDTP has by now
been applied to different tasks from different domains.

5.2 HDTP for Knowledge Transfer and Concept Formation

In a series of papers summarized in (Besold, 2014b), HDTP has been used for modelling sensory-
motor-based transfer learning in mathematics and physics education and teaching, providing a for-
mal account and a computational model of knowledge transfer between disparate domains (em-
bodied sensory-motor-interaction on the one side, abstract knowledge and theory building on the
other) and subsequent concept formation. Provided with a descriptive model of a teaching tool
and the accompanying usage instructions, together with a declarative theory of the learner’s previ-
ous knowledge (similar to a fact-containing knowledge base in a computational system), HDTP is
able to establish connections between both input domains and, subsequently, select, transfer, and
when necessary adapt, knowledge between domains, leading to learning and concept generation.

12
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Table 2. Domain formalization of the solar system (source domain) and of Rutherford’s atom model (target
domain) as used by HDTP.

Sorts:
real, object, time

Entities:
sun, planet, nucleus, electron : object

Shared functions of both theories:
mass : object→ real× {kg} dist : object× object× time→ real× {m}

Functions of the solar system theory:
force : object× object× time→ real× {N} gravity : object× object× time→ real× {N}
centrifugal :object× object× time→ real× {m}

Predicates of the solar system theory:
revolves_around : object× object

Facts of the solar system theory:
(α1) mass(sun) > mass(planet) (α2) mass(planet) > 0 (α3) ∀t : time : gravity(planet, sun, t) > 0
(α4) ∀t : time : dist(planet, sun, t) > 0

Laws of the solar system theory:
(α5) ∀t : time, o1 : object, o2 : object : dist(o1, o2, t) > 0∧gravity(o1, o2, t) > 0→ centrifugal(o1, o2, t) = −gravity(o1, o2, t)
(α6) ∀t : time, o1 : object, o2 : object : 0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t) > 0 ∧ centrifugal(o1, o2, t) < 0
→ revolves_around(o1, o2)

Functions of the atom model theory:
coulomb : object× object× time→ real× {N}

Facts of the atom model theory:
(β1) mass(nucles) > mass(electron) (β2) mass(electron) > 0 (β3) ∀t : time : coulomb(electron, nucleus, t) > 0
(β4) ∀t : time : dist(electron, nucleus, t) > 0

Table 3. Common generalization between the solar system and the Rutherford atom, enriched by transfer ax-
ioms γ5 and γ6: Axioms α5 and α6 from the original source domain – although not directly matched by cor-
responding axioms for generalization in the target theory – give rise to γ5 and γ6 by re-use of anti-unifications
established at earlier stages of the procedure (e.g., jointly generalizing gravity and coulomb from α3 and β3,
respectively, to the generic variable F , and then re-applying the gravity → F anti-unification in generalizing
α5 into γ5). revolves_around from α6 stays unmatched and can directly be carried over to γ6.

Sorts:
real, object, time

Entities:
X, Y : object

Functions:
mass : object→ real× {kg} dist : object× object× time→ real× {m}
F : object× object× time→ real× {N} centrifugal :object× object× time→ real× {m}

Predicates:
revolves_around : object× object

Facts:
(γ1) mass(X) > mass(Y) (γ2) mass(Y) > 0 (γ3) ∀t : time : F(X, Y, t) > 0
(γ4) ∀t : time : dist(X, Y, t) > 0

Laws:
(γ5) ∀t : time, o1 : object, o2 : object : dist(o1, o2, t) > 0 ∧ F(o1, o2, t) > 0→ centrifugal(o1, o2, t) = −F(o1, o2, t)
(γ6) ∀t : time, o1 : object, o2 : object : 0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t) > 0 ∧ centrifugal(o1, o2, t) < 0
→ revolves_around(o1, o2)
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Figure 6. A conceptual overview of (Goguen, 2006)’s account of conceptual blending.

Whilst partially being motivated by the reconstruction and analysis of the learning process and,
thus, also sharing certain interests with models from cognitive psychology, HDTP thereby pro-
vides a proof-of-concept for the applicability of this type of analogy engine to conceptualizing and
re-implementing cross-domain and cross-modal learning and concept generation processes, useful
especially in the context of cross-domain generalization, adaptation, knowledge transfer, and learn-
ing within an HLAI framework.

Another example for this type of capacity of the framework is described in (Guhe et al., 2010).
There, it is shown how HDTP can be applied in modeling a potential inductive analogy-based pro-
cess for establishing the fundamental concepts of arithmetics starting out from concrete experiences
as, e.g., provided by the human sensory system and physiology (or, possibly, by the corresponding
parts of a robotic system). Also here, in addition to the generalization from the concrete/embodied
into the abstract domain, HDTP provides a model for knowledge transfer and adaptation between
distinct domains giving rise to previously unseen concepts in the target domain of the process.

