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Abstract 

Evaluation is a key task in design, and a major goal in computational design is to develop 

techniques for evaluating designs throughout the design process, starting as early in the process as 

possible. We describe a computational technique for evaluating design concepts early in 

conceptual phase of engineering design. Conceptual design in engineering is abstracted as a 

function to structure mapping and engages the use of functional models of the design concepts. 

We describe a computational technique called SBFCalc that evaluates design concepts through 

simulation of their functional models. We demonstrate the capabilities of SBFCalc for evaluating 

design concepts in biologically inspired engineering design that uses biological analogues to 

address engineering design problems.  

1.  Introduction 

Design is a fundamentally iterative process of design generation, evaluation and redesign (Dym & 
Brown, 2012; Pahl et al. 2007). This is because design problems often address complex systems, 

because designers are often encouraged to be creative, because design concepts often fail, and 
because the cost of failure of actual designs often can be large. Indeed, evaluation, failure and 

iteration are so prevalent in design practice that “fail early, fail often” has emerged as a mantra in 
many a design community. Early and frequent evaluation of design ideas can help expose the 

structure and the constraints of the design problem space, focus the designer’s attention to more 
productive lines of search and exploration, and help reframe and reformulate the design problem. 

Thus, a major goal in research on computational design is to develop techniques for evaluating 
designs throughout the design process, starting as early in the process as possible. Indeed, the 

computational design research has built many methods for evaluating designs, ranging from 
design criticism to geometric modeling to numerical simulation to virtual and physical 

prototyping, etc. However, most of these evaluation methods are useful only relatively late in the 
design process, after the conceptual design phase already has been completed. The question thus 

becomes how can we evaluate engineering designs in the conceptual design phase itself? 
In this paper we present a computational technique for evaluating design concepts in 

engineering design.  Conceptual design in engineering is abstracted as a function to structure 
mapping and engages the use of functional models of the design concepts (Dym & Brown, 2012; 

Pahl et al. 2007). Thus, one strategy for evaluating design concepts is through functional model 
simulation. We describe a computational technique called SBFCall for this task.  
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In the use case for this work, a designer wants to use analogical reasoning to address a given 

problem in engineering design. After conducting analogical reasoning and coming up with a  
proposed design, the designer wants to verfy the functional model of that design. To do so, the 

designer inputs her functional model into SBFCalc, which in turn leverages qualitative and 
quantitative simulation of the functional model, comparing the results of that simulation to the 

content of the inputted functional model to detect errors or misconceptions.  SBFCalc then 
outputs its evaluation for the designer to inspect. 

2.  Related Research 

This work builds on several lines of research: conceptual design, functional modeling, qualitative 
reasoning, analogical design, and biologically inspired design. The process of engineering design 

consists of several phases; problem formulation and conceptual design are the earliest phases of 
design (Dym & Brown 2012; Pahl et al. 2007). The task of conceptual design takes a desired 

function as the input; the goal of the conceptual design task is to output a structure that will 
deliver the desired function. Thus, the task of conceptual design is abstracted as a function to 

structure mapping. This is why languages for formulating design problems typically specify the 
functions desired of the design, the operating environment of the system, the performance criteria, 

and the constraints on the structure of the system (Helms & Goel, 2014; MacLellan et al., 2013).  
This abstraction of the conceptual design as a function to structure mapping has led to the 

development of several functional models of designs (Chandrasekaran, Goel & Iwasaki, 1993; 
Gero, 1990; Gero & Kannengiesser, 2004; Kitamura et al. 2004; Rasmussen, 1985; 

Sembugamoorthy & Chandrasekaran, 1986; Umeda et al., 1996; Umeda & Tomiyama, 1997). 
According to Simon (1996), a functional model of a design provides (i) a functional 

decomposition of the design, and (ii) a functional explanation of how the structure of the design 
delivers of the desired functions. Functional models typically use behavior as an intermediate 

abstraction to explain how the structure of the design achieves the functions desired of it. 
SBFCalc is based on a specific functional model called the Structure-Behavior-Function (SBF) 

model in which a behavior is a causal process that composes the functions of the subsystems into 
the functions of the system as a whole (Goel, Rugaber & Vattam, 2009; Goel & Stroulia 1996). 

SBF models have been used extensively in conceptual design. For example, Goel & 
Chandrasekaran (1989) used them for diagnosing a design failure during conceptual redesign.   

Cognitive systems research on qualitative simulation also has a long history (de Kleer & Brown 
1984; Forbus 1984; Kuipers 1986). More recently Bredeweg et al.’s (2009) Garp3 system allows 

a user to first create qualitative models of ecological systems and then simulate them (see also 
Qualitative Reasoning & Modeling, 2015). Similarly, the MILA-S system enables the user to first 

create conceptual models of ecological systems and then simulate them using NetLogo (Joyner, 
Goel & Papin 2014). Even closer is Klenk et al.’s (2012) work that describes a complementary 

method for evaluating design concepts: their method combines qualitative simulation with 
Modelica models of the designs. However, their method does not specifically capture function; 

SBFCalc combines qualitative simulation with functional modeling. However, because functional 
models are conceptual representations, qualitative simulation in SBFCalc is constrained and more 

similar to Rieger & Grinberg’s (1976)  procedural simulation.  
 Cognitive systems research on analogical reasoning too has a long history (Falkenhainer, 

Forbus & Gentner 1989; Hofstadter 1996; Holyoak & Thagard 1996). Falkenhainer (1987) 
evaluated an analogy by simulating a qualitative model of the target concept and comparing the 
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results of the simulation with the observations.  Our work differs from Falkenhainer’s because 

while Falkenhainer leverages observations for verification, our work compares the results of 
simulation itself to a constructed conceptual model to conduct verification.  In addition, we plan 

to use our computational technique in the future to also validate the source analog of the analogy 
and maybe the target as well. 

 Analogical design is a very common method of conceptual design (Goel 1997). Biologically 
inspired design (Benyus 1997; Baumeister et al., 2012; Hoeller 2013; McKeag 2012) entails 

analogical design such that while the target design problems come from engineering and other 
design domains, source analogues come from biology. The rapidly growing movement of 

biologically inspired design is driven in large part by the need for environmentally sustainable 
designs. Goel, McAdams & Stone (2014) provide a compilation of recent progress on 

computational theories, techniques and tools for biologically inspired design. 

3.  Research Problem 

Let us consider the design of the Japanese Shinkansen train described by McKeag (2012) and 

modeled by Hoeller (2013) as 
an illustrative example of our 

research problem. McKeag 
describes the successful 

efforts to redesign high-speed 
Shinkansen trains in the 

1990s, which succeeded in 
part through biological 

inspiration. The goal was to 
design a faster train than the 

then Shinkansen 300 train, 
but the train produced too 

much noise at higher speeds 
because: (1) ground 

vibrations, (2) aerodynamic 
noise, and (3) sonic booms 

when they entered tunnels. 
Figure 1 visually depicts the biological analogy that aided designers in resolving the third 

problem. For resolving the problem of sonic booms when entering tunnels, the train designers 
took inspiration from the shape of beak of the kingfisher bird, which helped them design a new 

nose for the train.  Figure 2 schematically illustrates the biological analogy that formed part of the 
resolution to the second problem: designers took inspiration from the fimbriae on owl wings and 

added a small vortex generator to their redesigned pantograph to help reduce the noise it made 
from turbulence.  

 Let us imagine that the designers created a functional model of their proposed solution when 
they were developing the small vortex generator solution to the aerodynamic noise problem and 

that they wanted some way to quickly check if this model had any mistakes.  With our 
computational technique, the designers could have given their functional model to it and rapidly 

received verification of their model.  We do not propose in this work that our computational 
technique provides a complete solution for design concept verification.  Instead, we propose it as 

Figure 1: The bullet shaped nose of the Shinkansen train was 

inspired in part by the shape of the kingfisher’s beak. (Adapted from 

Biomimicry 3.8’s Ask Nature.) 
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one step a designer or team of designers might take to quickly gather some sense of verification 

about their design concept. 

3.1  A Functional Model of the  Shinkansen Train 

In this section, we describe a functional model that we developed of the proposed Shinkansen 
train with a small vortex generator attached to its pantograph and of how the train’s interaction 

with air creates noise.  That is, as the train moves, air flows over the pantograph, and specifically, 
it flows over the small vortex generator on the pantograph.  This interaction eventually creates 

low turbulence, which in turn creates low noise that we attribute as the train making noise. This 
model is simplified and is intended as a proof-of-concept to demonstrate our computational 

technique.  Although we tried to stay true to the source material, we did develop this model with 
it being a proof-of-concept for our computational technique in mind.  For simplicity, we will 

hereafter refer to this model as the Shinkansen Train model. 
 The model we created is an SBF model.  An SBF model is divided into three sub-models: a 

structure model, a behavior model, and a function model.  The function model describes the 
intended or perceived purposes of the system.  The behavior model describes the mechanisms by 

which the functions are achieved.  Finally, the structure model describes the physical 
components, substances, and connections between the components that make up the system.   