5.3 HDTP for Concept Blending

Besides knowledge transfer and concept formation, another related but still qualitatively different
capacity which can be modelled using HDTP is concept blending (Fauconnier & Turner, 1998) on
theory level as an important sub-form of combinatorial creativity, i.e., of a combinatorial process
joining familiar ideas (e.g., concepts or theories) in an unfamiliar way, by this producing novel ideas.
One perspective on concept blending with HDTP has, for instance, been outlined by Martinez
et al. (2012). There, an approach for theory blending is proposed, among others sketching how
different relevant forms of cross-domain reasoning can be implemented using the framework and
prototypically engaging in more detail with the reconstruction of a historic account of the discovery
of the complex plane as famous occurrence of a concept blending process. Relatedly, Guhe et al.
(2011) describe a process blending different conceptualizations of number into new ones.

The corresponding interpretation of conceptual blending is based on the account given by
Goguen (2006): Given two domain theories I1 and I2 representing two conceptualizations, first
compute a generalization G and then construct the blend space B in such a way as to preserve the
correlations between I1 and I2 given by G (see also Fig. 6). This approach clearly offers itself to
a (re-)conceptualization and (re-)implementation using HDTP: Whilst intra-domain reasoning can
be performed with classical logic calculi over the many-sorted FOL language, the computation of
a generalization G from two input domains I1 and I2 is one of HDTP’s core functionalities. Thus,
basically the entire lower half of Fig. 6 is naturally covered by the standard mechanisms of HDTP
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(also compare Fig. 6 with Fig. 4). The only additional element needed is a mechanism for using
the information provided by the domain theories I1 and I2 together with the generalization G for
computing the blend B, which again can be done using cross-domain specialization together with
reasoning over logical calculi.

In summary, HDTP’s capacities of analogy-making, cross-domain generalization, cross-domain
specialization, and the detection of congruence relations here again allow the framework to be ap-
plied to (re-)implementing a previously not planned cognitive faculty without the need of signifi-
cantly changing the underlying capacity model.

6. Conclusions

In this paper we advocate the need for generality in approaches to HLAI: While standard AI and
cognitive modelling may often be able to meaningfully restrict their focus to (re-)implementing in-
dividual cognitive capacities for study or application purposes, when trying to approach the goal
of (re-)creating general intelligence and cognition with artificial means the generality of the chosen
mechanisms and modeled capacities is a conditio sine qua non. As has been discussed, this need
for flexibility and cross-domain validity goes back to the very nature of intelligence and cognition
as many-facetted phenomena studied in psychology — and while taking inspiration in the corre-
sponding results seems recommendable, the general nature as defining characteristic should not be
forgotten when looking at the specificity and domain-centricity of individual psychometric tests.

As positive examples for systems which can be used across domains and tasks we discussed
IGOR2 and HDTP, also sketching several application cases for each system exemplifying the di-
versity in use. We now shortly want to point out what, in our opinion, are the key properties
shared by both architectures which presumably could make for a good starting point also for future
endeavors in HLAI: Both approaches are situated on the symbol level, using expressive representa-
tions and, thus, allowing for a high degree of freedom in the choice of domains to be modeled and
worked on. Both approaches are technically based on a very general and domain-independent mech-
anism, namely anti-unification, formally operating on the respective representation and a priori not
being bound to the respective task or the represented domains, and conceptually being involved in
many different (presumably cognitively-relevant) processes, such as generalization or representation
alignment. Finally, both systems also offer possibilities to take into account semantic aspects of the
respective domain content without necessarily requiring a case-specific approach, namely through
the algebraic data types as used in IGOR2 and the many-sorted nature of representations, as well as
the possibility of re-representation, as part of HDTP. We are convinced that, when taken together,
these three properties (general level of description, cross-domain mechanisms/capacities, and possi-
bility of semantics-sensitive computation) form a solid foundation for development towards systems
exhibiting actual general intelligence and cognitive capacities.

Concerning other cognitive or HLAI systems, for example the SME (Falkenhainer, Forbus, &
Gentner, 1989) as model of analogy and analogical reasoning (similar to HDTP) models a very
general capacity (and has, for instance in (Lovett, Forbus, & Usher, 2010), been used for solving
Raven’s Matrices tasks). Still, the used representation language is not sufficiently expressive as to
allow the modeling of (possibly recursively-defined) more complex properties or predicates, seman-
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tic aspects and structures within the respective domains cannot naturally be taken into account, and
the applied direct matching approach without computation of an explicit generalization restricts its
applicability in learning and concept extraction and transfer tasks. Similarly, the analogy-model by
Correa et al. (2010) — also used for solving Raven’s Matrices — models a general capacity, but
due to task and domain specificity of the chosen representation, and the close interplay between rep-
resentation and applied computational mechanism, cannot be expected to easily generalize beyond
either its domain, or its task. ACT-R (Anderson & Lebière, 1998) as general cognitive architecture,
on the other hand, is situated on the symbolic level and offers a high degree of independence from
specific application domains; still, the integration of semantic-sensitive aspects into computations
and the cross-domain validity of mechanisms and modeled capacities have to be assured by the
system architect as they are not guaranteed by intrinsic properties or constraints of the architecture.
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