A function model is composed of one or more functions.  Each function has several aspects and 
here we will focus only on those relevant to our computational technique.  They are as follows: 

(a) a name that uniquely identifies it; (b) a “provides” condition that defines values of properties 
in the world that must be true at the completion of the function; and (c) a pointer to a behavior 

that provides an implementation of that function. The boxes in Figure 31 depict the functions 
associated with this train, with the top half of each box being the name of the function, the bottom 

half being the function’s “provides” condition, and the arrow extending from the function to the B 
inside the circle representing a pointer to a behavior.  The function named 

TrainGeneratesAerodynamicNoise is the top-level function of our model and points to the 
behavior that we will report on here. 

                                                 
1 We note that despite whether they had surrounding quotation marks or not, we write all values in this 

paper as unquoted for simplicity.  Surrounding quotation marks for values are ignored in SBFCalc’s 
reasoning. 

 

Figure 2. Visual depiction of the owl wing feather biologically inspired design analogy related to the 

Shinkansen train. 
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A behavior model is composed of one or more behaviors.  Each behavior is itself composed of 

states and transitions.  A state captures a moment in time and may be annotated as either a start 
state (from whence the behavior begins) or as a stop state (where the behavior ends).  A state may 

have neither a start nor stop state annotation, in which case it is considered an intermediate state.  
A state has a condition, which is composed of a collection of component or substance properties 

and a value for each.  A transition describes movement between two states, which we will in this 
paper call the Before state (where the transition begins) and the After state (where the transition 

ends).  A transition is annotated with zero to many explanations which describe why or how the 
Before state became the After state. Figure 4 depicts the behavior that implements the 

TrainGeneratesAerodynamicNoise function.  In this figure, boxes represent states with the name 
of the state in the top part and the condition in the bottom part, and arrows represent transitions.  

The behavior describes a train accelerating, turbulence forming in the air, and the air creating 
noise because of that turbulence.  The state named StartState is the single start state for this 

behavior, and transitions between states are depicted as black arrows.  For the sake of space, we 
did not include the transition explanations in this figure.  Instead, we list them in Table 1.  In that 

table, we group each set of explanations by its matching transition identifier from Figure 4.  We 
explain the two types of explanations shown in Table 1, equation and function, later in this paper. 

4.  Technique 

Our computational technique is called SBFCalc.  Technically, SBFCalc is a client-side Java 
program that takes an SBF model as input (which we will call the inputted model).  During 

reasoning, it will simulate the behaviors within a clone of the inputted SBF model (which we will 
call the inferred or simulated model), replacing the state conditions of the behaviors with 

properties and values that it infers through its simulations. SBFCalc then uses these simulated 
behaviors along with the inputted model to evaluate the function and behavior models of the 

inputted model. 

4.1  Evaluating the Behavior Model 

The behavior model in an SBF model is composed to zero to many behaviors.  Each behavior 
describes the mechanism by which a function in the SBF model gets achieved.  It does this by 

telling a kind of story that describes the states that a system goes through and explaining why the 
system transitions from one state to the next.  When evaluating an SBF model, one must evaluate 

the behaviors of that model because they represent the low-level descriptions of how the 
functions are achieved and, thus, errors in behaviors reflect misconceptions (or modeling 

mistakes) about how the system works. 
 SBFCalc takes a two-step process to evaluate each behavior in the inputted behavior model.  

First, it simulates a copy of the behavior in the inferred model, setting the condition for each state 
in a behavior based on this simulation.  Second, afterwards, it compares the matching behavior in 

the inputted model with the inferred behavior, detecting similarities and differences between each 
pair of behaviors.  These similarities and differences represent the evaluation, with similarities 

reflecting aspects that SBFCalc agrees with in the inputted behavior and differences reflecting 
SBFCalc’s disagreement and thus potential problems in the inputted behavior. 

4.1.1  Simulating a Behavior 
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Here we describe how SBFCalc simulates a behavior.  SBFCalc currently reasons about each 

behavior in a behavior model independently.  For each behavior, it begins at a start state in that 
behavior, and it will traverse each outgoing transition and infer the values of the subsequent state 

using the equation and function explanations and using implicit value forwarding.  To connect 
with our earlier terminology, the start state is the Before state and a subsequent state is an After 

state.  SBFCalc will then recursively repeat this process for each subsequent state until it runs out 
of states to traverse.  It will then move on to the next start state in the behavior and so on until 

there are no more start states to reason about. 
Below, we describe how SBFCalc reasons about equation and function explanations, we 

describe the implicit value forwarding technique, and we conclude by discussing how all these 
techniques combine to infer an After state’s condition. 

4.1.1.1 Equation Explanations 

 

Figure 3.  Function decomposition for the Shinkansen Train model.  Each box represents a function and 

gives its name (top half) and “provides” condition (bottom half).  A B in a circle represents a behavior.  

An arrow from a function to a behavior represents the behavior that the function points to, and an arrow 

from a behavior to a function represents a function that is in a function explanation for that behavior. 
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Recall that in a behavior a transition describes the movement of the modeled system from one 

state (the Before state) to another state (the After state), and a transition is annotated with zero to 
many explanations.  Each explanation explains why or how some or all of the system moves from 

the Before state to the After state.  Equation explanations are a kind of explanation. Each equation 
explanation depicts, for our purposes, either a qualitative or quantitative equation that essentially 

express specific relationships between properties of the world.  We go into detail about the syntax 
of each equation type below. 

 We focus on equation explanations because they enable us to predict the values of properties 
without needing to do things like parse natural language or use external knowledge.  Instead, one 

can just  work out the value of an expression.  That said, equation explanations do not reflect the 
broad range of explanation types available in SBF, and in fact, we do leverage function 

explanations too (see below).  Still, reasoning about even a subset of the explanation types 
nevertheless allows us to make progress towards behavioral simulation. 

 Below, we describe the syntax of both equation types and how SBFCalc reasons over them.  
We note that it is possible for equations not following this syntax to exist within an SBF model.  

SBFCalc will only reason over an equation that has the prefix “quant:” or “qual:” in its 
description, signifying that they will follow the syntaxes we are about to describe. 

4.1.1.1.1 Quantitative Equation Explanations 

A quantitative equation says that a property’s value in the After state will be equal to a 

mathematical expression whose variables, which are component or substance properties, all 
resolve to numerical values.  The syntax of a quantitative equation is as follows: 

quant: <Property> = <Expression> 

 

 

Figure 4.  The behavior that that implements the TrainGeneratesAerodynamicNoise function in the 

Shinkansen Train model.  The explanations on the transitions are listed in Table 1. 
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Here, “quant:” signifies that this is a quantitative equation that SBFCalc should reason over.  

<Property> is some property of a component or substance for which we are assigning a value 
(e.g., Box.Weight, where Box is a component and Weight is one of its properties).  <Expression> 

refers to a mathematical expression, which may contain properties as variables.  Each property in 
<Expression> has an additional :Before or :After tag, signifying if the value should be taken from 

the property’s value in the Before state or the After state, respectively.  For example, an 
<Expression> could be Box.NumberOfOranges:After * Orange.Weight:Before. 

Actual solving of an <Expression> is handled in essentially two steps.  First, SBFCalc attempts 
to replace with its value any property for which SBFCalc knows the value.  Second, SBFCalc 

uses the built-in JavaScript engine in Java to automatically process the expression String.  Finally, 
if an exception was not thrown (signifying a successful solving of the expression), SBFCalc will 

store the resulting value as the After value for <Property>. 
To solve an <Expression>, all properties within the expression must be resolvable to numerical 

values.  SBFCalc checks to see if it has a value for all the properties within an <Expression> 
(note: at this time, SBFCalc does not ensure that these values are numerical or, in the case of 

qualitative expressions that we will describe later, values in known quantity spaces).  If there are 
any After properties within the expression for which SBFCalc does not have an associated value, 

SBFCalc may need to solve another equation explanation in the transition before it can resolve 
the After variable in that expression.  For example, consider the following hypothetical situation: 

there are two equation explanations on the same transition: 

Table 1.  Explanations for the transitions in Figure 4.  These are also true for Figure 8. 

Transition 

Identifier 

Explanations on that Transition 

T1 

 Function: EngineCausesTrainToAccelerate 

 Equation E1 “qual: Pantograph.Velocity is directly proportional to the qualitative 
expression Train.Velocity:After - Train.Velocity:Before” 

 Equation E2 “qual: Air.FlowOverPantograph is directly proportional to the 
qualitative expression Pantograph.Velocity:After - Pantograph.Velocity:Before” 

T2 

 Equation: E1 “qual: Train.Velocity is directly proportional to the qualitative 
expression Train.Accelerating:After “ 

 Equation E2 “qual: Pantograph.Velocity is directly proportional to the qualitative 
expression Train.Velocity:After - Train.Velocity:Before” 

Equation E3 “qual: Air.FlowOverPantograph is directly proportional to the 
qualitative expression Pantograph.Velocity:After - Pantograph.Velocity:Before” 

T3 
The same explanations as for T2 

T4 
 Function AirFlowAcrossPantographFormsTurbulence 

T5 

 Function TurbulenceCausesNoise 

 Equation E1 “qual: Train.NoiseCreated is directly proportional to the qualitative 
expression Air.NoiseCreated:After - Air.NoiseCreated:Before” 
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(1) quant: Box.Weight = Box.NumberOfOranges:After * 

Orange.Weight:Before 

(2) quant: Box.NumberOfOranges = Box.NumberOfOranges:Before + 1 

To solve the <Expression> in equation (1), SBFCalc must know the value for 
Box.NumberOfOranges:After, which requires solving equation (2).  SBFCalc tackles situations 

like these in two ways.  First, it will reason about function explanations and conduct implicit 
value forwarding (both described below) before reasoning about equations so that it can know as 

many After values as possible before reasoning about equations.  Second, it takes an iterative 
approac h to solving equations by solving at most one equation at a time where that equation has 

no unresolved properties.  If there are ever equations remaining to solve but none of them are 
solvable, SBFCalc will fail an assertion and exit.  An <Expression> might also be unsolvable 

because it contains Before properties for which SBFCalc does not know a value.  This is also 
covered by the aforementioned iterative approach because all properties in an <Expression> must 

be resolvable for it to be solvable, including Before properties. 
In Figure 5, we depict a hypothetical example of reasoning with quantitative equation 

explanations.  We note that this example also uses implicit value forwarding, which we describe 
later in this paper.  In this example, the Before and After state are describing the change in weight 

of a box due to an increasing number of bricks in that box.  To do this, we annotate the transition 
between these two states with two quantitative equation explanations.  The first equation, E1, 

describes how to calculate the weight of the box.  We note here that choosing whether to use the 
brick’s weight in the After state (which we chose to use) versus the brick’s weight in the Before 

state is arbitrary because it does not change.  The second equation, E2, describes how an 
additional brick is being added from the Before state to the After state. 

4.1.1.1.2 Qualitative Equation Explanations 

In our sense of the term, a qualitative equation says that a property’s value, which is defined as a 

quantity in a predefined quantity space, in the After state is either directly or inversely 
proportional to a qualitative or quantitative expression.  Currently, there are two predefined 

quantity spaces implemented in SBFCalc, one with the quantities Zero, Low, Medium, High, and 
Maximum and the other with the quantities Off and On.  We note that it should be straightforward 

within SBFCalc to change these quantity spaces and to add additional quantity spaces.  A 
qualitative expression is one in which all properties are expected to resolve to values in the 

aforementioned two quantity spaces, and a quantitative expression is exactly the same as that 

 

Figure 5. Hypothetical example of reasoning using quantitative equations. 



B. WILTGEN AND A. K. GOEL 

10 

described in the prior section.  The syntax of a qualitative equation is as follows: 

qual: <Property> is (directly | inversely) proportional to the 

(quantitative | qualitative) expression <Expression> 

 
Here, “qual:” signifies that what follows is a qualitative equation that SBFCalc can process.  

<Property> means the same as it did when discussing quantitative equations except that its value 
will be a quantity in a quantity space rather than a numerical value.  The modeler must decide 

whether to use the keyword “directly” or “inversely”, which we will describe momentarily.  The 
modeler must also decide whether to use the keyword “qualitative” or “quantitative”, which 

defines whether SBFCalc expects the following <Expression> to be a qualitative expression or a 
quantitative expression, respectively. 

To solve a quantitative expression, SBFCalc performs the same procedure as described in the 
prior section.  To solve a qualitative expression, SBFCalc first replaces all the properties with 

their respective values.  These values should be quantities in the predefined quantity spaces, but 
currently, SBFCalc does not ensure this.  The same procedure for handling whether the 

<Expression> is solvable described in the context of quantitative expressions is also used here.  
Next, SBFCalc replaces the qualitative values with their numerical equivalents, which in the 

implementation relate to their array indices, but conceptually, could be any numerical value.  
Finally, the system solves the <Expression> as if it were a quantitative expression. 

After solving the <Expression>, SBFCalc inspect its result to see if it is either less than zero, 
equal to zero, or greater than zero.  If the modeler chose the keyword “directly”, meaning directly 

proportional, the value of <Property> will increase if the result of <Expression> was greater than 
zero, stay the same if the result was equal to zero, or decrease if the result was less than zero.  If 

the modeler chose the keyword “inversely”, meaning inversely proportional, the increase and 
decrease conditions are reversed.  The change in <Property> is however limited in that a 

property’s value can never increase beyond the maximum quantity in the quantity space,  nor can 
it ever decrease below the minimum quantity in the quantity space.  Currently, minimum and 

maximum values correspond to array indices, but this is just an implementation decision. 
In Figure 6, we depict a hypothetical example of reasoning using both a qualitative equation 

explanation and a function explanation.  The Before and After state pair of this example describes 
how the room remaining in a cup decreased because the amount of soda poured into that cup 

increased.  To do this, we annotated the transition between the two states with both a qualitative 
equation explanation and a function explanation. We will focus here on the qualitative equation 

explanation and describe function explanation reasoning in the following section, but suffice it to 
say that reasoning about the function explanation enables us to determine that the After value of 

Soda’s AmountPoured property is Medium.  The qualitative equation E1 describes how the 
RoomRemaining property of Cup is inversely proportional to the change in value of Soda’s 

AmountPoured property.  Thus, if AmountPoured increases between the Before and After states, 
then RoomRemaining will decrease, and vice versa (with the limitation that they cannot increase 

or decrease beyond the bounds of their quantity space).  Note here how we get at the change in 
AmountPoured by calculating the difference between AmountPoured in the After state and 

AmountPoured in the Before state. 

4.1.1.2 Function Explanations 

A function explanation is another type of explanation that might exist on a transition.  The 
existence of a function explanation indicates that some other function, which we call a sub-
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function, is responsible for or explains why some or all of the properties’ values change from the 
Before state to the After state.  Functions and sub-functions relate to an essential concept in SBF 

modeling: the functional decomposition.  That is, a given function may have sub-functions that 
enable its behavior; those sub-functions might themselves have sub-functions; and so on.  The 

relationships between the functions in Figure 3, from our Shinkansen Train model, is an example 
of a functional decomposition.  The TrainGeneratesAerodynamicNoise function depends on the 

EngineCausesTrainToAccelerate and other functions to enable its behavior.  Functional 
decompositions allow us to compartmentalize and abstract parts of a system, enabling individual 

functions (and their behaviors) to be relatively small and easy to reason about while still allowing 
for complex systems to be described.  Sub-functions can also enable convenient re-use, for a 

single sub-function (via function explanations) could be re-used across the behavior without 
needing to duplicate the sub-function’s implementing behavior in multiple places across the 

behavior.  
 Because functional decomposition is an important and valuable aspect of SBF modeling, 

SBFCalc utilizes function explanations as part of its behavior simulation.  Conceptually, a 
function explanation says that a function happens in the transition between two states and that the 

results of that function should exist in the After state.  The “provides” condition of a function, 
which describes the values of relevant properties at the completion of the function, is one place to 

look for the results of the function, but the “provides” condition is inputted by the modeler and 
may not reflect the actual output of the behavior that implements that function. 

 Instead of using the “provides” condition, SBFCalc will do the following when it reasons about 
a function explanation.  It will run a simulation (separate from the current inferred model so as 

not to interfere with anything) of the behavior pointed to by the function in the function 
explanation.  Then, it will set the property and value pairs from that behavior’s output, which we 

define as the union of all the stop state conditions, as property and value pairs for the After state 
in the original behavior that we were simulating.  Any behavior could have function explanations 

as part of it, so simulating a behavior pointed to by a function explanation (let us call this a sub-
behavior) could lead to simulating yet another behavior, and so on. 

 

Figure 6. Hypothetical example for qualitative equation reasoning and function explanation reasoning.  

The behavior pointed to by the function is omitted in this figure. 
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 Figure 6 depicts a hypothetical example of reasoning by a function explanation.  When 

SBFCalc confronts this example, it would simulate the behavior pointed to by the function 
PersonPoursSoda and use its output to infer After state values of any properties in that output.  

Assume in this case that the behavior pointed to by the function PersonPoursSoda has the same 
output as its provides condition.  Thus, SBFCalc infers that the AmountPoured property of Soda 

in After state is equal to Medium. 

4.1.1.3 Implicit Value Forwarding 

In addition to reasoning about equation and function explanations, SBFCalc implements what we 
call implicit value forwarding.  This technique is implicit because the model creator need not do 

anything to enable it and because it’s not explicitly annotated in the model.  In a given Before and 
After state pair, SBFCalc may not be able to infer the After state values for all the properties in 

the Before state.  For each property for which this is the case, SBFCalc assumes that the value of 
that property remains the same.  Thus, it will set the After state’s value for that property to be the 

same as the Before state’s value. 
Figure 7 depicts a hypothetical example without (the top half of the figure) and with (the 

bottom half of the figure) implicit model forwarding.  Without implicit value forwarding, the 
value for the WaterFlowing property of Hose is missing in State B—the After state—because it 

could not be inferred from any explanation on the transition.  With implicit value forwarding, 
SBFCalc still could not infer the value from any explanation, but this time it set Hose.WaterFlow 

= On for State B, forwarding it from State A—the Before state. 

4.1.1.4 Inferring the Next State’s Contents 

In the previous sections, we have looked at how SBFCalc reasons about quantitative and 
qualitative equations, how it reasons about function explanations, and how it uses implicit value 

forwarding to infer values in the After state.  Here, we will describe at a high level how, given a 
Before state, an After state, and a set of explanations, SBFCalc combines all of the 

aforementioned techniques to infer the values of the After state.  We will ignore low-level details 
such as when our system gathers the list of equation explanations from the transition. 

When conducting its reasoning, SBFCalc builds up a map that connects Before and After state 
properties to their values in those states.  This map is only applied to the After state at the end of 

reasoning about this Before and After state pair.  SBFCalc will first store in the map as Before 
property and values pairs all the property and value pairs of the Before state.  Next, it reasons 

over any function explanations (if any exist) on the transition, storing in the map as After state 
values of properties the property and value pairs that it infers.  Next, our system will store in the 

map as After state values of properties any property and value pairs from the Before state that (a) 
have not already been set by the function explanation reasoning and (b) will not be set by the 

equation explanation reasoning (determined by inspecting equations that SBFCalc can reason 
over).  This is implicit value forwarding.  After that, SBFCalc will process the equation 

explanations (if any exist), reasoning over those equations with the “qual:” and “quant:” prefixes.  
When reasoning over the equation explanations, our system will use the iterative method we 

described earlier to check properties in <Expression>’s.  After an equation is successfully 
reasoned over, its result is stored in the map as the After state value for the appropriate property.  

Finally, SBFCalc will then use the map to set the After state to have those property and value 
pairs stored within the map as After state property and value pairs. 
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4.2  Evaluating the Function Model 

In SBF, the function model is comprised of one or more functions.  Function provides a powerful 
organization and compartmentalization tool in SBF modeling, and it is critical to verify the 

function model so as to determine if the design concept being modeled actually achieves the 
functions that the modeler intends for it to achieve.  Our approach for function model verification 

is to determine the extent to which the behaviors that are associated with the functions (and thus 
are intended to implement or achieve the functions) are compatible with those functions.  If so, 

we infer that the functions are achieved as planned by the modeler. 
We will now describe this verification process in more detail.  After it has completed its 

behavior simulations and evaluations, SBFCalc evaluates all the functions in the inputted model.  
Conceptually, the idea is as follows: the “provides” condition of a function states what about the 

world must be true at the resolution of the function.  The behavior pointed to by the function 
should implement the function.  Therefore, the stop state(s) of a behavior should reflect a world 

state that is compatible with the “provides” condition of its function for the behavior and function 
to be in agreement. 

 More specifically, SBFCalc will, for each inputted function, compare the property and value 
pairs from the “provides” condition of that inputted function with the property and value pairs 

comprising the output of the inferred behavior that matches the inputted behavior it points to.  
SBFCalc’s primary output from this reasoning is two lists: a list of property and value pairs that 

are compatible between the function and behavior and a list of pairs that are incompatible. 
 We define the output of a behavior as the union of all the final state conditions for that 

behavior, resulting in a map of property and value pairs.  SBFCalc assumes that there is only one 
value per property in this map and will fail an assertion if multiple values for a single property are 

detected. 

 

Figure 7.  Hypothetical example without (top half) and with (bottom half) implicit value 

forwarding. 
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 To determine compatibility, SBFCalc does the following.  For each property and value pair in 

the output of the inferred behavior, SBFCalc will check if there is a matching property in the set 
of property and value pairs from the “provides” condition of the inputted function.  If there is and 

if both are assigned the same value, SBFCalc declares these to be compatible.  If there is and if 
they are assigned different values, SBFCalc declares these to be incompatible.  If there is no 

matching property, SBFCalc declares this property and value pair to be compatible because it 
doesn’t conflict with anything in the function’s “provides” condition.  After doing this, SBFCalc 

will loop through all the property and value pairs from the inputted function’s “provides” 
condition.  If it finds any property that is not in the map of property and value pairs in the inferred 

behavior’s output, it will flag this property and value pair as incompatible because the inferred 
behavior’s output should have it (since the function “provides” it) and does not. 

 In the results below, we show an example of function model evaluation through analysis of our 
Shinkansen Train model. 

4.3  Evaluating the Structure Model 

The third and final aspect of an SBF model is its structure model, which describes the physical 

components and substances of the model and the connections between the components.  SBFCalc 
does not itself address structure model evaluation.  However, we are currently developing a 

complementary computational technique involving model comparison that should, as part of it, 
address this topic. 

5.  Results 

In this section, we present a preliminary evaluation of SBFCalc.  To do so, we investigated 
SBFCalc’s performance on the Shinkansen Train model that we described above.  We inputted 

the Shinkansen Train model into SBFCalc, which produced multiple results.  Here, we will report 
on the evaluation of the TrainGeneratesAerodynamicNoise function and its associated behavior.  

 First, let us discuss the behavior.  Figure 8 visualizes the behavior results.  Note that, since 
SBFCalc only changes state conditions, the explanations on transitions depicted in Table 1 have 

not changed.  In this Figure, only the differences are shown.  The set of similar property and value 
pairs is identical to the state conditions show in Figure 4.  We have prefixed property and value 

pairs in states with a + if they are new in the inferred behavior compared to the inputted behavior, 
and all property and value pairs are prefixed with this.  There were no properties in a state that 

existed in both the inferred and inputted behavior and had different values.  
We interpret our results as meaning two things.  First, SBFCalc agreed with all the state 

conditions that we proposed in our inputted behavior (since there were no properties with 
different values upon comparison), which is a positive result because we tried to build the 

behavior correctly.   Second, SBFCalc identified a large number of new property and value pairs 
as differences, which likely came from a combination of implicit value forwarding and function 

explanation reasoning.  Although these differences are legitimate differences, we are currently 
considering whether to position new property and value pairs as something conceptually different 

from differences because they don’t represent contradictions in the model and may in fact have 
been implied by the modeler because of a modeling assumption. 

Figure 9 visualizes the function results.  Property and value pairs with a + prefix were in the 
behavior output but not in the function’s “provides” condition.  Only one property and value pair, 

Air.NoiseCreated = Low, is missing this prefix; it was in both the behavior’s output and the 
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function’s “provides” condition.  As can be seen, SBFCalc deems the output of the inferred 

behavior to be completely compatible with the inputted function.  It is interesting to note the vast 
number of extra property and value pairs outputted by the behavior, which suggests a more 

complex world state than just looking at the function’s “provides” condition alone would suggest. 

6.  Conclusion 

Computational design seeks to evaluate designs as early in the design process as possible. Given 

that the task of conceptual design is a function to structure mapping, the task typically produces 
not only a design concept but also a functional model of the design. The functional model 

provides both a functional decomposition of the design and a functional explanation of how the 
structure of the design delivers its functions. In this paper, we described an automated 

computational technique called SBFCalc for evaluating design concepts. SBFCalc evaluates a 
design concept through a simulation of the functional model of the design concept. We showed 

how SBFCalc can validate a proposed design concept in biologically inspired design.  In addition, 
although we do not explore it here, we also propose that a designer could also use this same 

technique to validate the source analog, which corresponds to a biological system in our context, 
and perhaps also to validate the target, which corresponds to a deficient design in our context. 

 

Figure 8.  Visualization of the results of evaluating the behavior that implements the 

TrainGeneratesAerodynamicNoise function of the Shinkansen Train model.  This Figure only depicts 

the differences identified in the results. 



B. WILTGEN AND A. K. GOEL 

16 

 SBFCalc builds on two lines of research: functional modeling and qualitative simulation.  
While qualitative simulation provides techniques for deriving behavior from structure of systems, 

functional modeling provides schemas for explaining how the structure of the design delivers its 
functions, using behavior as an intermediate level of abstraction between structure and function. 

When SBFCalc combines functional modeling and qualitative simulation, functions (1) help 
decompose the simulation of the system as a whole into simulations of its subsystems, and (2) 

help organize and abstract the simulations of the subsystems into simulation of the system as a 
whole. 
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